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Abstract

Riemann hypothesis stands proved in three different ways.To prove Riemann hypothesis from
the functional equation concept of Delta function is introduced similar to Gamma and Pi function.
Other two proofs are derived using Eulers formula and elementary algebra. Analytically continuing
gamma and zeta function to an extended domain, poles and zeros of zeta values are redefined. Hodge
conjecture, BSD conjecture are also proved using zeta values. Other prime conjectures like Goldbach
conjecture, Twin prime conjecture etc.. are also proved in the light of new understanding of primes.
Numbers are proved to be multidimensional as worked out by Hamilton. Logarithm of negative and
complex numbers are redefined using extended number system. Factorial of negative and complex
numbers are redefined using values of Delta function.
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RiemannHypothesis

ζ(s) = 2sπ(s−1) sin

(
πs
2

)
Γ(1− s)ζ(1− s)
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1 Introduction

In this section let us have a short introduction to zeta function and riemann hypothesis on zeta function.

1.1 Euler the grandfather of zeta function

In 1737, Leonard Euler published a paper where he derived a tricky formula that pointed to a wonderful connection
between the infinite sum of the reciprocals of all natural integers (zeta function in its simplest form) and all prime
numbers.[1]
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Euler product form of zeta function when s > 1:

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(
1 +

1

ps
+

1

p2s
+

1

p3s
+

1

p4s
...

)

Equivalent to:

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

1

1− P−s

To carry out the multiplication on the right, we need to pick up exactly one term from every sum that is a factor
in the product and, since every integer admits a unique prime factorization, the reciprocal of every integer will be
obtained in this manner - each exactly once.

1.2 Riemann the father of zeta function

Riemann might had seen the following relation between zeta function and eta function (also known as alternate
zeta function) which converges for all values Re(s) > 0.

ζ(s) =

∞∑
n=1

1

ns

∞∑
n=1

2

(2n)s
=

1

2s−1
ζ(s)

Now subtracting the latter from the former we get:(
1− 1

2s−1

)
ζ(s) =

1

1s
− 1

2s
+

1

3s
− . . . =

∞∑
n=1

(−1)n−1
1

ns
=: η(s) =⇒ ζ(s) =

(
1− 21−s

)−1
η(s)

Then Riemann might had realised that he could analytically continue zeta function from the above equation for
1 6= Re (s) > 0 after re-normalizing the potential problematic points. In his seminal paper Riemann showed that
zeta function have the property of analytic continuation in the whole complex plane except for s=1 where the zeta
function has its pole. Zeta function satisfies Riemann’s functional equation.

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(1− s)ζ(1− s)
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Riemann Hypothesis is all about non trivial zeros of zeta function. There are trivial zeros which occur at every
negative even integer. There are no zeros for s > 1. All other zeros lies at a critical strip 0 < s < 1. In this critical
strip he conjectured that all non trivial zeros lies on a critical line of the form of z = 1

2 ± iy i.e. the real part of all
those complex numbers equals 1

2 . I used these cited [2, 3, 4, 5, 6, 7, 8, 9] online resources to understand Riemann
zeta function.

Showing that there are no zeros with real part 1 - Jacques Hadamard and Charles Jean de la Valle-Poussin
independently prove the prime number theorem which essentially says that if there exists a limit to the ratio of
primes upto a given number and that numbers natural logarithm, that should be equal to 1. When I started
reading about number theory I wondered that if prime number theorem is proved then what is left. The biggest
job is done. I questioned myself why zeta function cannot be defined at 1. Calculus has got set of rules for
checking convergence of any infinite series, sometime especially when we are encapsulating infinities into unity,
those rules may fall short to check the convergence of infinite series. In spite of that Euler was successful proving
sum to product form and calculated zeta values for some numbers by hand only. Leopold Kronecker proved and
interpreted Euler’s formulas is the outcome of passing to the right-sided limit as s→ 1+. I decided I will stick to
Grandpa Eulers approach in attacking the problem.

2 Proof of Riemann Hypothesis

In this section we shall prove Riemann Hypothesis in different ways.

2.1 An exhaustive proof using Riemanns functional equation

Multiplying both side of Riemanns functional equation by (s− 1) we get

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
(1− s)Γ(1− s)ζ(1− s)

Putting (1− s)Γ(1− s) = Γ(2− s) we get:

ζ(1− s) =
(1− s)ζ(s)

2sπ(s−1) sin

(
πs
2

)
Γ(2− s)

s→ 1we get: ∵ lims→1(s− 1)ζ(s) = 1 ∴ (1− s)ζ(s) = −1 and Γ(2− 1) = Γ(1) = 1

ζ(0) =
−1

21π0 sin

(
π
2

) = −1

2

Examining the functional equation we shall observe that the pole of zeta function at Re(s) = 1 is attributable
to the pole of Gamma function. In the critical strip 0 < s < 1 Delta function (see explanation) holds equally
good if not better for factorial function. As zeta function have got the holomorphic property the act of stretching
or squeezing preserves the holomorphic character. Using this property we can remove the pole of zeta function.
Introducing Delta function for factorial we can remove the poles of Gamma and Pi function and rewrite the
functional equation in terms of its harmonic conjugate function as follows(see explanation below):

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
∆(4− s)ζ(1− s)

Which can be rewritten in terms of Gamma function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)
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Which again can be rewritten in terms of Pi function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Π(2− s)ζ(1− s)

Now Putting s = 1we get:

ζ(1) = −21π(1−1) sin

(
π

2

)
Γ(3− 1)ζ(0) = 1

zeta function is now defined on entire C , and as such it becomes an entire function. In complex analysis, Liouville’s
theorem states that every bounded entire function must be constant. That is, every holomorphic function f for
which there exists a positive number M such that |f(z)| ≤M for all z in C is constant. Being an entire function

zeta function is constant as none of the values of zeta function do not exceed M = ζ(2) = π2

6 .Maximum modulus
principle further requires that non constant holomorphic functions attain maximum modulus on the boundary
of the unit circle. Being a constant function zeta function duly complies with maximum modulus principle as it
reaches maximum modulus π2

6 outside the unit circle i.e. on the boundary of the double unit circle. Gauss’s mean
value theorem requires that in case a function is bounded in some neighborhood, then its mean value shall occur
at the center of the unit circle drawn on the neighborhood. |ζ(0)| = 1

2 is the mean modulus of entire zeta function.
Inverse of maximum modulus principle implies points on half unit circle give the minimum modulus or zeros of
zeta function. Minimum modulus principle requires holomorphic functions having all non zero values shall attain
minimum modulus on the boundary of the unit circle. Having lots of zero values holomorphic zeta function do not
attain minimum modulus on the boundary of the unit circle rather points on half unit circle gives the minimum
modulus or zeros of zeta function. Everything put together it implies that points on the half unit circle will mostly
be the zeros of the zeta function which all have ±1

2 as real part as Riemann rightly hypothesized.

Putting s = 1
2 in ζ(s) = −2sπ(s−1) sin

(
πs
2

)
Γ(3− s)ζ(1− s)

ζ

(
1

2

)
= −2

1
2π(1−

1
2
) sin

(
π

2.2

)
Γ

(
5

2

)
ζ

(
1

2

)

ζ

(
1

2

)(
1 +

3
√

2.π.π

4.
√

2

)
= 0

ζ

(
1

2

)(
1 +

3π

4

)
= 0

ζ

(
1

2

)
= 0

Therefore principal value of ζ(12) is zero and Riemann Hypothesis holds good.

2.1.1 Introduction of Delta function

Explanation 1 Euler in the year 1730 proved that the following indefinite integral gives the factorial of x for all
real positive numbers,

x! = Π(x) =

∫ ∞
0

txe−tdt, x > 1

Eulers Pi function satisfies the following recurrence relation for all positive real numbers.

Π(x+ 1) = (x+ 1)Π(x), x > 0

In 1768, Euler defined Gamma function, Γ(x), and extended the concept of factorials to all real negative numbers,
except zero and negative integers. Γ(x), is an extension of the Pi function, with its argument shifted down by 1
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unit.

Γ(x) =

∫ ∞
0

tx−1e−tdt

Eulers Gamma function is related to Pi function as follows:

Γ(x+ 1) = Π(x) = x!

Now let us extend factorials of negative integers by way of shifting the argument of Gamma function further down
by 1 unit.Let us define Delta function as follows:

∆(x) =

∫ ∞
0

tx−2e−tdt

The extended Delta function shall have the following recurrence relation.

∆(x+ 2) = (x+ 2)∆(x+ 1) = (x+ 2)(x+ 1)∆(x) = x!

Newly defined Delta function is related to Eulers Gamma function and Pi function as follows:

∆(x+ 2) = Γ(x+ 1) = Π(x)

Plugging into x = 2 above
∆(4) = Γ(3) = Π(2) = 2

Plugging into x = 1 above
∆(3) = Γ(2) = Π(1) = 1

Plugging into x = 0 above
∆(2) = Γ(1) = Π(0) = 1

Plugging into x = −1 above we can remove poles of Gamma and Pi function as follows:

∆(1) = Γ(0) = Π(−1) = 1.∆(0) = −1.∆(−1) =

∫ ∞
0

t1−1e−tdt =

[
− e−x

]∞
0

= lim
x→∞

−e−x − e−0 = 0 + 1 = 1

Therefore we can say ∆(−1) = −1. Similarly plugging into x = −2 above

∆(0) = Γ(−1) = Π(−2) = −1.∆(−1) = −2.∆(−2) =

∫ ∞
0

t0e−tdt =

[
− e−x

]∞
0

= lim
x→∞

−e−x − e−0 = 0 + 1 = 1

Therefore we can say ∆(−2) = −1
2 . Continuing further we can remove poles of Gamma and Pi function:

Plugging into x = −3 above and equating with result found above

∆(−1) = Γ(−2) = Π(−3) = −2.− 1.∆(−3) = −1 =⇒ ∆(−3) = −1

2

Plugging into x = −4 above and equating with result found above

∆(−2) = Γ(−3) = Π(−4) = −3.− 2.∆(−4) = −1

2
=⇒ ∆(−4) = − 1

12

Plugging into x = −5 above and equating with result found above

∆(−3) = Γ(−4) = Π(−5) = −4.− 3.∆(−5) = −1

2
=⇒ ∆(−5) = − 1

24

Plugging into x = −6 above and equating with result found above

∆(−4) = Γ(−5) = Π(−6) = −5.− 4.∆(−6) = − 1

12
=⇒ ∆(−6) = − 1

240
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Plugging into x = −7 above and equating with result found above

∆(−5) = Γ(−6) = Π(−7) = −6.− 5.∆(−7) = − 1

24
=⇒ ∆(−7) = − 1

720

Plugging into x = −8 above and equating with result found above

∆(−6) = Γ(−7) = Π(−8) = −7.− 6.∆(−8) = − 1

240
=⇒ ∆(−8) = − 1

10080

...
And the pattern continues upto infinity.

2.1.2 Alternate functional equation

Explanation 2 Multiplying both side of Riemanns functional equation by (s− 1) we get

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
(1− s)Γ(1− s)ζ(1− s)

Putting (1− s)Γ(1− s) = Γ(2− s) we get:

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(2− s)ζ(1− s)

s→ 1we get: ∵ lims→1(s− 1)ζ(s) = 1 ∴ (1− s)ζ(s) = −1

2sπ(s−1) sin

(
πs

2

)
Γ(2− s)ζ(1− s) = −1

Similarly multiplying both numerator and denominator right hand side of Riemanns functional equation by (1 −
s)(2− s) before applying any limit we get :

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
(1− s)(2− s)Γ(1− s)ζ(1− s)

(1− s)(2− s)

Putting (1− s)(2− s)Γ(1− s) = Γ(3− s) we get:

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

(1− s)(2− s)

Multiplying both side of the above equation by (1− s) we get

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

(2− s)

s→ 1we get: ∵ lims→1(s− 1)ζ(s) = 1 ∴ (1− s)ζ(s) = −1

−1 = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

(2− s)

Multiplying both side of the above equation further by (2− s) we get:

(s− 2) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)
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Multiplying both side of the above equation by ζ(s− 1) we get

(s− 2)ζ(s− 1) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)ζ(s− 1)

s→ 2 we get: ∵ lims→2(s− 2)ζ(s− 1) = 1

2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)ζ(s− 1) = 1

To manually define zeta function such a way that it takes value 1 or mathematically ∃!s ∈ N; ζ(s−1) = 1 , Euler’s
induction approach was applied and it was observed that zeta function have the potential unit value as demonstrated
in the section 3.1 & 3.3.So we can set ζ(s− 1) = 1 and we can write

2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s) = 1

Multiplying above equation by -1 we get

−2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s) = −1

Both the above boxed forms are equivalent to Riemann’s original functional equation therefore Riemann’s original
functional equation can be analytically continued as:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
∆(4− s)ζ(1− s)

Which can be rewritten in terms of Gamma function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

Which again can be rewritten in terms of Pi function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Π(2− s)ζ(1− s)

Justification of the definition we set for ζ(3 − 2) = 1 and consistency of the above forms of functional equation
have been cross checked in the main proof and also it was found that the proposition complies with all the theorems
used in complex analysis.Justification of the definition we set for ζ(−1) = 1

2 and consistency of the above forms
of functional equation have been cross checked in the in the section 3.2. ζ(−1) = 1

2 must be the second solution to
ζ(−1) apart from the known Ramanujan’s proof ζ(−1) = −1

12 . One has to accept that following the zeta functions
analytic and its harmonic conjugal behavior zeta values can be multivalued (if he or she dislike the term multi-zeta
function, I personally dislike it because I am against the idea of Multivrse).

2.2 An elegant proof using Eulers original product form

Eulers Product form of zeta Function in Eulers exponential form of complex numbers is as follows:

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1 + reiθ + r2ei2θ + r3ei3θ...

)
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Now any such factor

(
1 + reiθ + r2ei2θ + r3ei3θ...

)
will be zero if

(
reiθ + r2ei2θ + r3ei3θ...

)
= −1 = eiπ

Comparing both side of the equation and equating left side to right side on the unit circle we can say: *

θ + 2θ + 3θ + 4θ... = π

r + r2 + r3 + r4.... = 1

We can solve θ and r as follows:

θ + 2θ + 3θ + 4θ... = π

θ(1 + 2 + 3 + 4...) = π

θ.ζ(−1) = π

θ.
−1

12
= π

θ = −12π

r + r2 + r3 + r4.... = 1

r(1 + r + r2 + r3 + r4....) = 1

r
1

1− r
= 1

r = 1− r

r =
1

2

We can determine the real part of the non trivial zeros of zeta function as follows:

r cos θ =
1

2
cos(−12π) =

1

2

Therefore Principal value of ζ(12) will be zero, hence Riemann Hypothesis is proved.

Explanation 3 * We can try back the trigonometric form then the algebraic form of complex numbers do the
summation algebraically and then come back to exponential form as follows:

reiθ + r2ei2θ + r3ei3θ...

= (r cos θ + ir sin θ) + (r2 cos 2θ + ir2 sin 2θ) + (r3 cos 3θ + ir3 sin 3θ) + (r4 cos 4θ + ir4 sin 4θ)....

= (x1 + iy1) + (x2 + iy2) + (x3 + iy3) + (x4 + iy4) + (x5 + iy5)....

= (x1 + x2 + x3 + x4 + x5 + ...) + i(y1 + y2 + y3 + y4 + y5 + ...)

= R cos Θ + iR sin Θ

= (r + r2 + r3 + r4....)ei(θ+2θ+3θ+4θ...)

Explanation 4 One may attempt to show that (reiθ+r2ei2θ+r3ei3θ...) = −1 actually results reiθ

1−reiθ which implies

in absurdity of 0 = −1. Correct way to evaluate reiθ

1−reiθ is to apply the complex conjugate of denominator before

reaching any conclusion. reiθ(1+reiθ)
(1−reiθ)(1+reiθ) then shall result to reiθ = −1 which points towards the unit circle. In the

present proof we need to go deeper into the d-unit circle and come up with the interpretation which can explain the
Riemann Hypothesis.

Explanation 5 One may attempt to show inequality of the reverse calculation 1
21

+ 1
22

+ 1
23
... = 1 6= −1. reiπ = −1

need to be interpreted as the exponent which then satisfies 1−1 = 1 or 2.2−1 = 1 on the unit or d-unit circle. There
is nothing called t-unit circle satisfying 3.3−1 = 1.

9



2.3 An elementary proof using alternate product form

Eulers alternate Product form of zeta Function in Eulers exponential form of complex numbers is as follows:

∞∑
n=1

1

ns
=
∏
p

(
1

1− 1
reiθ

)
=
∏
p

(
reiθ

reiθ − 1

)

Multiplying both numerator and denominator by reiθ + 1we get:

∞∑
n=1

1

ns
=
∏
p

(
reiθ(reiθ + 1)

(reiθ − 1)(reiθ + 1)

)

Now any such factor

(
reiθ(reiθ+1)
(r2ei2θ−1)

)
will be zero if reiθ(reiθ + 1) is zero:

reiθ(reiθ + 1) = 0

reiθ(reiθ − eiπ) = 0

r2ei2θ − rei(π−θ)∗ = 0

r2ei2θ = rei(π−θ)

We can solve θ and r as follows:

2θ = (π − θ)
3θ = π

θ =
π

3

r2 = r

r2

r
=

r

r
r = 1

We can determine the real part of the non trivial zeros of zeta function as follows:

r cos θ = 1. cos(π3 ) = 1
2

Therefore Principal value of ζ(12) will be zero, and Riemann Hypothesis is proved.

Explanation 6 * ei(−θ) is arrived as follows:

eiθ =

(
eiθ
)1

=

(
eiθ
)1−1

=

(
eiθ
)−11

=

((
eiθ
)i2)1

=

(
eiθ
)i2

= ei
3(θ) = e−iθ

Explanation 7 Essentially proving log2(
1
2) = −1 in a complex turned simple way is equivalent of saying log(1) = 0

in real way. Primes other than 2 satisfy logp(
1
2) = eiθ also in a pure complex way.
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3 Infinite product of zeta values

3.1 Infinite product of positive zeta values converges

ζ(1) = 1 +
1

21
+

1

31
+

1

41
... =

(
1 +

1

21
+

1

22
+

1

23
...

)(
1 +

1

31
+

1

32
+

1

33
...

)(
1 +

1

51
+

1

52
...

)
...

ζ(2) = 1 +
1

22
+

1

32
+

1

42
... =

(
1 +

1

22
+

1

24
+

1

26
...

)(
1 +

1

32
+

1

34
+

1

36
...

)(
1 +

1

52
+

1

54
...

)
...

ζ(3) = 1 +
1

23
+

1

33
+

1

43
... =

(
1 +

1

23
+

1

26
+

1

29
...

)(
1 +

1

33
+

1

36
+

1

39
...

)(
1 +

1

53
+

1

56
...

)
...

...

From the side of infinite sum of negative exponents of all natural integers:

ζ(1)ζ(2)ζ(3)...

=

(
1 +

1

21
+

1

31
+

1

41
...

)(
1 +

1

22
+

1

32
+

1

42
...

)(
1 +

1

23
+

1

33
+

1

43
...

)
...

= 1 +

(
1

21
+

1

22
+

1

23
...

)
+

(
1

31
+

1

32
+

1

33
...

)
+

(
1

41
+

1

42
+

1

43
...

)
...

= 1 + 1 +
1

21
+

1

31
+

1

41
+

1

51
+

1

61
+

1

71
+

1

81
+

1

91
...

= 1 + ζ(1)

...

From the side of infinite product of sum of negative exponents of all primes:

ζ(1)ζ(2)ζ(3)... =(
1 +

1

21
+

1

22
+

1

23
...

)(
1 +

1

31
+

1

32
+

1

33
...

)(
1 +

1

51
+

1

52
+

1

53
...

)
...(

1 +
1

22
+

1

24
+

1

26
...

)(
1 +

1

32
+

1

34
+

1

36
...

)(
1 +

1

52
+

1

54
+

1

56
...

)
...(

1 +
1

23
+

1

26
+

1

29
...

)(
1 +

1

33
+

1

36
+

1

39
...

)(
1 +

1

53
+

1

56
+

1

59
...

)
...

...

=

(
1 + 1

)(
1 +

1

31
+

1

32
+

1

33
...

)(
1 +

1

51
+

1

52
+

1

53
...

)
...(

1 +
1

22
+

1

24
+

1

26
...

)(
1 +

1

32
+

1

34
+

1

36
...

)(
1 +

1

52
+

1

54
+

1

56
...

)
...(

1 +
1

23
+

1

26
+

1

29
...

)(
1 +

1

33
+

1

36
+

1

39
...

)(
1 +

1

53
+

1

56
+

1

59
...

)
...

...

continued to next page....
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continued from last page....

Simultaneously halfing and doubling each factor and writing it sum of two equivalent forms

= 2

(
1

2

(
1 +

1
3

1− 1
3

+ 1 +
1

31
+

1

32
+

1

33
...

))(
1

2

(
1 +

1
5

1− 1
5

+ 1 +
1

51
+

1

52
+

1

53
...

))
...(

1

2

(
1 +

1
4

1− 1
4

+ 1 +
1

22
+

1

24
+

1

26
...

))(
1

2

(
1 +

1
9

1− 1
9

+ 1 +
1

32
+

1

34
+

1

36
...

))
...(

1

2

(
1 +

1
8

1− 1
8

+ 1 +
1

23
+

1

26
+

1

29
...

)(
1

2

(
1 +

1
27

1− 1
27

+ 1 +
1

33
+

1

36
+

1

39
...

))
...

...

= 2

(
1

2

(
1 +

1

2
+ 1 +

1

31
+

1

32
+

1

33
...

))(
1

2

(
1 +

1

4
+ 1 +

1

51
+

1

52
+

1

53
...

))
...(

1

2

(
1 +

1

3
+ 1 +

1

22
+

1

24
+

1

26
...

)(
1

2

(
1 +

1

8
+ 1 +

1

32
+

1

34
+

1

36
...

))
...(

1

2

(
1 +

1

7
+ 1 +

1

23
+

1

26
+

1

29
...

)(
1

2

(
1 +

1

26
+ 1 +

1

33
+

1

36
+

1

39
...

))
...

...

= 2

(
1 +

1

2

(
1

2
+

1

31
+

1

32
+

1

33
...

))(
1 +

1

2

(
1

4
+

1

51
+

1

52
+

1

53
...

))
...(

1 +
1

2

(
1

3
+

1

22
+

1

24
+

1

26
...

))(
1 +

1

2

(
1

8
+

1

32
+

1

34
+

1

36
...

))
...(

1 +
1

2

(
1

7
+

1

23
+

1

26
+

1

29
...

))(
1 +

1

2

(
1

26
+

1

33
+

1

36
+

1

39
...

))
...

...

= 2

(
1 +

1

2

(
1

21
+

1

31
+

1

41
...+

1

21
+

1

31
+

1

41
...

))

= 2

(
1 +

1

2

(
2ζ(1)− 2

))
= 2(1− 1 + ζ(1))

= 2ζ(1)

Now comparing two identities:

1 + ζ(1) = 2ζ(1))

ζ(1) = 1

Hence Infinite product of positive zeta values converges to 2

12



3.2 Infinite product of negative zeta values converges

ζ(−1) = 1 + 21 + 31 + 41 + 51... =

(
1 + 2 + 22 + 23...

)(
1 + 3 + 32 + 33...

)(
1 + 5 + 52 + 53...

)
...

ζ(−2) = 1 + 22 + 32 + 42 + 52... =

(
1 + 22 + 24 + 26...

)(
1 + 32 + 34 + 36...

)(
1 + 52 + 54 + 56...

)
...

ζ(−3) = 1 + 23 + 33 + 43 + 53... =

(
1 + 23 + 26 + 29...

)(
1 + 33 + 36 + 39...

)(
1 + 53 + 56 + 59...

)
...

...

From the side of infinite sum of negative exponents of all natural integers:

ζ(−1)ζ(−2)ζ(−3)...

=

(
1 + 21 + 31 + 41 + 51...

)(
1 + 22 + 32 + 42 + 52...

)(
1 + 23 + 33 + 43 + 53...

)
...

= 1 +

(
2 + 22 + 23...

)
+

(
3 + 32 + 33...

)
+

(
4 + 42 + 43...

)
...

= 1 +

(
1 + 2 + 22 + 23...− 1

)
+

(
1 + 3 + 32 + 33...− 1

)
+

(
1 + 4 + 42 + 43...− 1

)
...

= 1 +

(
− 1

1
− 1

)
+

(
− 1

2
− 1

)
+

(
− 1

3
− 1

)
+

(
− 1

4
− 1

)
...

= 1−

((
1 +

1

2
+

1

3
+

1

4
...

)
+ 1 + 1 + 1 + 1...

)

= 1−

(
ζ(1) + ζ(0)

)

= 1−

(
1− 1

2

)
=

1

2
From the side of infinite product of sum of negative exponents of all primes:

ζ(−1)ζ(−2)ζ(−3)... =(
1 + 2 + 22 + 23...

)(
1 + 3 + 32 + 33...

)(
1 + 5 + 52 + 53...

)
...(

1 + 22 + 24 + 26...

)(
1 + 32 + 34 + 36...

)(
1 + 52 + 54 + 56...

)
...(

1 + 23 + 26 + 29...

)(
1 + 33 + 36 + 39...

)(
1 + 53 + 56 + 59...

)
...

...

= 1 + 21 + 31 + 41 + 51...

= ζ(−1)

13



Therefore ζ(−1) =
1

2
must be the second solution of ζ(−1) apart from the known one ζ(−1) = −1

12 .

Using Delta function instead of Gamma function we can rewrite the functional equation applicable as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
∆(4− s)ζ(1− s)

Which can be rewritten in terms of Gamma function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

Which again can be rewritten in terms of Pi function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Π(2− s)ζ(1− s)

Putting s = −1we get:

ζ(−1) = −2−1π(−1−1) sin

(
−π
2

)
Γ(3− s)ζ(2) =

1

2

To proof Ramanujans Way

σ = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.....

2σ = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9... + 1 + 1 + 1 + 1 + 1 + 1 + 1...∗
Subtracting the bottom from the top one we get:

− σ = 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1...+ 1 + 1 + 1 + 1 + 1 + 1 + 1...

σ = −(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1........)

σ =
1

2

*The second part is calculated subtracting bottom from the top before doubling.
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3.3 Counter proof on Nicole Oresme’s proof of divergent harmonic series

Nicole Oresme in around 1350 proved divergence of harmonic series by comparing the harmonic series with another
divergent series. He replaced each denominator with the next-largest power of two.

⇒ 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
...

> 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
...

> 1 +

(
1

2

)
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ ...

> 1 +
1

2
+

1

2
+

1

2
+

1

2
+

1

2
+

1

2
+

1

2
...

He then concluded that the harmonic series must diverge as the above series diverges.

It was too quick to conclude as we can go ahead and show:

R.H.S = 1 +
1

2

(
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + ...

)
= 1 +

1

2
.
−1

2

= 1− 1

4
If we consider ζ(1) = 1 then also it passes the comparison test.

Therefore We need to come out of the belief that harmonic series diverges.Continuing further we can show

R.H.S = 1 +
1

2
+

1

2
+

1

2
+

1

2

(
1 + 1 + 1...

)
= 1 +

3

2
+

1

2
.
−1

2

= 1 +
3

2
− 1

4

= 1 +
3

2
−

(
1− 2 + 3− 4 + ...

)

= 1 +
3

2
−

((
1 + 2 + 3...

)
− 2

(
1 + 2 + 4...

))

= 1 +
3

2
−

(
1

2
− 2

(
1 + 1 + 1...

))

= 1 +
3

2
−

(
1

2
− 2
−1

2

)

= 1 +
3

2
−

(
1

2
+ 1

)
= 1 +

3

2
− 3

2
= 1

R.H.S = 1 +
1

2
+

1

2
+

1

2
+

1

2
+

1

2
+

1

2

(
1 + 1 + 1...

)
= 1 +

5

2
+

1

2
.
−1

2

= 1 +
5

2
− 1

4

= 1 +
5

2
−

(
1− 2 + 3− 4 + ...

)

= 1 +
5

2
−

((
1 + 2 + 3...

)
− 2

(
1 + 2 + 4...

))

= 1 +
5

2
−

(
1

2
− 2

(
1

1− 2

))

= 1 +
5

2
−

(
1

2
+ 2

)

= 1 +
5

2
−

(
1 + 4

2

)
= 1 +

5

2
− 5

2
= 1

According residue theorem we can have a Laurent expansion of an analytic function at the pole f(s) =
∑∞

n=−∞ an(s−
s0)

n of f in a punctured disk around s0, and therefrom we can have Res (f(s); s0) = a−1, i.e. the residue is the
coefficient of (s − s0)−1 in that expansion. For the pole ζ(1), we know the start of the Laurent series (since it
is a simple pole, there is only one term with a negative exponent), namely ζ(s) = 1

s−1 + γ + . . . so we have
Res (ζ(s); 1) = 1. At the pole zeta function have zero radius of convergence. Interpreting zeta function at the pole
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to be divergent is extreme arbitrary, contradictory and void of rationality. The pole neither falls outside the radius
of convergence resulting ζ(1) = ∞ nor inside the radius of convergence resulting ζ(1) = 1 , its just on the zero
radius of convergence suggesting both values to be equally good. Since none of the above value is more natural
than the others, all of them can be incorporated into a multivalued zeta function (Please do not try to snatch the
function characteristic, ultimately it’s two different zeta function) which is again totally consistent with harmonic
conjugate theorem and allows us to interpret ⇒ 1 + 1

2 + 1
3 + 1

4 + 1
5 + 1

6 + 1
7 + 1

8 ... = 1

4 Zeta results confirms Cantors theory

Cantors theorem, in set theory, the theorem that the cardinality (numerical size) of a set is strictly less than the
cardinality of its power set, or collection of subsets. In symbols, a finite set S with n elements contains 2n subsets,
so that the cardinality of the set S is n and its power set P (S) is 2n. While this is clear for finite sets, no one had
seriously considered the case for infinite sets before the German mathematician George Cantor who is universally
recognized as the founder of modern set theorybegan working in this area toward the end of the 19th century.The
1891 proof of Cantors theorem for infinite sets rested on a version of his so-called diagonalization argument, which
he had earlier used to prove that the cardinality of the rational numbers is the same as the cardinality of the
integers by putting them into a one-to-one correspondence.[14]

We have seen both sum and product of positive Zeta values are greater than sum and product of negative Zeta
values respectively. This actually proves a different flavor of Cantors theory numerically. If negative Zeta values are
associated with the set of rational numbers and positive Zeta values are associated with the set of natural numbers
then the numerical inequality between sum and product of both proves that there are more ordinal numbers in
the form of rational numbers than cardinal numbers in the form of natural numbers in spite of having one to one
correlation among them. This actually happens because of dual nature of reality. Every unit fractions can be
written in two different ways i.e. one upon the integer or two upon the double of the integer as they are equivalent.
But the number of integer representation being unique will always fall short of the former. Even if we bring into
products,factors,sum,partitions etc. then also the result remain same. So there are more rational numbers than
natural numbers. Stepping down the ladder we can say there are more ordinal numbers than cardinal numbers.

5 Zeta results confirms PNT

In number theory, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers
among the positive integers. It formalizes the intuitive idea that primes become less common as they become
larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques
Hadamard and Charles Jean de la Valle Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular,
the Riemann zeta function). The first such distribution found is π(N) ∼ N

logN , where π(N) is the prime-counting
function and logN is the natural logarithm of N. This means that for large enough N, the probability that a random

integer not greater than N is prime is very close to 1
logN . lim

n→∞

(
1 +

1

n

)n
can also be written as lim

n→∞

(
2 +

2

n

)n
.

For this reason prime number theorem works nicely and primes appear through zeta zeros on critical half line in
analytic continuation of zeta function.
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6 Primes product = 2.Sum of numbers

We know :

ζ(−1) = ζ(1) + ζ(0)

or

(
1 +

1

2
+

1

3
+

1

4
...

)
+

(
1 + 1 + 1 + 1 + ...

)
=

1

2

or

(
1 + 1

)
+

(
1 +

1

2

)
+

(
1 +

1

3

)
+

(
1 +

1

4

)
+ ... =

1

2

or

(
2

1
+

3

2
+

4

3
+

5

4
+

6

5
...

)
=

1

2

LCM of the denominators can be shown to equal the square root of primes product.

Reversing the numerator sequence can shown to equal the sum of integers.

or

(
1 + 2 + 3 + 4 + 5 + 6 + 7...∗

2.3.5.7.11... ∗ ∗

)
=

1

2

or2.

∞∑
N=1

N =

∞∏
i=1

Pi

*Series of terms written in reverse order.

**Product of All numbers can be written as 2 series of infinite product of all prime powers

**One arises from individual numbers and another from the number series.Then

LCM =
∞∏
i=1

P 1
i .P

2
i .P

3
i .P

4
i .P

5
i .P

6
i ...P

1
i .P

2
i .P

3
i .P

4
i .P

5
i .P

6
i ...

LCM =
∞∏
i=1

P
(1+2+3+4+5+6+7...)+(1+2+3+4+5+6+7...)
i ...

LCM =
∞∏
i=1

P
1
2
+ 1

2
i ...

LCM = 2.3.5.7.11...

Intuitively the above relation between sum of numbers and product of primes including the sole even prime must
be universally true as it re-proves the fundamental theorem of arithmetic.We can use this to prove Goldbach
conjecture and Twin prime conjecture.

7 Negative Zeta values redefined

Having found that zeta function can take two equally likely values for negative arguments we get the chance of
redefining negative zeta values as follows.

7.1 Negative even zeta values redefined removing trivial zeros

We can apply Euler’s reflection formula for Gamma function Γ(1−s)Γ(s) =
π

sin(πs)
, s 6∈ Z in Riemann’s functional

equation ζ(s) = 2sπ(s−1) sin

(
πs
2

)
Γ(1− s)ζ(1− s) to get another representation of zeta function as follows:

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
π

Γ(s) sin(πs)
ζ(1− s)
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=⇒ ζ(s) = 2sπ(s) sin

(
πs

2

)
1

Γ(s)2 sin(πs2 ) cos(πs2 )
ζ(1− s)

=⇒ ζ(s) = 2s−1π(s)
1

Γ(s) cos(πs2 )
ζ(1− s)

When x=-2, ζ(−2) = 2−2−1π(−2)
1

Γ(−2) cos(−2π2 )
ζ(1 + 2) =

ζ(3)

4π2
≈ 0.030448282

When x=-4, ζ(−4) = 2−4−1π(−4)
1

Γ(−4) cos(−4π2 )
ζ(1 + 4) =

3ζ(5)

8π4
≈ 0.003991799

When x=-6, ζ(−6) = 2−6−1π(−6)
1

Γ(−6) cos(−6π2 )
ζ(1 + 6) =

15ζ(7)

8π6
≈ 0.001966568

When x=-8, ζ(−8) = 2−8−1π(−8)
1

Γ(−8) cos(−8π2 )
ζ(1 + 8) =

315ζ(9)

16π8
≈ 0.00207904

...
And the pattern continues for all negative even numbers upto negative infinity.

7.2 Negative odd zeta values defined following zeta harmonic conjugate
function

Earlier we found that following harmonic conjugate theorem Riemann’s functional equation which is an extension
of real valued zeta function can also be represented as its harmonic conjugate function which mimic the extended
function.

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

We can get the harmonic conjugates of negative zeta values as follows:

When s=-1 ζ(−1) = −2−1π(−1−1) sin

(
−1π

2

)
Γ(3 + 1)ζ(1 + 1) =

1

2

When s=-3 ζ(−3) = −2−3π(−3−1) sin

(
−3π

2

)
Γ(3 + 3)ζ(1 + 3) =

−1

6

When s=-5 ζ(−5) = −2−5π(−5−1) sin

(
−5π

2

)
Γ(3 + 5)ζ(1 + 5) =

1

6

When s=-7 ζ(−7) = −2−7π(−7−1) sin

(
−7π

2

)
Γ(3 + 7)ζ(1 + 7) =

−3

10

...
And the pattern continues for all negative odd numbers upto negative infinity.

7.3 Negative even zeta values following zeta harmonic conjugate function

We can apply Euler’s reflection formula for Gamma function Γ(2− s)Γ(s− 1) =
π

sin(πs− π)
, s 6∈ Z in Riemann’s

functional equation ζ(s) = −2sπ(s−1) sin

(
πs
2

)
Γ(3 − s)ζ(1 − s) to get another representation of zeta function as

follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
π(2− s)

Γ(s− 1) sin(πs− π)
ζ(1− s)
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=⇒ ζ(s) = −2sπ(s−1) sin

(
πs

2

)
π(2− s)

Γ(s− 1) sin(πs)
ζ(1− s)

=⇒ ζ(s) = −2sπ(s) sin

(
πs

2

)
2− s

Γ(s− 1)2 sin(πs2 ) cos(πs2 )
ζ(1− s)

=⇒ ζ(s) = −2s−1π(s)
2− s

Γ(s− 1) cos(πs2 )
ζ(1− s)

When x=-2, ζ(−2) = 2−2−1π(−2)
2 + 2

Γ(−3) cos(−2π2 )
ζ(1 + 2) =

ζ(3)

π2
≈ 0.121793129

When x=-4, ζ(−4) = 2−4−1π(−4)
2 + 4

Γ(−5) cos(−4π2 )
ζ(1 + 4) =

9ζ(5)

2π4
≈ 0.04790251

When x=-6, ζ(−6) = 2−6−1π(−6)
2 + 6

Γ(−7) cos(−6π2 )
ζ(1 + 6) =

45ζ(7)

π6
≈ 0.047197639

When x=-8, ζ(−8) = 2−8−1π(−8)
2 + 8

Γ(−9) cos(−8π2 )
ζ(1 + 8) =

45ζ(7)

π6
≈ 0.047197639

...
And the pattern continues for all negative even numbers upto negative infinity.

8 Proof of Hodge Conjecture

In mathematics, the Hodge conjecture is a major unsolved problem in the field of algebraic geometry that relates
the algebraic topology of a non-singular complex algebraic variety to its subvarieties. More specifically, the
conjecture states that certain de Rham cohomology classes are algebraic; that is, they are sums of Poincar duals of
the homology classes of subvarieties. It was formulated by the Scottish mathematician William Vallance Douglas
Hodge as a result of a work in between 1930 and 1940 to enrich the description of de Rham cohomology to include
extra structure that is present in the case of complex algebraic varieties.

Let X be a compact complex manifold of complex dimension n. Then X is an orientable smooth manifold of
real dimension 2n, so its cohomology groups lie in degrees zero through 2n. Assume X is a Khler manifold, so
that there is a decomposition on its cohomology with complex coefficients

Hk(X,C) =
⊕
p+q=k

Hp,q(X)

where Hp,q(X) is the subgroup of cohomology classes which are represented by harmonic forms of type (p, q). That
is, these are the cohomology classes represented by differential forms which, in some choice of local coordinates
z1, . . . , zn , can be written as a harmonic function times

dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq

Taking wedge products of these harmonic representatives corresponds to the cup product in cohomology, so the
cup product is compatible with the Hodge decomposition:

∪ : Hp,q(X)×Hp′,q′(X)→ Hp+p′,q+q′(X)

Since X is a compact oriented manifold, X has a fundamental class. Let Z be a complex submanifold of X of
dimension k, and let I : Z → X be the inclusion map. Choose a differential form α of type (p, q). We can integrate
α over Z: ∫

Z
i∗α.
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To evaluate this integral, choose a point of Z and call it 0. Around 0, we can choose local coordinates z1, . . . , zk
on X such that Z is just zk+1 = · · · = zn = 0. If p > k, then α must contain some dzi where zi pulls back to zero
on Z. The same is true if q > k. Consequently, this integral is zero if (p, q) 6= (k, k). More abstractly, the integral
can be written as the cap product of the homology class of Z and the cohomology class represented by α. By
Poincar duality, the homology class of Z is dual to a cohomology class which we will call [Z], and the cap product
can be computed by taking the cup product of [Z] and and capping with the fundamental class of X. Because [Z]
is a cohomology class, it has a Hodge decomposition. By the computation we did above, if we cup this class with
any class of type (p, q) 6= (k, k), then we get zero. Because H2n(X,C) = Hn,n(X), we conclude that [Z] must lie
in Hn−k,n−k(X). The modern statement of the Hodge conjecture is: Let X be a non-singular complex projective
manifold. Then every Hodge class on X is a linear combination with rational coefficients of the cohomology classes
of complex subvarieties of X. Another way of phrasing the Hodge conjecture involves the idea of an algebraic cycle.

An algebraic cycle on X is a formal combination of subvarieties of X; that is, it is something of the form:
∑
i

ciZi.

The coefficients are usually taken to be integral or rational. We define the cohomology class of an algebraic cycle
to be the sum of the cohomology classes of its components. This is an example of the cycle class map of de Rham

cohomology. For example, the cohomology class of the above cycle would be:
∑
i

ci[Zi]. Such a cohomology class

is called algebraic. With this notation, the Hodge conjecture becomes: Let X be a projective complex manifold.
Then every Hodge class on X is algebraic. This part is copied from wikipedia as cited [11].

When we try to evaluate either
∑
i

ciZi or
∑
i

ci[Zi] we enter into the domain of number theory, more specifically

zeta function. We have seen zeta function is simply connected (smooth in calculus terms) whether in integer form
or rational number form. Zeta function together with its harmonic counterpart is entirely continuous, bijective, and
very much stretchable like topological deformation. We can add, multiply, truncated partial zeta series retaining
all it’s properties. Even in its minimal state zeta function follows basic laws of algebra very neatly for example
ζ(−1) + ζ(0) = 0 or 2ζ(−1) = 1 . To prove that every Hodge class on X is a linear combination with rational
coefficients of the cohomology classes of complex subvarieties we just need compliance with addition laws of algebra
and scalar multiplication which zeta function duly complies beyond any doubt. Therefore every Hodge class on X
is algebraic. No need to mention that Mumford-Tate group is the full symplectic group.

9 Proof of BSD conjecture

In mathematics, the Birch and Swinnerton-Dyer conjecture describes the set of rational solutions to equations
defining an elliptic curve. It is an open problem in the field of number theory and is widely recognized as one of
the most challenging mathematical problems. The modern formulation of the conjecture relates arithmetic data
associated with an elliptic curve E over a number field K to the behaviour of the HasseWeil L-function L(E, s) of
E at s = 1. More specifically, it is conjectured that the rank of the abelian group E(K) of points of E is the order
of the zero of L(E, s) at s = 1, and the first non-zero coefficient in the Taylor expansion of L(E, s) at s = 1 is
given by more refined arithmetic data attached to E over K. Mordell (1922) proved Mordell’s theorem: the group
of rational points on an elliptic curve has a finite basis. This means that for any elliptic curve there is a finite
subset of the rational points on the curve, from which all further rational points may be generated. If the number
of rational points on a curve is infinite then some point in a finite basis must have infinite order. The number of
independent basis points with infinite order is called the rank of the curve, and is an important invariant property
of an elliptic curve. If the rank of an elliptic curve is 0, then the curve has only a finite number of rational points.
On the other hand, if the rank of the curve is greater than 0, then the curve has an infinite number of rational
points. Although Mordell’s theorem shows that the rank of an elliptic curve is always finite, it does not give an
effective method for calculating the rank of every curve. An L-function L(E, s) can be defined for an elliptic curve
E by constructing an Euler product from the number of points on the curve modulo each prime p. This L-function
is analogous to the Riemann zeta function and the Dirichlet L-series that is defined for a binary quadratic form.
It is a special case of a HasseWeil L-function. The natural definition of L(E, s) only converges for values of s
in the complex plane with Re(s) > 3/2. Helmut Hasse conjectured that L(E, s) could be extended by analytic
continuation to the whole complex plane. This conjecture was first proved by Deuring (1941) for elliptic curves
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with complex multiplication. It was subsequently shown to be true for all elliptic curves over Q, as a consequence
of the modularity theorem. Let E be an elliptic curve over Q of conductor N. Then, E has good reduction at all
primes p not dividing N, it has multiplicative reduction at the primes p that exactly divide N and it has additive
reduction elsewhere. The HasseWeil zeta function of E then takes the form

ZE,Q(s) =
ζ(s)ζ(s− 1)

L(s, E)

This part is copied from wikipedia as cited [12].

ζ(s) is the usual Riemann zeta function and L(s, E) is called the L-function of E/Q. Kolyvagin showed that
a modular elliptic curve E for which L(E, 1) is not zero has rank 0, and a modular elliptic curve E for which L(E,
1) has a first-order zero at s = 1 has rank 1. HasseWeil zeta function fails to throw some light on the rank of
the abelian group E(K) of points of E at s = 1 as ζ(1) was known to be undefined . In the light of my proof of
Riemann hypothesis and its geralisations we can now evaluate the rank easily. We set HasseWeil zeta function in
left hand side to -1 and evaluate the right hand side putting ζ(1) = 1 which then give the average rank 1

2 including
zero valued ranks . Similarly we can take harmonic conjugate of HasseWeil zeta function as follows:

Z∗E,Q(s) =
ζ(s).L(s, E)

ζ(s− 1)

Now setting it to -1 and at s=0 putting ζ(−1) = 1
2 we get the analytic rank of elliptic curves E over Q with order

s=1 L(E, s) > 1 which equals 1. Following Kolyvagin theorem the Birch and Swinnerton-Dyer conjecture holds
for all elliptic curves E over Q with order s=1 L(E, s) > 1. No need to mention that Tate-Shafarevich group must
be finite for all such elliptic curves.

10 Proof of other Prime Conjectures

10.1 Proof of Twin Prime Conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime numberfor example, either
member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two.The
question of whether there exist infinitely many twin primes has been one of the great open questions in number
theory for many years. This is the content of the twin prime conjecture, which states that there are infinitely
many primes p such that p + 2 is also prime. In 1849, de Polignac made the more general conjecture that for
every natural number k, there are infinitely many primes p such that p + 2k is also prime.The case k = 1 of de
Polignac’s conjecture is the twin prime conjecture.

Let N be a arbitrarily large number. Sum of all the natural numbers upto N shall be N(1+N)
2 which includes

sum of all the primes upto N too. Double of the sum shall be N(1 +N) which shall include double of sum of all
the primes upto N too. According to PNT we know that there shall be N

ln(N) number of primes with an average

prime gap of ln(N). Sum of all the natural numbers upto N being an relatively ever growing number any theorem
proved in the interval N or N(1 +N) shall apply upto infinity. We can visualise N

ln(N) as a prime number itself we
can allow the prime gaps to change equivalently and complete the number in between. Now if we take logarithm
of N(1 + N) with respect to the base of N

ln(N) the result shall give us the lower bound of prime powers that can
comfortably be applied on that prime less than N to reach double of the sum of all the natural numbers upto
N i.e. N(1 + N). In other words if we consolidate the average prime gaps into a relatively large prime having
approximate value of P < N

ln(N) then that will lead us also to lower limit of prime gaps which will satisfy the

equation P + R = P
log N

ln(N)
N(1+N)

= N(1 + N) where R ≥ lowest bound of prime gap. As we are comparing
double of the sum of all the natural numbers we can always half it and do the same test again and again to
descend along the even number line from any arbitrarily large height. If our resultant exponent is greater than 2
(ideally it should be greater than or equal to 2 as we have ensured all primes are summed up 2 times) then that
would imply that there shall be a lower bound of prime gaps and that bound will lie near to very initial gaps
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along the number line whereas due to continuity there shall not be any upper bound on the prime gaps, it may
grow as the number sequence grows. Clearly the result log N

ln(N)
N(1 +N) = log N

ln(N)
N + log N

ln(N)
(1 +N) shall be

greater than 2 meaning that the lower bound of prime gaps would be the gap between sole even prime 2 and its
immediate successor even number i.e. 4. Thus the lower bound of prime gaps equals 2. As a prime gap of 2 is
lesser than the above highest possible exponent, there shall be infinitely many twin primes satisfying the equation
p1 + 2 = N(1 + N) − 1 = p2.Hence Twin prime conjecture stands proved and it can be called as Twin prime
theorem.

10.2 Proof of Goldbach’s Conjecture

Goldbach’s conjecture is one of the oldest unsolved problems in number theory and all of mathematics. It states:

Every even integer greater than 2 can be expressed as the sum of two primes.

The conjecture has been shown to hold for all integers less than 4× 1018 but remains unproven to date.

Similarly we can proof Goldbach conjecture too. Before we proceed to proof Goldbach conjecture let us have
an understanding how it works. We take the identity (p + q)2 = p2 + q2 + 2pq. Now let us set p equals
an odd prime p1 and q equals the sole even prime 2.As a result (p1 + 2)2 gives a confirmed odd number
as follows:(p1 + 2)2 = p21 + 4 + 4p1.This can be rewritten as sum of one even and one one odd prime as
(p1+2)2 = (2)+(p21+4p1+2) as p21+4p1+2 cannot be factorized in a real way.We know that there are infinite number
of primes out of which 2 is the sole even prime which essentially means there are infinite number of odd primes.For
all this odd primes there will be infinite number of odd numbers which differs an odd prime by 2.Ensuring
that atleast one odd prime is there in the right hand side by way of adding such an odd number r to both side of
(p1+2)2 = 2+p21+4p1+2 we will turn both side into an even number capable of being expressed as sum of two odd
primes as follows:(p1+2)2+r = (2+r)+(p21+4p1+2) = p2+p3.(p1 + 2)2 + r = (2 + r) + (p2

1 + 4p1 + 2) = p2 + p3

can be regarded as standard prime sum form. Standard prime sum form can also be written in vertex form
y = 1

2(p1 + 2)2 + ( r2 − 1).On which, due to infinitude of prime, there shall be infinite number of points satisfying
the equation. Now to prove that above equation goes through all the even numbers we go back to our earlier
approach of using arithmetic sum.

Let N be a arbitrarily large number. Sum of all the natural numbers upto N shall be N(1+N)
2 which includes

sum of all the primes upto N too. Double of the sum shall be N(1+N) which shall include double of sum of all the
primes upto N too. According to PNT we know that there shall be N

ln(N) number of primes with an average prime

gap of ln(N). Sum of all the natural numbers upto N being an ever growing number any theorem proved in the
interval N or N(1 +N) shall apply upto infinity. We can visualise N

ln(N) as a prime number itself we can allow the

prime gaps to change equivalently and complete the number in between. Now if we take logarithm of N(1 + N)
with respect to the base of N

ln(N) the result shall give us the lower bound of prime powers that can comfortably be

applied on that prime less than N to reach double of the sum of all the natural numbers upto N i.e. N(1 + N).
In other words if we consolidate the average prime gaps into a relatively large prime having approximate value of
P < N

ln(N) then that will lead us also to lower limit of number of primes sum of which will satisfy the equation∑
pi = P

log N
ln(N)

N(1+N)
= N(1 +N) where i = integer sequence less than N. As we are comparing double of the

sum of all the natural numbers we can always half it and do the same test again and again to descend along the
even number line from any arbitrarily large height. If our resultant exponent is greater than 2 then that would
imply that there shall be a lower bound of number of primes, sum of which can express all the even numbers
less than or equal to N(1 +N) and that bound will lie near to very initial primes along the number line whereas
due to continuity there shall not be any upper bound on the same, it may grow as the number sequence grows.
Clearly the result log N

ln(N)
N(1 +N) = log N

ln(N)
N + log N

ln(N)
(1 +N) shall be greater than 2 meaning that the lower

bound of Goldbach partitions would be the same of number 4 the very first non-prime even number. 4 can be
written 4=2+2 i.e 4 has got 2 Goldbach partitions. As 2 Goldbach partition is always lesser than the general
value of the exponent as calculated above, all the even numbers greater than 2 can be expressed as sum of two
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primes p1 + p2 = N(1 +N).Hence Goldbach conjecture stands proved and it can be called as Goldbach theorem.
The weaker version of Goldbach conjecture (ternary Goldbach conjecture) immediately follows from the stronger
version (binary Goldbach conjecture) proved above.

10.3 Legendre’s prime conjecture

Conjecture. (Adrien-Marie Legendre) There is always a prime number between n2 and (n + 1)2 provided that
n 6= −1 or 0. In terms of the prime counting function, this would mean that π((n+ 1)2)− π(n2) > 0 for all n > 0.
Jing Run Chen proved in 1975 that there is always a prime or a semiprime between n2 and (n+1)2 for large enough
n. A natural question to ask is: Why doesn’t Bertrand’s postulate prove Legendre’s conjecture? The reason is
that actually (n + 1)2 < 2n2 when n > 2. For example, for n = 3, Bertrand’s postulate guarantees that there is
at least one prime between 9 and 18, but for Legendre’s conjecture to be true we need a prime between 9 and 16.
Suppose, just for the sake of argument, that 17 is prime but 11 and 13 are composite. Bertrand’s postulate would
still be true but Legendre’s conjecture would be false. Of course the gap between (n+ 1)2 and 2n2 gets larger as
n gets larger, Legendre’s conjecture holds true for n = 3, and indeed it has been checked up to n = 1010.

Let N be a arbitrarily large number. Sum of squares of all the natural numbers upto N shall be N(N+1)(2N+1)
6 .

Double of the sum shall be N(N+1)(2N+1)
3 . According to PNT we know that there shall be N

ln(N) number of primes

with an average prime gap of ln(N). Sum of squares of all the natural numbers upto N being an ever growing

number any theorem proved in the interval N or N(N+1)(2N+1)
3 shall apply upto infinity. We can visualise N

ln(N) as a
prime number itself we can allow the prime gaps to change equivalently and complete the number in between.Now if
we take logarithm of N(N+1)(2N+1)

3 with respect to the base of N
ln(N) the result shall give us the lower bound of prime

powers that can comfortably be applied on that prime less than N to reach double of the sum of squares of all the
natural numbers upto N i.e. N(N+1)(2N+1)

3 . In other words if we consolidate the average prime gaps into a relatively

large prime having approximate value of P < N(N+1)(2N+1)
3 then that will lead us also to lower bound of primes

which will satisfy the equation P + R = P
log N

ln(N)

N(N+1)(2N+1)
3

where R ≥ lowest bound of prime gap. Similarly

replacing sum of N2 by sum of (N + 1)2 we get P + R = P
log N

ln(N)

(N+1)(N+2)(2N+3)
3

= P
log N

ln(N)

(N+1)(N+2)(2N+3)
3

. As
we are comparing double of the sum of squares of all the natural numbers or its successors we can always half it
and do the same test again and again to descend along the even number line from any arbitrarily large height. If
our resultant exponent is greater than 2 then that would imply that there shall be a lower bound of prime gaps
in the interval and that bound will lie near to very initial gaps along the number line whereas due to continuity
there shall not be any upper bound on the prime gaps, it may grow as the number sequence grows. Clearly the
result log N

ln(N)

N(N+1)(2N+1)
3 = log N

ln(N)
N + log N

ln(N)
(N + 1) + log N

ln(N)
(2N + 1) shall be significantly lower than

log N
ln(N)

(N+1)(N+2)(2N+3)
3 = log N

ln(N)
(N + 1)((N + 1) + 1)(2N3 + 1) (due to complete pattern of extra little quantity

of +1) such that another prime can occur in the interval meaning that the lower bound of number of primes in

the interval between N(N+1)(2N+1)
3 ) and N(1 +N) would be greater than 1. Thus there shall be atleast one prime

between n2 and (n+ 1)2 as Legendre conjectured.Hence Legendre’s prime conjecture stands proved and it can be
called as Legendre’s theorem.

10.4 Sophie Germain prime conjecture

In number theory, a prime number p is a Sophie Germain prime if 2p + 1 is also prime. The number 2p + 1
associated with a Sophie Germain prime is called a safe prime. For example, 11 is a Sophie Germain prime and 2
11 + 1 = 23 is its associated safe prime. Sophie Germain primes are named after French mathematician Sophie
Germain, who used them in her investigations of Fermat’s Last Theorem.

The conjecture states that there are infinitely many prime numbers of the form 2P + 1.

Sum of all the natural numbers upto N shall be N(1+N)
2 which includes sum of all the primes upto N too. Double

of the sum shall be N(1 + N) which shall include double of sum of all the primes upto N too. According to
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PNT we know that there shall be N
ln(N) number of primes with an average prime gap of ln(N). Sum of all the

natural numbers upto N being an ever growing number any theorem proved in the interval N or N(1 +N) shall
apply upto infinity. We can visualise N

ln(N) as a prime number itself we can allow the prime gaps to change

equivalently and complete the number in between.Now if we take logarithm of N(1 +N) with respect to the base
of N

ln(N) the result shall give us the lower bound of prime powers that can comfortably be applied on that prime

less than N to reach double of the sum of all the natural numbers upto N i.e. N(1 + N). In other words if we
consolidate the average prime gaps into a relatively large prime having approximate value of P < N

ln(N) then that

will lead us also to lower limit of prime gaps which will satisfy the equation P +R = P
log N

ln(N)
N(1+N)

= N(1 +N)
where R ≥ lowest bound of prime gap. As we are comparing double of the sum of all the natural numbers
we can always half it and do the same test again and again to descend along the even number line from any
arbitrarily large height. If our resultant exponent is greater than 2 which is the lower bound of prime gaps then
due to continuity infinitude of prime of the underlying pattern is guaranteed otherwise not. Clearly the result
log N

ln(N)
N(1 +N) = log N

ln(N)
N + log N

ln(N)
(1 +N) shall be greater than 2 meaning that there shall be infinitely

many primes of the form 2P + 1.Hence Sophie Germain conjecture stands proved and it can be called as Sophie
Germain’s prime theorem.

10.5 Landau’s prime conjecture

The conjecture states that there are infinitely many prime numbers of the form N2 + 1.

Let N be a arbitrarily large number. Sum of square of all the natural numbers upto N shall be N(N+1)(2N+1)
6 .

Double of the sum shall be N(N+1)(2N+1)
3 . According to PNT we know that there shall be N

ln(N) number of

primes with an average prime gap of ln(N). Sum of squares of all the natural numbers upto N being an ever

growing number any theorem proved in the interval N or N(N+1)(2N+1)
3 shall apply upto infinity. We can visualise

N
ln(N) as a prime number itself we can allow the prime gaps to change equivalently and complete the number in

between. Now if we take logarithm of N(N+1)(2N+1)
3 with respect to the base of N

ln(N) the result shall give us
the lower bound of prime powers that can comfortably be applied on that prime less than N to reach double
of the sum of squares of all the natural numbers upto N i.e. N(N+1)(2N+1)

3 . In other words if we consolidate

the average prime gaps into a relatively large prime having approximate value of P < N(N+1)(2N+1)
3 then that

will lead us also to lower bound of primes which will satisfy the equation P + R = P
log N

ln(N)

N(N+1)(2N+1)
3

where
R ≥ lowest bound of prime gap. As we are comparing double of the sum of square of all the natural numbers
we can always half it and do the same test again and again to descend along the even number line from any
arbitrarily large height. If our resultant exponent is greater than 2 which is the lower bound of prime gaps
then due to continuity infinitude of prime of the underlying pattern is guaranteed otherwise not. Clearly the
result log N

ln(N)

N(N+1)(2N+1)
3 = log N

ln(N)
N + log N

ln(N)
(N + 1) + log N

ln(N)
(2N + 1) shall be significantly lower than

log N
ln(N)

(N+1)(N+2)(2N+3)
3 = log N

ln(N)
(N + 1)((N + 1) + 1)(2N3 + 1) (due to complete pattern of extra little quantity

of +1) such that another prime can occur in the interval meaning that there shall be infinitely many primes of the
form N2 + 1.Hence Landau’s prime conjecture stands proved and it can be called as Landau’s prime theorem.

10.6 Brocard’s prime conjecture

Brocard’s conjecture pertains to the squares of prime numbers. Here we denote the nth prime as pn. With the
exception of 4, there are always at least four primes between the square of a prime and the square of the next
prime. In terms of the prime counting function, this would mean that π(pn+1

2)− π(pn
2) > 3 for all n > 1.

Let N be a arbitrarily large number. Sum of squares of all the natural numbers upto N shall be N(N+1)(2N+1)
6 .

Double of the sum shall be N(N+1)(2N+1)
3 . Sum of all the natural numbers upto N shall be N(1+N)

2 which includes
sum of all the primes upto N too. Double of the sum shall be N(1 + N) which shall include double of sum
of all the primes upto N too. According to PNT we know that there shall be N

ln(N) number of primes with an
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average prime gap of ln(N). Sum of squares of all the natural numbers upto N being an ever growing number

any theorem proved in the interval N or N(N+1)(2N+1)
3 shall apply upto infinity. We can visualise N

ln(N) as a prime
number itself we can allow the prime gaps to change equivalently and complete the number in between. Now
if we take logarithm of N(1 + N) or N(N+1)(2N+1)

3 with respect to the base of N
ln(N) the result shall give us the

lower bound of prime powers that can comfortably be applied on that prime less than N to reach double of the
sum of all the natural numbers upto N i.e. N(1 +N) or double of the sum of squares of all the natural numbers

upto N i.e. N(N+1)(2N+1)
3 respectively. Clearly both the result log N

ln(N)
N(1 +N) = log N

ln(N)
N + log N

ln(N)
(1 +N)

or log N
ln(N)

N(1 +N) = log N
ln(N)

N + log N
ln(N)

(1 +N) shall be greater than 2. In case of interval between two

consecutive primes the above limit get raised to the power of its own value meaning that there shall be at least 4
primes the square of a prime and the square of the next prime. Hence Brocard’s prime conjecture stands proved
and it can be called as Landau’s prime theorem.

10.7 Opperman’s prime conjecture

Oppermann’s conjecture is an unsolved problem in mathematics on the distribution of prime numbers. It is closely
related to but stronger than Legendre’s conjecture, Andrica’s conjecture, and Brocard’s conjecture. It is named
after Danish mathematician Ludvig Oppermann, who announced it in an unpublished lecture in March 1877.The
conjecture states that, for every integer x > 1, there is at least one prime number between x(x− 1) and x2,and at
least another prime between x2 and x(x+1).It can also be phrased equivalently as stating that the prime-counting
function must take unequal values at the endpoints of each range.That is: π(x2−x) < π(x2) < π(x2 +x) for x > 1
with π(x) being the number of prime numbers less than or equal to x. The end points of these two ranges are a
square between two pronic numbers, with each of the pronic numbers being twice a pair triangular number. The
sum of the pair of triangular numbers is the square.

Let N be a arbitrarily large number. Sum of square of all the natural numbers upto N shall be N(N+1)(2N+1)
6 .

Double of the sum shall be N(N+1)(2N+1)
3 . Sum of all the natural numbers upto N shall be N(1+N)

2 which includes
sum of all the primes upto N too. According to PNT we know that there shall be N

ln(N) number of primes

with an average prime gap of ln(N). N being relatively an ever growing number any theorem proved in the

interval N or N(1 + N) or N(N+1)(2N+1)
3 shall apply upto infinity. We can visualise N

ln(N) as a prime number
itself we can allow the prime gaps to change equivalently and complete the numbers in between. Now if we
take logarithm of N(N + 1).4N−13 with respect to the base of N

ln(N) the result shall give us the lower bound
of prime powers that can comfortably be applied on that prime less than N to reach double of the sum of
squares of all the natural numbers upto N less the double of the sum of all the natural numbers upto N i.e.
N(N + 1).4N−13 . In other words if we consolidate the average prime gaps into a relatively large prime having
approximate value of P < N(N + 1).4N−13 then that will lead us also to lower bound of primes which will

satisfy the equation P + R = P
log N

ln(N)
N(N+1). 4N−1

3
where R ≥ lowest bound of prime gap. Clearly the result

log N
ln(N)

N(N + 1).4N−13 = log N
ln(N)

N + log N
ln(N)

(1 +N) + log N
ln(N)

4N−1
3 shall be greater than 2 meaning that

there shall be atleast one prime between x(x − 1) and x2. Again adding N(1+N)
2 with N(N+1)(2N+1)

3 we get
N(N+1)(2N+1)

3 +N(1+N)
2 = N(N+1).2(2N+1)+3

6 = N(N+1).4N+5
6 . Double of such difference shall be N(N+1).4N+5

3 .
Clearly the result log N

ln(N)
N(N + 1).4N+5

3 = log N
ln(N)

N + log N
ln(N)

(1 +N) + log N
ln(N)

4N+5
3 shall be greater than 2

meaning that there shall be atleast one prime between x2 and x(x+ 1). Altogether Opperman’s conjecture stands
proved and it can be called as Opperman’s theorem.

10.8 Collatz conjecture

The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any
positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the
next term is one half the previous term. If the previous term is odd, the next term is 3 times the previous term
plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
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Collatz conjectured operations on any number (i.e. halving the even numbers or simultaneously tripling and
adding 1 to odd numbers) may either blow up to infinity or come down to singularity. Tripling and adding 1
to odd numbers will always land on an even number. Now to end the game we just need to step upon an even
number which is of the form 2n. That will happen when odd primes are tripled and added to 1. We have seen
that among the odd numbers odd primes are descendants of sole even prime 2. This small bias turns the game
of equal probability into one sided game i.e Collatz conjecture cannot blow upto infinity, it ends with 2 and one
last step before the final whistle bring it down to singularity 1 as Collatz conjectured. Hence Collatz conjecture is
proved to be trivial.

11 Complex logarithm simplified

11.1 Fallacies in present concept of Complex logarithm and way out

The complex exponential function is not injective, because ew+ 2πi = ew for any w, since adding iθ to w has the
effect of rotating ew counterclockwise θ radians. So the points equally spaced along a vertical line, are all mapped
to the same number by the exponential function. That is why the exponential function does not have an inverse
(Complex logarithm) function in true sense.One is to restrict the domain of the exponential function to a region
that does not contain any two numbers differing by an integer multiple of 2πi: this leads naturally to the definition
of branches of log z, which are certain functions that single out one logarithm of each number in their domains.
Another way to resolve the indeterminacy is to view the logarithm as a function whose domain is not a region
in the complex plane, but a Riemann surface that covers the punctured complex plane in an infinite-to-1 way.
Branches have the advantage that they can be evaluated at complex numbers. On the other hand, the function
on the Riemann surface is elegant in that it packages together all branches of the logarithm and does not require
an arbitrary choice as part of its definition. The function Log z is discontinuous at each negative real number, but
continuous everywhere else in C×. To explain the discontinuity, consider what happens to Arg z as z approaches
a negative real number a. If z approaches a from above, then Arg z approaches π, which is also the value of Arg
a itself. But if z approaches a from below, then Arg z approaches −π. So Arg z ”jumps” by 2 as z crosses the
negative real axis, and similarly Log z jumps by 2πi. All logarithmic identities are satisfied by complex numbers.
It is true that eln z = z for all z 6= 0 (this is what it means for Log z to be a logarithm of z), but the identity Log
ez = z fails for z outside the strip S. For this reason, one cannot always apply Log to both sides of an identity
ez = ew to deduce z = w. Also, the identity ln z1z2 = ln z1 + ln z2 can fail: the two sides can differ by an integer
multiple of 2πi : for instance,

Log((−1)i) = Log(−i) = ln(1)− πi

2
= −πi

2

but

Log(−1) + Log(i) = (ln(1) + πi) +

(
ln(1) +

πi

2

)
=

3πi

2
6= −πi

2

This part is copied from wikipedia as cited [12].

Bringing two more complex number analogous to imaginary number i we can fix the problem in defining the
principal logarithm as follows: ln 1 = 0 = ln−1.− 1 = ln i2.j2.k2.i.j.k = 3(ln i+ ln j + ln k) = 3.0 = 0.

11.2 Eulers formula, the unit circle, the unit sphere

z = r(cosx+ i sinx) is the trigonometric form of complex numbers. Using Eulers formula eix = cosx+ i sinx we

can write z = reix. Putting x = π in Eulers formula we get , eiπ = −1.Putting x = π
2 we get e

iπ
2 = i. So the general

equation of the points lying on unit circle |z| = |eix| = 1. But that’s not all. If x = π
3 in trigonometric form then

z = cos(π3 )+i.sin(π3 ) = 1
2(
√

3+i).So |z| = r =

√
(
√
3
2 )2 + (12)2 = 1

2 .
√

4 = 1
2 .2 = 1.So another equation of the points

lying on unit circle |z| = |12e
ix| = 1. Although both the equation are of unit circle, usefulness of |z| = |12e

ix| = 1
is greater than |z| = |eix| = 1 as |z| = |12e

ix| = 1 bifurcates mathematical singularity and introduces unavoidable
mathematical duality particularly in studies of primes and Zeta function. |z| = |12e

ix| = 1 can be regarded as
d-unit circle. When Unit circle in complex plane is stereo-graphically projected to unit sphere the points within
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the area of unit circle gets mapped to southern hemisphere, the points on the unit circle gets mapped to equatorial
plane, the points outside the unit circle gets mapped to northern hemisphere. d-unit circle can also be easily
projected to Riemann sphere. Projection of d-unit circle to d-unit sphere will have three parallel disc (like three
dimensions hidden in one single dimension of numbers) for three (equivalent unit values in three different sense)
magnitude of 1

2 , 1, 2 in the southern hemisphere, on the equator, in the northern hemisphere respectively as shown
in the following diagram.

Explanation 8 One may attempt to show that |z| = |12e
ix| = 1 will mean 1= 2. This may not be right interpretation.

Correct way to interpret is given here under.

We know: eix = r(cos θ + i sin θ). Taking derivative both side we get

ieix = (cos θ + i sin θ)
dr

dx
+ r(− sin θ + i cos θ)

dθ

dx
.

Now Substituting r(cos θ + i sin θ) for eix and equating real and imaginary parts in this formula gives dr
dx = 0 and

dθ
dx = 1. Thus, r is a constant, and θ is x + C for some constant C. Now if we assign r = 1

2 and ix = ln 2 then
reix = 1

2 .e
ln 2 = 1 The initial value x=1 then gives i = ln 2.This proves the formula |z| = |12e

ix| = 1.Thus we see
ix = ln(cos θ+ i sin θ) is a multivalued function not only because of infinite rotation around the unit circle but also
due to different real solutions to i in higher dimensions. Square root of minus 1 is a general concept of complex
numbers which can have different real values.

axis of rotation

π
3 Critical Line of Zeta Zeroes

Unit surface=1

d-unit surface=2

North pole=at infinity

Half unit surface=1
2

South pole=0

If we wish to ascend along the number line then we need to keep open the d-unit sphere in the direction of both
positive infinity and negative infinity, which will then look like a double cone. Three parallel surfaces in a single
cone will look like (of course ignoring the complex part involving non commutative math altogether) as follows.
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11.3 Introduction of Quaternions for closure of logarithmic operation

Hamilton knew that the complex numbers could be interpreted as points in a plane, and he was looking for a way to
do the same for points in three-dimensional space. Points in space can be represented by their coordinates, which
are triples of numbers, and for many years he had known how to add and subtract triples of numbers. However,
Hamilton had been stuck on the problem of multiplication and division for a long time. He could not figure out
how to calculate the quotient of the coordinates of two points in space. The great breakthrough in quaternions
finally came on Monday 16 October 1843 in Dublin, when Hamilton was on his way to the Royal Irish Academy
where he was going to preside at a council meeting. Hamilton could not resist the urge to carve the formula for
the quaternions, i2 = j2 = k2 = ijk = −1 into the stone of Brougham Bridge as he paused on it. A quaternion is
an expression of the form : a+ b i+ c j+d k where a, b, c, d, are real numbers, and i, j, k, are symbols that can be
interpreted as ’imaginary operators’ which define how the scalar values combine. The set of quaternions is made
a 4 dimensional vector space over the real numbers, with {1, i, j,k} as a basis, by the componentwise addition

(a1 + b1 i + c1 j + d1 k) + (a2 + b2 i + c2 j + d2 k) = (a1 + a2) + (b1 + b2) i + (c1 + c2) j + (d1 + d2) k

and the componentwise scalar multiplication

λ(a+ b i + c j + d k) = λa+ (λb) i + (λc) j + (λd) k .

A multiplicative group structure, called the Hamilton product, can be defined on the quaternions. The real
quaternion 1 is the identity element.The real quaternions commute with all other quaternions, that is aq = qa
for every quaternion q and every real quaternion a. In algebraic terminology this is to say that the field of real
quaternions are the center of this quaternion algebra. The product is first given for the basis elements, and then
extended to all quaternions by using the distributive property and the center property of the real quaternions.
The Hamilton product is not commutative, but associative, thus the quaternions form an associative algebra over
the reals.
For two elements a1 + b1i + c1j + d1k and a2 + b2i + c2j + d2k, their product, called the Hamilton product
(a1 + b1i+ c1j+d1k)(a2 + b2i+ c2j+d2k), is determined by the products of the basis elements and the distributive
law.The distributive law makes it possible to expand the product so that it is a sum of products of basis elements.
This gives the following expression:

a1a2 + a1b2i+ a1c2j + a1d2k + b1a2i+ b1b2i
2 + b1c2ij + b1d2ik

+c1a2j + c1b2ji+ c1c2j
2 + c1d2jk + d1a2k + d1b2ki+ d1c2kj + d1d2k

2

Now the basis elements can be multiplied using the rules given above to get:

a1a2 − b1b2 − c1c2 − d1d2 + (a1b2 + b1a2 + c1d2 − d1c2)i

+(a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k
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This part is copied from wikipedia as cited [10].

If some ask what quaternion has to do with complex logarithm then I wont say ”shut up and calculate” (quantum
mechanics instructors famous instruction). First let us fix the problem we faced in complex logarithm defining the
principal value by way of introducing quaternions in the picture. If we visualise natural logarithm of product of
two pairs of -1 as natural logarithm of two pairs of quaternion then we can arive zero at part with the definition of
logarithm and solve the issue of indeterminacy of the principal value i.e. ln 1 = 0 = ln−1.− 1 = ln i2.j2.k2.i.j.k =
3(ln i+ ln j + ln k).Any guess what angle can make vector-sum of three equal vactors equal to zero? As shown in
my Riemann hypothesis proof it’s 120 degree in 3D or 60 degree in 4D. This way numbers are very complexly 3
dimensional hidden in other hidden dimensions of quaternions although we do not feel it in our everyday use of
numbers. Now let see how quaternion helps in simplifying the complex logarithm. For simplification let us use a
single alphabet for expressing quaternion. Let us recall the power addition identity, which is,

e(a+b) = ea ∗ eb

However this only applies when ’a’ and ’b’ commute, so it applies when a or b is a scalar for instance. The more
general case where ’a’ and ’b’ don’t necessarily commute is given by:

ec = ea ∗ eb

where:

c = c = a+ b+ ab+ 1/3(a(ab) + b(ba)) + ...series known as the Baker-Campbell-Hausdorff formula

where:x = vector cross product. This shows that if when a1 and a2 become close to becoming parallel then ab
approaches zero and c approaches a + b so the rotation algebra approaches vector algebra. As we have seen all
the three unit discs appear parallel to each other our life gets easier and we can do complex exponentiation and
logarithm as we do natural logarithm in real life. This becomes real and simple logarithm.

11.4 Properties of Real and simple (RS) Logarithm

Thanks to Roger cots who first time used i in complex logarithm. Thanks to euler who extended it to exponential
function and tied i, pi and exponential function to unity in his famous formula. Now taking lead from both of their
work and applying results of Zeta function we can redefine complex logarithm as follows inspired from Thukral
and Parkash’s work [2]. If z1 = x1 + iy1 and z2 = x2 + iy2 then RS logarithm has the following property.

Theorem 1
ln (z1.z2) = ln (Re(z1)) + ln (Re(z2)) + i(ln (Im(z1) + ln (Im(z2))

Proof:

ln (z1.z2.z3.z4.z5.z6.z7....)

= ln

(
p1.p2.p3.p4.p5.p6.p7...

)
+ i ln

(
p1.p2.p3.p4.p5.p6.p7...

)
= ln (1) + ln (2) + ln (3) + ln (4) + ln (5) + ...+ i ln

(
ln (1) + ln (2) + ln (3) + ln (4) + ln (5) + ...

)
= ln (Re(z1)) + ln (Re(z2)) + ln (Re(z3)) + ...+ i

(
ln (Im(z1)) + ln (Im(z2)) + ln (Im(z3)) + ...

)
Following Zeta functions analytic continuation or bijective holomorphic property, we can write:

ln (z1.z2) = ln (Re(z1)) + ln (Re(z2)) + i

(
ln (Im(z1)) + ln (Im(z2))

)

Corrolary 1

ln (
z1
z2

) = ln (Re(z1))− ln (Re(z2)) + i

(
ln (Im(z1))− ln (Im(z2))

)
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Corrolary 2

exp (z1 + z2) = exp (Re(z1)). exp (Re(z2)) + i

(
exp (Im(z1)). exp (Im(z2))

)
Corrolary 3

exp (z1 − z2) =
exp (Re(z1))

exp (Re(z2))
+ i

(
exp (Im(z1))

exp (Im(z2))

)
Corrolary 4

ln (z1 + z2) = ln (Re(z1 + z2)) + i

(
ln (Im(z1 + z2))

)
Corrolary 5

ln (z1 − z2) = ln (Re(z1 − z2)) + i

(
ln (Im(z1 − z2))

)

12 Pi based logarithm

One thing to notice is that pi is intricately associated with e. We view pi mostly associated to circles, what it has
to do with logarithm? Can it also be a base to complex logarithm? Although base pi logarithm are not common
but this can be handy in complex logarithm. We know:

ln(2).
π

4

=

(
1

1
− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)(
1− 1

3
+

1

5
− 1

7
+

1

11
− 1

13
+ · · ·

)
=

(
1 +

1

3
− 1

5
+

1

7
− · · ·

)
+

(
1 +

1

2
+

1

4
+

1

6
+ · · ·

)
−
(

1 +
1

2
+

1

4
+

1

6
+ · · ·

)
=

(
1− i3

3
+
i5

5
− i7

7
− · · ·

)
+

(
1− i2

2
+
i4

4
− i6

6
+ · · ·

)
− 1

1− 1
2

= sin (i) + cos (i)− 2

Lets set:π = sin (i) + cos (i) and replacing π − 2 = ln (π) we can write

ln

(
e
ln(2)

4

)
ln (π)

=
1

π
= π−1Lets set:e

ln(2)
4 = ππ

je
we can write πje = −1

13 Factorial functions revisited

The factorial function is defined by the product

n! = 1 · 2 · 3 · · · (n− 2) · (n− 1) · n,

for integer n ≥ 1 This may be written in the Pi product notation as

n! =
n∏
i=1

i.

n! = n · (n− 1)!.

Euler in the year 1730 proved that the following indefinite integral gives the factorial of x for all real positive
numbers,

x! = Π(x) =

∫ ∞
0

txe−tdt, x > 1
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Eulers Pi function satisfies the following recurrence relation for all positive real numbers.

Π(x+ 1) = (x+ 1)Π(x), x > 0

In 1768, Euler defined Gamma function, Γ(x), and extended the concept of factorials to all real negative numbers,
except zero and negative integers. Γ(x), is an extension of the Pi function, with its argument shifted down by 1
unit.

Γ(x) =

∫ ∞
0

tx−1e−tdt

Eulers Gamma function is related to Pi function and factorial function as follows:

Γ(x+ 1) = Π(x) = x!

Ibrahim [1] defined the factorial of negative integer n as the product of first n negative integers.

−n! =
n∏
k=1

(−1)k,−n ≤ −1

The relation n! = n · (n − 1)! allows one to compute the factorial for an integer given the factorial for a smaller
integer. The relation can be inverted so that one can compute the factorial for an integer given the factorial for a
larger integer:

(n− 1)! =
n!

n

13.1 Factorial of rational numbers

For positive half-integers, factorials are given exactly by

Γ
(
n
2

)
= (n2 − 1)! =

√
π

(n− 2)!!

2
n−1
2

or equivalently, for non-negative integer values of n:

Γ
(
1
2 + n

)
= (n− 1

2)! =
(2n− 1)!!

2n
√
π =

(2n)!

4nn!

√
π

Γ
(
1
2 − n

)
= (−n− 1

2)! =
(−2)n

(2n− 1)!!

√
π =

(−4)nn!

(2n)!

√
π

similarly based on gamma function factorials can be calculated for other rational numbers as follows,

Γ
(
n+ 1

3

)
= (n− 2

3)! = Γ
(
1
3

) (3n− 2)!!!

3n

Γ
(
n+ 1

4

)
= (n− 3

4)! = Γ
(
1
4

) (4n− 3)!!!!

4n

Γ
(
n+ 1

p

)
= (n− 1 + 1

p)! = Γ
(
1
p

) (pn− (p− 1)
)
!(p)

pn

13.2 Limitation of factorial functions

However, this recursion does not permit us to compute the factorial of a negative integer; use of the formula to
compute (−1)! would require a division by zero, and thus blocks us from computing a factorial value for every
negative integer. Similarly, the gamma function is not defined for zero or negative integers, though it is defined
for all other complex numbers.Representation through the gamma function also allows evaluation of factorial of
complex argument.

z! = (x+ iy)! = Γ(x+ iy + 1), z = C \ {0,−1,−2, . . . }
For example the gamma function with real and complex unit arguments returns

Γ(1 + i) = i! = iΓ(i) ≈ 0.498− 0.155i

Γ(1− i) = −i! = −iΓ(−i) ≈ 0.498 + 0.155i
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13.3 Extended factorials using Delta function

Now let us extend factorials of negative integers by way of shifting the argument of Gamma function further down
by 1 unit.Let us define Delta function as follows:

∆(x) =

∫ ∞
0

tx−2e−tdt

The extended Delta function shall have the following recurrence relation.

∆(x+ 2) = (x+ 2)∆(x+ 1) = (x+ 2)(x+ 1)∆(x) = x!

Newly defined Delta function is related to Eulers Gamma function and Pi function as follows:

∆(x+ 2) = Γ(x+ 1) = Π(x)

Plugging into x = 2 above
∆(4) = Γ(3) = Π(2) = 2

Putting x = 1 above
∆(3) = Γ(2) = Π(1) = 1

Putting x = 0 above
∆(2) = Γ(1) = Π(0) = 1

Putting x = −1 above we can remove poles of Gamma and Pi function as follows:

∆(1) = Γ(0) = Π(−1) = 1.∆(0) = −1.∆(−1) =

∫ ∞
0

t1−1e−tdt =

[
− e−x

]∞
0

= lim
x→∞

−e−x − e−0 = 0 + 1 = 1

Therefore we can say ∆(−1) = −1. Similarly Putting x = −2 above

∆(0) = Γ(−1) = Π(−2) = −1.∆(−1) = −2.∆(−2) =

∫ ∞
0

t0e−tdt =

[
− e−x

]∞
0

= lim
x→∞

−e−x − e−0 = 0 + 1 = 1

Therefore we can say ∆(−2) = −1
2 . Continuing further we can remove poles of Gamma and Pi function:

Putting x = −3 above and equating with result found above

∆(−1) = Γ(−2) = Π(−3) = −2.− 1.∆(−3) = −1 =⇒ ∆(−3) = −1

2

Putting x = −4 above and equating with result found above

∆(−2) = Γ(−3) = Π(−4) = −3.− 2.∆(−4) = −1

2
=⇒ ∆(−4) = − 1

12

Putting x = −5 above and equating with result found above

∆(−3) = Γ(−4) = Π(−5) = −4.− 3.∆(−5) = −1

2
=⇒ ∆(−5) = − 1

24

Putting x = −6 above and equating with result found above

∆(−4) = Γ(−5) = Π(−6) = −5.− 4.∆(−6) = − 1

12
=⇒ ∆(−6) = − 1

240

...
And the pattern continues upto negative infinity.
We can extend concept of factorials as follows:
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1. We can define (−1)! = ∆(−1) = Γ(−2) = Π(−3) = −1.

2. We can use Delta function to formulate factorial of negative integer −n < −1 as follows:
For even negative integers factorial can be obtained using the following formula:

(−n− 1)! =
−1

∆(−n− 2)
=

−1

Γ(−n− 3)
=

−1

π(−n− 4)

For odd negative integers factorial can be obtained using the following formula:

−n! =
−1

(−n+ 1)∆(−n− 1)
=

−1

(−n+ 1)Γ(−n− 2)
=

−1

(−n+ 1)Π(−n− 3)

3. Through the extended Delta, Gamma, Pi function trio we can evaluate factorial of all complex argument.

z! = (x+ iy)! = ∆(x+ iy + 2) = Γ(x+ iy + 1) = Π(x+ iy)

4. Hence factorials satisfy the closure property and C is closed under the factorial operation.

14 Bibilography

Contents freely available on internet (generated by Google search) were referred for this piece of research work.
Notable few are listed here. Cross-reference citations are given where substantial amount of text has been verbatim
copied and used to save unproductive time spent on typing, formatting etc.

Wikipedia, educational websites, educational youtube channels. etc..

References

[1] https://www.cut-the-knot.org/proofs/AfterEuler.shtml

[2] https://medium.com/cantors-paradise/the-riemann-hypothesis-explained-fa01c1f75d3f

[3] https://www.youtube.com/user/numberphile

[4] https://www.youtube.com/channel/UCYO jab esuFRV4b17AJtAw

[5] https://www.youtube.com/channel/UC1 uAIS3r8Vu6JjXWvastJg

[6] https://en.wikipedia.org/wiki/Riemann zeta function

[7] https://en.wikipedia.org/wiki/Gamma function

[8] https://en.wikipedia.org/wiki/Particular values of the Gamma function

[9] https://en.wikipedia.org/wiki/Particular values of the Riemann zeta function

[10] https://en.wikipedia.org/wiki/Quaternion

[11] https://en.wikipedia.org/wiki/Hodge conjecture

[12] https://en.wikipedia.org/wiki/Birch and Swinnerton-Dyer conjecture

[13] https://en.wikipedia.org/wiki/Complex logarithm

[14] https://www.britannica.com/science/Cantors-theorem

33

https://www.cut-the-knot.org/proofs/AfterEuler.shtml
https://medium.com/cantors-paradise/the-riemann-hypothesis-explained-fa01c1f75d3f
https://www.youtube.com/user/numberphile
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/channel/UC1_uAIS3r8Vu6JjXWvastJg
https://en.wikipedia.org/wiki/Riemann_zeta_function
https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function
https://en.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Hodge_conjecture
https://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture
https://en.wikipedia.org/wiki/Complex_logarithm
https://www.britannica.com/science/Cantors-theorem


Sources

I do not have much access to mathematical journals, archives etc. However my friend Google searched for me a
few free published mathematical papers. I would like to mention two such papers which inspired me to extend
the negative or complex factorials using the newly discovered delta function and extend the negative or complex
logarithms using the newly discovered value for imaginary number i .

References

[1] Extension of factorial concept to negative numbers,Ibrahim AM.,2013.

[2] A new approach for the logarithms of real negative numbers,Thukral,Parkash,2014.

Papers

Surajit Ghosh, 11/6 T.M.G Road, Kolkata-700 041 Or 593 Jawpur Road, Supari Bagan, Kolkata-700074
E-mail address, Surajit Ghosh: surajit.ghosh@yahoo.com Mobile, Surajit Ghosh: +918777677384

34


	Introduction
	Euler the grandfather of zeta function
	Riemann the father of zeta function

	Proof of Riemann Hypothesis
	An exhaustive proof using Riemanns functional equation
	Introduction of Delta function
	Alternate functional equation

	An elegant proof using Eulers original product form 
	An elementary proof using alternate product form 

	Infinite product of zeta values
	Infinite product of positive zeta values converges
	Infinite product of negative zeta values converges
	Counter proof on Nicole Oresme's proof of divergent harmonic series 

	Zeta results confirms Cantors theory
	Zeta results confirms PNT
	Primes product = 2.Sum of numbers
	Negative Zeta values redefined
	Negative even zeta values redefined removing trivial zeros
	Negative odd zeta values defined following zeta harmonic conjugate function
	Negative even zeta values following zeta harmonic conjugate function

	Proof of Hodge Conjecture
	Proof of BSD conjecture
	Proof of other Prime Conjectures
	Proof of Twin Prime Conjecture
	Proof of Goldbach's Conjecture
	Legendre's prime conjecture
	Sophie Germain prime conjecture
	Landau's prime conjecture
	Brocard's prime conjecture
	Opperman's prime conjecture
	Collatz conjecture

	Complex logarithm simplified
	Fallacies in present concept of Complex logarithm and way out
	Eulers formula, the unit circle, the unit sphere 
	Introduction of Quaternions for closure of logarithmic operation 
	Properties of Real and simple (RS) Logarithm

	Pi based logarithm
	Factorial functions revisited
	Factorial of rational numbers
	Limitation of factorial functions
	Extended factorials using Delta function

	Bibilography

