
Uniqueness theorem of the curvature tensor

Uniqueness theorem of the curvature
tensor

Wenceslao Segura González
e-mail: wenceslaoseguragonzalez@yahoo.es
Independent Researcher

Abstract. This paper develops the uniqueness theorem of the curvature tensor, which states that
the Riemann-Christoffel tensor (and its linear combinations) is the only tensor that depends on
the connection and is linear with respect to the second derivatives of the metric tensor. From this
result, Cartan's theorem is obtained, according to which Einstein's tensor is the only second-order
tensor that depends on the metric tensor, on its first derivatives, is linear with respect to the
second derivatives of the metric tensor and its covariant divergence is null, admitting that the
coefficients of these second derivatives are tensors derived from the metric tensor.

1. Gravitational Field Equations
In November 1915, Hilbert and Einstein almost simultaneously obtained the gravitation

equation in the presence of matter 1. Hilbert reached the final equation through a variational principle,
with the same procedure as today 2, using density Lagrangian

g RL

where g is the absolute value of the metric tensor determinant, and R is the scalar curvature 3.
Einstein "suggests" as an equation for the external case, or in the absence of matter, the

annulment of the Ricci tensor ikR , and subsequently generalizes the equation for the presence of
matter 4.

As an argument to suggest the equation 0ikR  , Einstein noted that “there is a minimum of
arbitrariness in the choice of these equations. Because apart from ikR  there is no second-order
tensor that is formed by the ikg  and its derivatives, not containing derivatives higher than the
second and being linear in these derivatives".

In his work on Relativity, Lichnerowic 5 pointed out another procedure to obtain the
gravitational field equations. In this derivation, the Poisson equation 2 4 G      of Newtonian
gravitation is generalized; in the first term of this equation, there are the second derivatives of the
potential , and in the second, the density of matter, which is the gravitational source. By analogy,
Lichnerowicz looks for a tensor equation of the type

ik ikS T 

ikS  is a tensor of geometric content, and ikT  is the tensor energy-momentum. The previous equation
must have two conditions; the first is that ikS  is a tensor that depends exclusively on the potentials
(that is, the metric tensor) and its first-order derivatives, being linear with respect to the derivatives
of second-order, in similarity with the Poisson equation. Moreover, that the gradient of ikS  is null,
in order to satisfy the energy-momentum conservation equation 0i

i kD T  .
In 1922 Èlie Cartan 6 demonstrated that the only tensor that satisfies the above conditions

is given by

 1

2ik ik ikS h R R k g
     

h and k are constants to be determined. If ikS  is equal to the energy-momentum tensor, the
relativistic gravitation equation is obtained.

The previous Cartan theorem has a more general version, which we call uniqueness theorem
of the curvature tensor: the only tensor that depends on the metric tensor, its first derivatives and is
linear with respect to its second derivatives is the tensor
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ijpq ij pq ip jq iq jpR g g g g g g    

ijpqR  is the curvature tensor of Riemann-Christoffel, and  are arbitrary numerical constants.
Of this, directly derives Cartan's theorem cited above.

Our intention in this research is the demonstration of the uniqueness theorem, which, although
other authors have treated it, deserves a broader treatment 7.

2. Definitions
A manifold of Riemann is characterized by having a symmetric metric tensor, a symmetrical

connection and the covariant derivative of the metric tensor identically null 8. From these properties
follows that the connection of a manifold of Riemann are the symbols of Christoffel

 1
.

2
r rs
pq p sq q sp s pqg g g g      

In an invertible coordinate transformation  p p kx x x   the connection is transformed
according to the law

r m n r s s r
pq p q s mn pq sB B A B A   

with the definitions
2 2

; ; ; .
r m s s

r m s s
s p pq ris p p q r i

x x x x
A B B A

x x x x x x

    
   

       
By the nullity of the covariant derivative of the metric tensor 0i pqD g   follows that its

partial derivative in function of the connection is

0 .s s
i pq i pq sp iq sq ipD g g g g      

The fourth-order Riemann-Christoffel curvature tensor psirR  is defined by

 k k k n k n k
psir pk sir pk i sr r si sr ni si nrR g R g            

that has the symmetries

; ; .psir irps psir psri psir spriR R R R R R   
If the connection of a manifold is symmetric, there is a coordinate system for each point

for which the connection is null at that point, but its derivatives do not have to be null. This coordinate
system is called locally inertial. The transformation to locally inertial coordinates does not modify
the components of a tensor.

The locally inertial coordinate system is not unique. We can change from one to another
through a coordinate transformation that has the condition 0s

pqB  at the point considered.

3. Tensor linearly dependent on the second derivatives of the metric tensor
In the following calculations, we refer to a locally inertial system, that is, in which Christoffel's

symbols are null at a given point, this coordinate system always exists in a manifold of Riemann for
having symmetric connection.

We look for a tensor ijpqT  that depends on the connection and is linear with respect to the
second derivatives of the metric tensor ikg . In a locally inertial system, the components of the
connection are null; therefore, ijpqT  only depends on the second derivatives of ikg . The maximum
number of second derivatives on which ijpqT  can depend is six, taking into account the symmetry of
the metric tensor and that the order of the derivation can be altered, then

ijpq ij pq ip jq qi jp qp ij pj qi qj ipT g g g g g g                
are numerical constants. Deriving (3), the second derivatives of the metric tensor
in a locally inertial system are obtained

s s
ij pq sp i jq sq i jp

s s
ip jq sj i pq sq i pj

s s
qi jp sj q ip sp q ij

s s
qp ij si q jp sj q ip

s s
pj qi sq p ij si p jq

g g g

g g g

g g g

g g g

g g g

      
      
      
      
      
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s s
qj ip si q jp sp q jig g g      

expressions that when replacing them in (5) result

   
   .

s s s s s s
ijpq sp i jq q ij q ij sq i jp i jp p ij

s s s s s s
sj i pq q ip q ip si q jp p jq q jp

T g g

g g

     

     

                  

                 

We now consider a coordinate transformation that leads to a new locally inertial system.
We want what ijpqT  to be a tensor with respect to transformations of generic coordinates; therefore,
it must also be a tensor with respect to the transformation of a locally inertial system to another
system of the same characteristic.

From the law of transformation of the connection (2) follows that the law of inverse
transformation is

w q p r w q p w
r v t pq tv v t pqB A A A A B   

making the simplification
2

,
q p w r w s

q p w
v t pq v t p q s t r v

x x x x x x
A A B

x x x x x x x x

          
                

the derivative of the expression in parentheses is null. Developing the previous expression
q p w r w
v t pq vt rA A B A B 

therefore the inverse of the law of connection transformation is

,w w q p r r w
tv r v t pq vt rB A A A B   

solving r
vtA  and deriving

m m w q p s m
vtn w n tv v t n s pqA A A A A       

where has been taken into account that the two coordinate systems are locally inertial and therefore
null the Christoffel symbols at the point considered. From the previous expression, we deduce

.m v t n m w v t n m
c ba a b c w n tv a b c vtnB B B A B B B A      

In a coordinate transformation, the tensor ijpqT   is

   
    ,

s s s s s s
ijpq sp i jq q ij q ij sq i jp i jp p ij

s s s s s s
sj i pq q ip q ip si q jp p jq q jp

T g g

g g

     

     

                               

                              

using (9) and since ikg   is a covariant second-order tensor, we get

   
    ,

v t e n v t n d e s v t n d e s
ijpq i j p q vten q j i s p vtn de p j i s q vtn de

v t n d e s v t n d e s
q p i s j vtn de j p q s i vtn de

T B B B B T B B B B B A g B B B B B A g

B B B B B A g B B B B B A g

     
     

        
     

defining
v t n d e s

qjip q j i s p vtn deZ B B B B B A g
for ijpqT  to be a tensor it is necessary that

        0qjip pjiq qpij jpqiZ Z Z Z                      
as the coordinate transformation is arbitrary, with the only condition that at the point considered

0s
pqB  , then a transformation can always be found with which the system of homogeneous linear

equations (11) has a rank of four *, just like the number of unknowns, and therefore the system will
be determined compatible, and the only solution is the trivial, that is

0; 0; 0; 0.                      
Under these conditions, ijpqT  it is a fourth-order covariant tensor. When solving (12), there are two
indeterminate unknowns, if we choose and , then

* An example of a coordinate transformation that converts a locally inertial system into another with the same
characteristic is

     0 0 0 0
i i j j i j j k k r r

j jkrx x x x x x x x x       

transformation that satisfies the condition 0s
pqB   at point 0 0ix   as required, which follows from (8)
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; ; ; .                
By applying conditions (12) to the tensor defined in (7), we obtain from equation (10)

v t e n
ijpq i j p q vtenT B B B B T 

which demonstrates that ijpqT  has tensor character at least for transformations between locally
inertial coordinate systems and at the point where they are defined.

Applying (13) in (7) and as the curvature tensor (4) in a locally inertial system is

 k k
psir pk i sr r siR g     

then

 ijpq pjiq qjip jpiq ijpq pjiq qjip jpiq ijpqT R R R R R R R R                
which demonstrates that the tensor ijpqT , that is, one that depends on the connection and is linear
with respect to the second derivatives of the metric tensor, has as a more general expression, in a
locally inertial system, a linear combination of the curvature tensor.

4. The curvature tensor as a function of the second derivatives of the metric tensor
in a locally inertial system

Making the derivative of the Christoffel symbols (1) and taking into account that we do the
calculations in a locally inertial system where j

ik  is null and by (3) the first derivatives of the
metric tensor are also null

 1

2
r rs

t pq tp sq tq sp ts pqg g g g       

which allows us to put (14) depending on the second derivatives of the metric tensor

 1

2psir si rp pi sr sr ip pr siR g g g g       

expression that is valid exclusively at the point where the locally inertial system is defined.

5. The tensor ijpqT  based on four second derivatives of the metric tensor
We have verified that six is the maximum number of second derivatives of the metric

tensor with which the tensor ijpqT  can be formed, which is a tensor that depends linearly on the
second derivatives of ikg . We wonder, what is the smallest number of second derivatives of ikg
that can generate the tensor ijpqT ?

The determinant of the coefficients of the system of homogeneous linear equations (12) is

1 0 1 0 0 1

1 1 0 0 1 0

0 1 1 1 0 0

0 0 0 1 1 1

has rank four; that is to say,  the number of unknowns, which is six, is higher than the rank of the
determinant of the coefficients; therefore, the system is indeterminate compatible and, therefore,
with infinite solutions.

If instead of six unknowns the system of equations (12) had five unknowns, we would
again have an undetermined compatible system, in effect, suppose that the tensor ijpqT  depended
on five second derivatives of ikg  [eg, in (5) 0  ], so

2ijpq ij pq qi jp qp ij pj qi pijqT g g g g R         
if instead of we nullify another of the coefficients of (12) we would find that the tensor ijpqT  is
still proportional to the curvature tensor.

Are possible combinations of four unknowns that generate determinants of the coefficients

4

considering that 0r
vtA   at point 0 0ix  . The coefficients i

j  and i
jkr  are arbitrary numerical values, and

0
ix  are the coordinates of the point where it is defined the locally inertial system. Given the arbitrariness of the

numerical coefficients, we can always find some coefficients with which to ensure that the determinant of the
coefficients of the system of equations (11) is of rank four and therefore has the trivial solution.

(13)

(14)

(15)

(16)
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of rank three, and therefore being less than the number of unknowns would have different solutions
from the trivial. By direct inspection, we found that the combinations of unknowns that make the
system (12) have non-trivial solutions are

(1) 0; 0 0; 0; 0; 0
; ;

(2) 0; 0 0; 0; 0; 0
; ;

(3) 0; 0 0; 0; 0; 0
; ;

         
     

         
     

         
     

          
    

          
    

          
    

also, by immediate inspection, we verify that there are no systems with 3, 2, or 1 unknowns that
have non-trivial solutions; therefore, the minimum number of second derivatives on which the ijpqT
tensor can depend is four.

6. The tensor ijpqT  as a function of four second derivatives of the metric tensor
From (5), (16) and (17) we can derive the tensor ijpqT  that in a locally inertial system

depends exclusively on four second derivatives of the metric tensor
   
   
   

1

2

3

2

2

2

ijpq ip jq iq jp jp iq jq ip pqij

ijpq ij pq iq jp pq ij jp iq piqj

ijpq ij pq ip jq pq ij jq ip pjiq

T g g g g R

T g g g g R

T g g g g R

 

 

 

        

        

        

all three possibilities are proportional to the curvature tensor.
We  shown that at the point where the locally inertial system is defined, the only tensor that

depending on the connection and is linear with respect to the second derivatives of the metric
tensor is the Riemann-Christoffel curvature tensor or a linear combination of this tensor. Now we
have to show that this property extends to every point of the manifold and for all coordinate systems.

7. Uniqueness theorem of the curvature tensor of Riemann-Christoffel
At any point in a locally inertial system, the expression of the Riemann-Christoffel tensor is

given by (4); therefore, it is a tensor that depends linearly on four of the second derivatives of the
metric tensor, and this same property will have in a coordinate system general. Now we have to
see if this tensor is the only with that property.

Suppose a tensor ijpqH  that in any coordinate system has the property of linearly depending
on four of the second derivatives of the metric tensor. If we make a change to a locally inertial
coordinate system, we will find that at the point where this system is defined it will be fulfilled

ijpq ijpqH R
since, as we have seen before, ijpqR  is the only tensor with the property considered *. The above
is a tensor relationship that will be maintained for any transformation of coordinates and any point
in space because, for each of them, it is possible to define a locally inertial system. Therefore, we
verify the validity of the uniqueness theorem of the curvature tensor that states: that the only tensor
that depends on the connection and is linear with respect to the second derivatives of the metric
tensor is the Riemann-Christoffel curvature tensor or its linear combinations.

8. Generalization of the uniqueness theorem
We modify the statement of the uniqueness theorem to allow the tensor ijpqT  to depend on

the metric tensor, leaving, therefore, the statement: the only tensor that depends on the metric
tensor, its first derivatives ** and is linear with respect to the second derivatives of the metric
tensor is the tensor

5

* Strictly speaking, it should be ijpq ijpqH R , where is a numerical coefficient, but for practical purposes,
we consider proportional tensors as identical.
** The dependence of the connexion is not the same as the dependence of the first derivatives of the metric
tensor; in the latter case, there is not only dependence on the connexion but also the metric tensor.

(17)
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ijpq ij pq ip jq iq jpR g g g g g g    
or their linear combinations, being arbitrary numerical coefficients. Note that the only
covariant fourth-order tensor we can build with the metric tensor is its product by itself.

9. The extended version of the uniqueness theorem
In the previous reasoning, when we talk about linearity, we have assumed that the

proportionality coefficients are numerical constants. The theorem can be generalized by admitting
that the proportionality coefficients are geometric tensors of any order . . .u v tX  *. There is a substantial
limitation of the geometric tensors with which . . .u v tX  ** can be formed, among which is the metric
tensor (in its covariant or contravariant form), the Kronecker symbols k

i  and the Levi-Civita
tensor ...xyz  §  whose order is the same as the dimension of the variety §§.

For simplicity, we assume that the tensor uvX  is of second order. We are looking for a
ijpquvT  tensor that depends linearly on the second derivatives and that in a locally inertial system has

the form

 
 

, , , , ,v

1 2 3 4 5 6

1 2 3 4 5 6 .....

ijpquv uv ijpq
i j p q u

uv ij pq ip jq qi jp qp ij pj qi qj ip

ui vj pq vp jq qv jp qp vj pj qv qj vp

T X T

X A g A g A g A g A g A g

X B g B g B g B g A g B g

  

           

            
the symbol  represents the sum of all possible permutations of the indexes i, j, p, q, u and v. By
(6) we express the previous equation based on the first derivatives of the connection

   
   

 

1 3 6 1 2 5

2 3 4 4 5 6

1 3 6 1 2 5

s s s s s s
sp i jq q ij q ij sq i jp i jp p ij

ijpquv uv s s s s s s
sj i pq q ip q ip si q jp p jq q jp

s s s s s
sp v jq q vj q vj sq v jp v jp p

ui

g A A A g A A A
T X

g A A A g A A A

g B B B g B B B
X

                  
   

                   
                


 

   2 3 4 4 5 6

...
s
vj

s s s s s s
sj v pq q vp q vp sv q jp p jq q jpg B B B g B B B

 
  
                   

when doing a coordinate transformation to another locally inertial system, we obtain using (9) and
taking into account that uvX  is a covariant second-order tensor

 
   

 

1 3 6

1 2 5 2 3 4

4 5 6 .

a b c d r t a b c d e r t s
ijpquv i j p q u v abcd q j i s p u v abc rt de

a b c d e s r t a b c d e r t s
p j i s q abc u v rt de q p i s j u v abc rt de

a b c d e r t s
j p q s i u v abc rt de

T B B B B B B T A A A B B B B B B B A X g

A A A B B B B B A B B X g A A A B B B B B B B A X g

A A A B B B B B B B A X g

     
      

    ....

by identical reasoning that those followed in section 3, we find that the conditions for ijpquvT  to be a
tensor are

1 3 6 1 2 5 2 3 4 4 5 6

1 3 6 1 2 5 2 3 4 4 5 6

0; 0; 0; 0
0; 0; 0; 0

A A A A A A A A A A A A
B B B B B B B B B B B B

           
           

and equal relationships for the remaining coefficients C, D, ... Then we find that

6

* The demonstration can be done with contravariant or mixed tensors, reaching the same result.
** With symmetric connection, like Christoffel's symbols, we cannot form a tensor. Any combination of this
connection would not have a tensor character since it is always possible to choose at any point a locally
inertial system, where that combination is canceled an if it is null in a coordinate system, it remains null in any
other coordinate system.
§ Levi-Civita's tensor is defined as

... ...xyz xyzJ 
where ...xyz  are the completely antisymmetric symbols, and J  is a parameter that in a coordinate transformation
is changed according to

J A J 
where A  is the determinant of the transformation matrix.
§§ There are also the torsion tensor, the torsion vector and the non-metricity tensor i pqD g , which are nulls
in a manifol odf Riemann that has a symmetrical connection.

(18)
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, , , , ,v
ijpquv uv ijpq

i j p q u
T X T  (19)

it is a tensor, and since ijpqT  is a linear combination of curvature tensors, then from (19), is found
that the tensor ijpquvT  is a linear combination of different tensors of the form uv ijpqX R . Since the
tensor X can have any order, we find that, in general, tensor type ... .....ijpquvt ijpq uvtT T X  are linear
combinations of the second derivatives of the metric tensor, admitting that the proportionality
coefficients are tensors. With reasoning similar to that of section (7), we show that these tensors
are unique.

10. The tensor ....uvtX
We have already seen that we can form tensors of any order that are linear combinations

of the second derivatives of the metric tensor, admitting that the proportionality coefficients are
tensors. The tensors obtained by contraction from ... .....ijpquvt ijpq uvtT T X  have the same property of
being linear with respect to the second derivatives the metric tensor.

To obtain contracted tensors, the tensor ...uvtX  can only be formed by the metric tensor,,
since the Kronecker symbols do not generate a new tensor and the contraction of the Levi-Civita
tensor with the curvature tensor is zero. Indeed, in a locally inertial system and if the manifold has
four dimensions

 1
,

2
psir psir

psir si rp pi sr sr ip pr siR g g g g       

any permutation of two indices of the Levi-Civita tensor is an odd permutation, and therefore the
sign changes, but each of the terms of the curvature tensor has two pairs of symmetric indices and
therefore when multiplied by the Levi-Civita tensor gives a null result *. For example, for the first
term of the curvature tensor exchanging the indexes s and i

0psir pisr psir psir psir
si rp si rp is rp si rp si rpg g g g g              

and the same with the remaining terms and therefore

0.psir
psirR 

We conclude, therefore, that the metric tensor can only form the tensor ...uvtX .

11. Uniqueness theorem for second-order tensors
The Ricci tensor is the contraction of the curvature tensor

 
,

pr r pr k k n k n k
si psir sir pk i sr r si sr ni si nr

k k n k n k
i sk k si sk ni si nk

R g R R g g             

          
in a locally inertial system

 1

2
pr

si si rp pi sr sr ip pr siR g g g g g       

which proves that it is a symmetric tensor in a manifold of Riemann.
The other possible contraction of the Riemann-Christoffel tensor is the homothetic curvature

ps s s
ir psir i sr r siV g R      

but it is null for a manifold with symmetric connection. The remaining contractions of the curvature
tensor turn out to be the Ricci tensor, either positive or negative.

A second contraction of the curvature tensor gives the scalar curvature R

  ,si si k k n k n k
si i sk k si sk ni si nkR g R g           

from here we get the second order tensor ikg R .
Therefore the only second-order tensor that can be formed depending on the metric tensor,

its first derivatives and is linear with respect to the second derivatives is

* The reasoning of the text is extensible to any number of dimensions. The contracted product of the metric
tensor with the Levi-Civita tensor is also null because it is the product of a symmetric tensor by another
antisymmetric.
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ik ik ik ikT R g R g    
or linear combinations of the previous tensors, where  and  are arbitrary numerical values.

It's called Einstein's tensor

1

2ik ik ik ikE R g R g  

that has the property that its covariant gradient is null 9

1
0

2
r r r

r k k kD R R     
 

therefore we conclude that the only tensor that, depending on the metric tensor, on its first derivatives,
is linear with respect to the second derivatives and has a covariant gradient null is the tensor (20),
which we have previously called Cartan's theorem.
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