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Abstract

A brief introduction of the history of Born’s Reciprocal Relativity
Theory, Hopf algebraic deformations of the Poincare algebra, de Sitter al-
gebra, and noncommutative spacetimes paves the road for the exploration
of gravity in curved phase spaces within the context of the Finsler geom-
etry of the cotangent bundle T* M of spacetime. A scalar-gravity model
is duly studied, and exact nontrivial analytical solutions for the metric
and nonlinear connection are found that obey the generalized gravita-
tional field equations, in addition to satisfying the zero torsion conditions
for all of the torsion components. The curved base spacetime manifold
and internal momentum space both turn out to be (Anti) de Sitter type.
A regularization of the 8-dim phase space action leads naturally to an
extremely small effective cosmological constant Acsy, and which in turn,
furnishes an extremely small value for the underlying four-dim spacetime
cosmological constant A, as a direct result of a correlation between Acyy
and A resulting from the field equations. The rich structure of Finsler
geometry deserves to be explore further since it can shine some light into
Quantum Gravity, and lead to interesting cosmological phenomenology.
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1 Introduction

Most of the work devoted to Quantum Gravity has been focused on the ge-
ometry of spacetime rather than phase space per se. Moyal [2] anticipated



the importance of phase space and introduced the noncommutative star prod-
uct A(z,p) * B(x,p) (Moyal-Weyl-Wigner-Groenewold product) of functions in
phase space which spawned the Moyal-Fedosov deformation quantization pro-
gram. A thorough study of the geometry of phase space can be found in [3].
The first indication that phase space should play a role in Quantum Gravity was
raised by [1]. The principle of Born’s reciprocal relativity [1] was proposed long
ago based on the idea that coordinates and momenta should be unified on the
same footing, and consequently, if there is a limiting speed (temporal derivative
of the position coordinates) in Nature there should be a maximal force [4] as
well, since force is the temporal derivative of the momentum. A maximal speed
limit (speed of light) must be accompanied with a mazimal proper force (which
is also compatible with a mazimal and minimal length duality).

The generalized velocity and acceleration boosts (and rotations) transfor-
mations of the flat 8D Phase space, where 2°,t, E, p';i = 1,2, 3 are all boosted
(rotated) into each-other, were given by [7] based on the group U(1, 3) and which
is the Born version of the Lorentz group SO(1, 3). The U(1,3) = SU(1,3)xU(1)
group transformations leave invariant the symplectic 2-form = — dt A dpg +
i dx' Ndp?ii, 5 =1,2,3, and also the following Born-Green line interval in the
flat 8D phase-space (dw)? = n,,dztdz” + b=2n,,dp"dp”. Factoring out the
spacetime proper time dr? = 1, dz"dz" leaves (dw)? = (dr)?(1 — IZ—;), where
—F? < 0 is the spacelike proper-force squared (dp,,/dr)(dp*/dr) < 0 associated
to a timelike interval (dr)? > 0. The Born constant b is the maximal proper
force which can be postulated to be the Planck mass-squared M3 in the units
h=c=1.

A study of the many novel consequences of Born’s reciprocal relativity theory
(BRRT) can be found in [5], in particular the relativity of locality. Given a local
event in a given reference frame represented by the intersection of two world-
lines associated with two particles of equal mass, but dif ferent energies and
momenta, there is an accelerated frame of reference with sufficient acceleration-
rapidity parameter such that no intersection of the worldlines occurs. Besides
relativity of locality, we also may have relativity of chronology. One observer
will describe as a physical event to be the one defined by the intersection of two
worldlines taken place in his (her) future, while an accelerated observer will
describe it as an intersection of two worldlines taken place in his (her) past [5].

Relative locality [8], [13] in a very different context originated from some in-
terpretational issues connected to the possibility that energy-momentum space
be curved, as for example in doubly special relativity (DSR) [9] , some models
of noncommutative geometry [11] and 3D quantum gravity [14]. It is better
understood now that the Planck-scale modifications of the particle dispersion
relations can be encoded in the nontrivial geometrical properties of momentum
space [8]. When both spacetime curvature and Planck-scale deformations of
momentum space are present, it is expected that the nontrivial geometry of mo-
mentum space and spacetime get intertwined. The interplay between spacetime
curvature and non-trivial momentum space effects was essential in the notion
of “relative locality” and in the deepening of the relativity principle [8].



The theory is based on the assumption that physics takes place in phase space
and there is no invariant global projection that gives a description of physical
processes in spacetime. Therefore, local observers can construct descriptions
of particles interacting in spacetime, but different observers construct different
spacetimes, which correspond to different foliations of phase space. So, the
notion of locality becomes observer dependent, whence the name of the theory.

This formulation of relative locality is very dif ferent than ours despite the
fact that both rely on the geometry of phase-spaces. Our results above are based
on the nontrivial transformation properties of the phase space coordinates under
force/acceleration boost transformations which miz spacetime coordinates with
energy-momentum coordinates. Whereas the formulations [8], [9], [11], [14] rely
on the geometry of curved phase-spaces, and the use of Hopf algebras leading
to a deformed Poincare algebra, modified dispersion relations, a coproduct of
momenta, and a coproduct of Lorentz generators.

We recall that DSR introduces in special relativity a new fundamental scale
with the dimension of mass (usually identified with the Planck mass) in addition
to the speed of light. The new scale gives rise to deformations of the action
of the Lorentz group on phase space, and consequently of the dispersion law of
particles, of the addition law of momenta, and so on. Although doubly special
relativity is mainly concerned with energy-momentum space, it is often real-
ized in terms of noncommutative geometries that postulate a noncommutative
structure of spacetime with a fundamental length scale of the order of the Planck
length, and are in some sense dual to the DSR approach. It is important to
emphasize that a maximal proper force does not necessarily imply a minimum
length. Setting F' = mc?/L = b, as a maximal proper force, one could have the
scenario where m — 0, L — 0 such that (m/L)c?> = b, and consequently there
is no minimal length but there is a maximal proper force.

The energy-momentum space geometry defined in [8] has been investigated
in a specific instance in [15], where it has been applied to the case of the k-
Poincare model [11], one of the favorite realization of DSR. This is a model of
noncommutative geometry displaying a deformed action of the Lorentz group
on spacetime, whose energy-momentum space can be identified with a curved
hyperboloid embedded in a 5-dimensional flat space [16].

The theory of relative locality refines this picture, by introducing some ad-
ditional structures in the geometry of energy-momentum space, related to the
properties of the deformed addition law of momenta, due to the coproduct of
momenta associated with the Hopf algebraic structure. The authors [13] inves-
tigated a different example of noncommutative geometry, namely the Snyder
model [17] and its generalizations [18]. The distinctive property of this class of
models is the preservation of the linear action of the Lorentz algebra on space-
time. This implies that the leading-order corrections to the composition law of
the momenta must be cubic in the momenta, rather than quadratic. Moreover,
the composition law is not only noncommutative but also nonassocative.

A new proposal [19] for the notion of spacetime in a relativistic general-
ization of special relativity based on a modification of the composition law of
momenta was presented. Locality of interactions is the principle which defines



the spacetime structure for a system of particles. The main result [19] has been
to show that it is possible to define a noncommutative spacetime for particles
participating in an interaction in such a way that the interaction is seen as local
for every observer. There exists then a large freedom to introduce a noncom-
mutative spacetime in a relativistic theory beyond Special Relativity (SR) in a
way compatible with the locality of interactions. An interesting particular case
is the one in which the new spacetime of the two-particle system is such that
the coordinates of one of the particles depend only on its own momentum.

Quantum groups, non-commutative Lorentzian spacetimes and curved mo-
mentum spaces were analyzed further by [12]. Most importantly, (Anti) de Sit-
ter non-commutative spacetimes and curved momentum spaces in (1 4 1) and
(2 + 1) dimensions arising from the rk-deformed quantum group symmetries.
The generalization of these results to the physically relevant (3 + 1)-dimensional
deformation was also discussed.

The aim of this work is to explore gravity in curved phase spaces within the
context of the Finsler geometry of the cotangent bundle of spacetime. We study
a scalar-gravity model and find exact nontrivial analytical solutions that obey
the generalized gravitational field equations, in addition to satisfying the zero
torsion conditions for all of the torsion components. The curved base spacetime
manifold and momentum space both turn out to be (Anti) de Sitter type. A
regularization of the 8-dim phase space action leads naturally to an extremely
small effective cosmological constant A.ss, and which in turn, furnishes an ex-
tremely small value for the underlying four-dim spacetime cosmological constant
A, as a direct result of a correlation between A.¢y and A resulting from the
field equations. Therefore, the rich structure of Finsler geometry deserves to
be explore further since it can lead to interesting cosmological phenomenology
[21], and shine some light into Quantum Gravity.

2 Curved Phase Space and Finsler Geometry

To explore the geometry behind a maximal proper force and/or maximal ac-
celeration in more general curved phase spaces (cotangent bundles), we shall
follow next the description by [20], [22] where one may study in detail the ge-
ometry of Lagrange-Finsler and Hamilton-Cartan spaces and their higher order
(jet bundles) generalizations. For other references on Finsler geometry see [21].

In the case of the cotangent space of a d-dim manifold 7% M, the Sasaki-
Finsler metric can be rewritten in the block diagonal form as

(dw)z = gij(xkvpa) d(Eld xj + hab(xkapc) 5pa 5pb =

gi5 (2%, pa) dz'd 27 + hay(zF,p.) 6p® op° (1)

The indices range is ¢, 5,k = 0,1,2,3,.....d—1; a,b,c = 0,1,2,3, .....d—1, and the
standard coordinate basis frame has been replaced by the following anholonomic



frames (non-coordinate basis)

5)85 = Dy + Nig 0 = Oy + Nia Oz 0% = 8, = 2= (2)

0
‘ Opa

The signature is chosen to be Lorentzian (—,+,+,+,---,+) for both g;; and
hap- It is important to emphasize that one does not have two times because the
energy coordinate is not time. One should note the key position of the indices
that allows us to distinguish between derivatives with respect to x* and those
with respect to p,. The dual basis of (§; = §/dz%;0% = 9/0p,) is

dz', 6p, = dp, — Nja de?, op* = dp® — N7 da? (3)

where the N—coefficients define a nonlinear connection, N—connection structure.

An N-linear connection D on T*M allows to construct covariant derivatives
which are compatible with the structure induced by the nonlinear connection
that preserve the horizontal-vertical split of the cotangent bundle. Thus, an N-
linear connection D on T*M can be uniquely represented in the adapted basis
in the following form

Ds,(6;) = H 6, Ds,(0%) = — Hy; 0% (4a)
Dga(d;) = CF 81y Daa(d®) = — CP* 9° (4b)

where Hfj(x7p),H,‘}j(x,p),C’f”(w,p%Cﬁ’%x,p) are the connection coefficients.
Our notation for the derivatives is

8% = 0/0pa, 0; = Opi, 8 = 6/0z" = Oy + Nig 0° (4c)

The N-connection structures can be naturally defined on (pseudo) Rieman-
nian spacetimes and one can relate them with some anholonomic frame fields
(vielbeins) satisfying the relations 6,03 — 0gda = W;B(s.y. The only nontrivial
(nonvanishing) nonholonomy coefficients are

Wija = Rija; W% = 0"Njp = — W;%, (5a)

J
and
Rija = 0jNia — 0iNjq, (50)

is the nonlinear connection curvature (N—curvature).
Imposing a zero nonmetricity condition of g;;(z,p), h%(z,p) along the hori-
zontal and vertical directions, respectively, gives

Digjk = 6i gg — Hj; g — Hjy g1 = 0, (6a)

Dahbc = 9° hbc + C((ilb hdc + Clciw hbd =0 <6b)

Performig a cyclic permutation of the indices in eqs-(6a,6b), followed by lin-
ear combination of the equations obtained yields the irreducible (horizontal,
vertical) h-v-components for the connection coefficients



. 1.
H'; = ggm (OkGnj + 0jgnk — Ongjr) (7)

1
Cgb - _ 5 hcd (abhad + 8ahbd _ 8dhab) (8)

The additional conditions D;h% = 0,D%g;; = 0, yield the mired compo-
nents of the connection coefficients

1
HY, = 0N, + 3 h*¢ (jhac — had 0“Nje — heqg 0Njq ) (9)

and

” 1
cl* = 3 9" 0%gin (10)

For any N-linear connection D with the above coefficients the torsion 2-forms
are

_ 1. , ; j
Q0 = iT;k dxd A dz® + C}* dx? A dp, (11a)

1 . . 1
Q, = 5Rj;m da? Ada* + Pé’j dx? A odpy + §SZC Opy N Ope (11d)

and the curvature 2-forms are

_ 1 . 1.
Q) = iR;km dz® A dz™ + ik dz® A dpa + 55;‘11’ 0pa A Ipp (12)

1 1
Q= SR, d2® Ada™ + P dat Adpe + 555 Gpe A dpa (13)
where one must recall that the dual basis of §; = §/ dxt, 9% = 0/9dp, is given by
dz', dp, = dp, — Njada’.

The distinguished torsion tensors are

By = Hj, — Hj; S = C —Cl 10 = CfF = — T,
B,% = Hy; — 9N, BY% = — Py°
ONja  ON;
Rijo = % — —= 14
! ozt ozl (14)

The distinguished tensors of the curvature are

Rfcjh = 6hHlij — 6;Hjy, + Hllcj Hj, — Hj, Hlij — G} Rjha (15)



Py = 0" HY + C¢ Py — (8, C2* + Hy CI* + Hy O — HY c(glbg)

Py = 9" HY, + CP T — (5; CfF + HY O + Hf CM — HY CfF)

K2 K2

(17)
S§ = 0°CiP - 8" Ci° + CF Cgf — Cgf O (18)
ibc c bi bei bh yci ch bi

Ry = oxHy; — 0jHy, + Hyy HY — Hy, HYy — CF Rjge (20)

Adopting the units where A = ¢ = G = 1 such that the Planck mass and
length squared are respectively M2 = 1, L% = 1; given g*P = g% h?, and the
definitions 94 ®(z,p) = 6;P(z,p), o P(x, p), where the ordinary 9, and elon-
gated derivatives §; defined by eq-(2) act on ®(z,p), one may construct the
simplest gravity-scalar field action of the form!

1 -
S =8 + Sy = ﬂ /d4x d4p |detgAB| (g” R(ij) + hap S(ab))

/d4x d*p \/|det gag| < % g8 04® 0p® + V(D) > (21)

The determinant factorizes det(gap) = det(g;;)det(hqy) in an anhololomic basis
adapted to the nonlinear connection (the metric assumes the block diagonal
form (1)). & is the gravitational coupling constant. If the phase space action
action (21) is dimensionless, after reintroducing the physical constants that were
set to unity, gives k = 87 — (87G/c*)(M,c)t.

After a very laborious procedure the authors [21] have shown that variation
of the action (21)

oS oS 0S oS
- = — = — = 22
591’]’ 0, 5hab 07 5Nz‘ 0’ od 0 ( )

leads to the following field equations

1
R(;j(x,p) 3 gij(z,p) (R+S) + Rp(ia Cf)a = T (23)
1
S(ab)(‘rap) - 5 hab(xap) (R+S) = Lab (24)
Yate d*p =dz® Adz' A ANSpo AdpL A -+ =dx® Adx' A~ Adpo Adpr A -+ -



gik aaH]Zj _ gkl 8aHlil — Tia (25)
where
Rin = Rij, 60, R = g" Rupy S° = S50, S = hae S (26)

after symmetrizing the indices accordingly and denoted by (). The components
of the stress energy tensor are defined as

T — _ 2 6(y/|detGap|Lm) T, — — 2 §(\/|detG ap|Lar)
L/ y Lab —

V/|detG ap| dgid V|detG 4| Shet

(27)
o _ 2 8(/[etGap|Ly) o
\/|d€tGAB| dNja

and given by

Ty = (60(e) (6:0(0) ~ 65 (5 0 0a8(0.0) Oa0(ap) + V(@)
(29)

Ty = (0,8(2.0)) 008(2,) ~ hun 5 9" (048 (0.1) G2(ap) + V(&)
o (30)

™ = g” 6’(1)(337]7) aa(I)(q,"p) ( 1)

One must include also the equation of motion for the scalar field ®(x,p),
which is a generalization of the d’Alambert equation,

N )
¢ D;D;® + h" D,Dy® — agfb) =0 (32)
D;D;® = 6;6;® — HJ; 6:®, DoDy® = 0,0,® — C§, 0. (33)

The system of coupled nonlinear differential equations (23,24,25,32) lead-
ing to the solutions for g;;(x,p), has(x,p), Nai(x,p), ®(z,p) are highly nontriv-
ial. The scalar field ®(x, p) curves both spacetime and momentum space. The
equations have almost a similar form to the Einstein gravitational field equation
with the difference of the extra term Ry, C]’?)a in eq-(23).

Many authors choose the nonlinear connection depending on the physical
context rather than including the last equation (25) obtained from the variation
55\75 = 0. For example, the authors [21] investigated the cosmological bounce re-
alization in the framework of generalized modified gravities arising from Finsler
and Finsler-like geometries. They chose a specific nonlinear connection in the
modified Friedman equations that satisfied the general cosmological bounce con-
ditions and thus induced the bounce.




Instead of choosing the nonlinear connection by hand, and eliminating eq-
(25) in the process, one could also impose the zero torsion condition

P = H — "Ny = 0 =

Ny, p) = / HE(h N dpa + fin(x) (34)

yielding an integro-differential equation for N;;. The connection H, gj(h, N) de-
fined in eq-(9) is a function of hy, and Ny;, and fj,(x) are arbitrary integration
functions. Hence, instead of using eq-(25) obtained from a variation with respect
to a dynamical nonlinear connection Nj,, eq-(34) determines, in principle, the
nonlinear connection Nj;(x,p) in terms of hqp(x,p), and the integration func-
tions fjp(z).

Let us find solutions to these equations in the case when ®(z,p) = ®, =
constant, V(®) = V, = constant; the horizontal metric solely depends on x :
gij(z), and the vertical metric solely depends on p : he(p). In doing so one gets
for the connection components the following

Cj* =0, Hy = Ty(2), Ci = Tie(p) (35)

where T, (), Tf.(p) are the ordinary Levi-Civita (Christoffel) connections writ-
ten in terms of g;;(x), has(p), respectively. Eq-(25) is identically satisfied since
T = 0 for constant ® and H;k (z) depend on x only. From eq-(35) one then
finds that the nonlinear connection decouples from the field equations (23,24)
leading to

Rig(e) — 5 95(x) (R@) +S() = — 5 g(2) Vi, (36)
Sualp) = 5 has(p) (R@) +S)) = = 5 haa() Vo (37)

Let us find solutions to eqs-(36,37) which are (Anti) de Sitter like. These
solutions can be generalized to other dimensions than d+d = 4+4. In a d-dim
base spacetime one has R;; = %gij, and R = dQ—_dgAl with A; > 0 for the d-dim
de Sitter space dSgy, and Ay < 0 for anti de Sitter AdSy. Similar expressions
hold for the internal d-dim momentum space Ricci and scalar curvatures S, =
%hub and S = %Ag. Taking the trace of eqs-(36,37), where the indices range
is now given by i, =0,1,2,---,d—1, and a,6=0,1,2,---,d — 1, leads to

1

R(l—g)—idsz — Aeppd = — 6V, d (38)
d, 1

S(=3) —5dR = = Agyd = — xV,d (39)

Upon using the expressions for the Ricci scalar curvatures R,S in terms of
Ay, Ay respectively, and inserting them into eqs-(38, 39), one arrives at

d(d —2) d(d —2)
A=A = A= —FkWp = m/\eff

2d=1) (40a)



The cosmological constant is given in terms of the (Anti ) de Sitter throat size
L as

(d—2)(d-1) (d—1)% 1
A= £ ————~ = 4+ - 7 4l
2L2 KVO d L2 ( Ob)
and the scalar curvatures (positive for de Sitter, negative for Anti deSitter) are
d? d(d—1)

One should note that when d = 2 = A = 0 but the effective cosmological
constant Agrr = 6V = iﬁ # 0. So we have a situation where A.¢¢ could be
extremely large, like in the order of M3 = L;,Q for a Planck-sized throat size
L, while A = 0. The quantity A.¢s is associated with gravity in the four-dim
phase space (cotangent bundle) while A = 0 is associated with the two-dim base
manifold (spacetime) and the internal two-dim momentum space. The two-dim
(Anti) de Sitter metrics are conformally flat with (negative) constant positive
scalar curvature i%.

In particular, the solutions to eqs-(36,37) in d + d = 4 + 4 dimensions are
given by

A A .
gt = — (1757’2), Grr = (1—§T2)*1’ 9o = Tzv 99 = r? sin’0 (41)
A A5 .
heg = — (1_3173)» hp.p, = (1_§p2) Yy Ppope = P} hpsps = Py sin’p
(42)

with 2° = (t,7,0,¢) ; pa = (E,pr,pe,Ps), and A = £2. The above solutions
are given in static global coordinates that cover all of (Anti) de Sitter space.
The units are taken such that the Planck length (mass) are set to unity. One can
reintroduce the physical constants in eqs-(41, 42) if one wishes so all expressions
have the correct physical units.

Because in this simple case the nonlinear connection N;;, has decoupled from
the field equations, we can obtain it by imposing the zero torsion condition
Pf. =0 in eq-(14). Instead of solving the integro-differential equation (34) it is
far simpler to choose the ansatz Nj;(z,p) = N;i(x) leading to

h% Sphye = h% (O + Nig 04 hpe = h% Npg 0 hye = 0 (43)

because the internal space metric hq.(p) (42) does not depend on z. As a
reminder, 9, = (0/0x%); and 9% = (0/0p,).
A solution to (43) can be found by setting

Nio(z) # 0, Nia(z) = Nig(z) = Neg(z) = 0 (44)

10



since the metric hq.(p) (42) does not depend on the energy. One can further
restrict the expression for Nio(z) by setting the remaining torsion R;j, in eq-
(14) to zero when N, (x,p) = Njr(x)

Rija = (SjNia(l’) — 6iNja = 8ij(sc) — &-Nja(x) =0 =
N; (1’) = 8Z-Na(x), Nj (LC) = 8]'Na($) = O[lﬁj]Na(x) =0 (45)

From eqs-(44,45) one learns that the nonholonomic functions N, (z) are

No(l‘) 75 0, Nl(l‘) = NQ(I‘) = Ng(x) =0 (46)

so that the nonvanishing nonlinear connection coefficients Nyo(x) = 0, No(z) are
given in terms of one nonholonomic function Ny(x). The spherical symmetry
requires No(z) = Ny(r) for an arbitrary function of r. Therefore, the only
nonvanishing nonlinear connection coefficient N,.g = 9, No(r) is given in terms of
one nonholonomic function Ny(r). Thus, to conclude, the solutions (41,42,45,46)
above yield zero torsion for all of the torsion components of eq-(14), and obey
the field equations (23,24,25,32) when ®(z,p) and V(®) are constants.

Concluding, the Sasaki-Finsler metric corresponding to the above solutions
yields the infinitesimal interval

(dw)2 = gij(xk) da’ dx? — 2 hEE(pc) Nyg(r) dr dE +

WP (pe) Nep(r) Neo(r) (dr)* + b (pe) dpa dps (47)
One must note the presence of the key off-diagonal term in eq-(47) due to the
nonlinear connection coefficient 0, No(r) = Nyo(r) = Npg(r). It also modifies
the spacetime metric via the extra term A (p.)(N,g(r))?(dr)?. The base man-
ifold g;;(x) and internal metric hqs(p) are (Anti) de Sitter-like as displayed in
eqs-(41, 42). Thus, the cotangent bundle metric is parametrized by a family of
arbitrary functions No(r).

Our findings associated to the geometry of the cotangent bundle are different
from those in [21] that were based on Finsler-like geometries where the zero
torsion conditions were not imposed; the internal metric hop(z,y) = hap(x)
was chosen to be diagonal and independent of the internal fiber coordinates y;
the nonholonomic function defined by 9y« N§(z*,y*) = No(t) was specifically
chosen to depend on time only, and to satisfy the general cosmological bounce
conditions. At early times they found that one can acquire an exponential de
Sitter solution.

Besides these differences we found exact (Anti) de Sitter solutions. There
are many different expressions to describe the de Sitter metric depending on the
coordinates being used. A flat slicing of the four-dim de Sitter space is given by
a FLRW metric

(ds); = — (dt)* + ™8 (dr® + 7 (dQ0)?) (48)

The internal de Sitter-like metric hqp(p) for the momentum variables (with 7 =
c=G=1)is

(ds)y = — (dBE)* + P (dp} + p (dQ)?) (49)

11



where 3xVp = A = 3H2 which follows from (40) when d = 4. Thus, instead of
using expressions in eqs-(41,42) we could have written the metrics in the form
provided by eqs-(48,49). In this case, the nonvanishing nonlinear connection
coefficient is Ny, (t) = 0yNp, (t) where N, (t) is the nonholonomic function.
The Sasaki-Finsler metric (1) will have an off-diagonal —2hPPr Ny, (t)dtdp,
term, and an additional hPPr (N, (¢))%(dt)? term.

The on-shell value of the 8-dim cotangent space (phase space) action for the
solutions found in eqs-(41,42) when ® and V(®) are constant, is

1
S ~ o kVo / d*z d*p \/ldetgi;(x)| v/ |dethas(p)| ~ Vo 08 (50)

where Q8 = Q2 Qﬁ is the 8-dim phase space proper hyper-volume. Since the
proper four-volumes of the de Sitter domains diverge, the action (50) diverges
unless one takes the double-scaling limit Vy — 0, Q% — oo, such that the prod-
uct Vo Q8 is finite. Thus a regularization of the phase space action (50) leads
naturally to an extremely small effective cosmological constant A¢ry = £V, and
which in turn, furnishes an extremely small value for the four-dim spacetime
cosmological constant A as a direct result of eq-(40a). It is the correlation be-
tween A.fs and A displayed by eq-(40a), and resulting from the field equations,
combined with the regularization procedure, which forces A to be extremely
small. The latter regularization by itself is not enough.

Consequently, this key finding may cast some light into the resolution of
the cosmological constant problem. Functional regularization group methods
of the effective action (FRGE) are also very promising [23], [24], [25]. Instead
of working on the geometry/gravity of phase space, they rely on the energy-
momentum scale k dependence of the effective average action I'y, to study the
Wilsonian flow as a function of the scale k (a coordinate invariant k = +/|k,k*|).
In particular, the corrections to the classical scalar potential due to the quantum
fluctuations lead to an effective scalar potential with a running cosmological
constant which vanishes in the ¢ — oo limit [23]. Rainbow metrics in DSR
[10] also depend on the energy, however this approach is very different from the
Finsler geometry of the cotangent bundle.

To finalize we add some concluding remarks. To find other exact analytical
solutions than those found in this work after setting ® and V(@) to a constant
is a daunting task. Solutions to the vacuum field equations in 2 + 2 dimensions
have been found by [20]. More general actions can be proposed by adding the
squared and derivatives of torsion terms. Furthermore, if the metric g4p has
also antisymmetric components one may include the other curvature tensors
(19,20) in the action. Defining

Ryg = Riy oy, S = s o] (51)
one may add the terms

9" Rpjpy + hpayy S0 (52)
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to the action. Caution must be taken in inverting the metric because gl*/ #
(g[m)_l, but instead it is a function of both g;; and gj;;). Therefore, a vari-
ation with respect to the metric gap will modify the original field equations
(23,24,25), and it will add extra equations due to the variation of Sg + Sy with
respect to the antisymmetric components of the metric. Because the nonlinear
connection does not transform as a tensor under local coordinate transforma-
tions of the base manifold [22], [21] one cannot use N,; to contract the indices
of the remaining two curvature tensors
Wpe = o5 PP, PPt = 5 P (53)
as follows
g9 Noi (WPg 4+ @ pr) (54)

and include the terms of eq-(54) in the action.
A local transformation of the base spacetime manifold coordinates

833”
1l 0 (55a)
leads to a transformation of the internal fiber momentum coordinates of the
form

x/i = m/i(xoaxla"'axd_l)7 det”

ox? b )

p:l = %pb :Mapba aab:0717"'7d_1’ x(l :6ZQ$Z (55b)

Since the elongated differential dp, = dp, — Na;dx? must transform covariantly

§p!, = M? 5py, one can deduce the inhomogeneous transformation property of
the nonlinear connection

, Ox® z7 oz’ 0%x°

N dzc dradz Lo

One should note that the transformations (55a,55b) are very dif ferent from
the most general coordinate transformations of a (curved) 2d-dim manifold
74 = 7'4(ZB),A,B = 1,2,---,2d where the new coordinates are functions
of all the original coordinates, and all the components of the metric tensor g4p
transform covariantly. This is what occurs in the local U(1,d — 1) transforma-
tions associated with Born’s Reciprocal Relativity theory in phase spaces [7]
that mix the spacetime coordinates with the energy-momentum ones.

A Born’s Reciprocal complex gravitational theory (and its Moyal star prod-
uct deformation) was constructed by [6] based on a U(1,3) gauge theory for-
mulation of complex gravity. Because the Weyl unitary trick allows to convert
the pseudo unitary group U(1,3) into U(2,2) = SU(2,2) x U(1), and the latter
SU(2,2) is the conformal group in four-dimensions it is warranted to explore
further Born’s Reciprocal Relativity within the context of conformal gravity in
4D. Having found (Anti) de Sitter solutions in this work within the framework
of Finsler gravity in the cotangent bundle is very encouraging due to its appeal
behind the AdS/CFT correspondence.

(56)
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