
Conditional Activation GAN: Improved Auxiliary Classifier GAN

JeongIk Cho1, Kyoungro Yoon 2(Corresponding Author)

Dept. of Computer Science and Engineering1, Dept. of Smart ICT Convergence Engineering2

College of Engineering1, KU Institute of Technology2

Konkuk University, Seoul, Korea1, Konkuk University, Seoul, Korea2

jeongik. jo. 01@gmail. com1, yoonk@konkuk. ac. kr2

Abstract

 Conditional GAN is a GAN that generates

data with the desired condition from the latent

vector. The auxiliary classifier GAN is the most

used among the variations of conditional GANs.

In this study, we explain the problem of auxiliary

classifier GAN and propose conditional

activation GAN that can replace auxiliary

classifier GAN to reduce the number of

hyperparameters and improve training speed.

The loss function of conditional activation GAN

is defined as the sum of the loss of each GAN

created for each condition. Since each GAN

shares all hidden layers, the GANs can be

considered as a single GAN and it does not

increase the amount of computation much.

Also, in order to apply batch normalization to

the discriminator of conditional GANs, we

propose a mixed batch training, in which each

batch for discriminator is always configured to

have the same ratio of real data and generated

data so that each batch always has the same

condition distribution.

1. Introduction

 Conditional GAN [1] is a GAN [2] that can

generate data with the desired condition from

the latent vector. Among the variations of

conditional GANs [3, 4], the most commonly

used conditional GAN is the Auxiliary Classifier

GAN (AC-GAN) [5] used in [6, 7, 8, 9, 10, 11].

Some papers used a variation of AC-GAN [10,

11] without giving any details on the

rationalization of the variations made. In this

study, we explain the reasons for the

modification of AC-GAN and the disadvantages

of AC-GAN.

 In AC-GAN, when real data distribution and

generated data distribution is the same,

auxiliary classifier of the discriminator and the

generator can be considered as a group of

GANs, each of which trains each condition and

cross-entropy adversarial loss by sharing all

hidden layers. Considering the AC-GAN as a set

of GANs, the generated data classification loss

of the AC-GAN discriminator loss interferes with

the training of each GAN and hence is removed

in the modified AC-GAN.

 Since each GAN can be trained as a GAN only

mailto:jeongik.jo.01@gmail.com
mailto:yoonk@konkuk.ac.kr

when the real data distribution and the

generated data distribution are the same, there

is a problem that individual GAN may not be

trained at the beginning of the AC-GAN

training.

 Also, to use the advanced adversarial loss as

used in papers such as LSGAN [12] or WGAN-

GP [13] in AC-GAN, a hyperparameter that is

adjusting the ratio of adversarial loss and

classification loss should be decided.

 We propose a conditional activation GAN (CA-

GAN) that can replace AC-GAN to reduce the

number of hyperparameters and improve

training speed to overcome the upper

mentioned problems of AC-GAN. Loss of CA-

GAN is the sum of the losses of each GAN when

each GAN is created for each condition. Since

each GAN shares all hidden layers, the CA-GAN

composed on a conceptual aggregation of

individual GAN can be considered as a single

GAN.

 Unlike AC-GAN's use of two losses (adversarial

loss, classification loss), CA-GAN uses only one

loss (conditional activation loss), so there is no

need to find the proper ratio of adversarial loss

and classification loss.

 Also, while AC-GAN starts to train each

condition when the real data distribution is the

same to the generated data distribution, CA-

GAN always trains each condition

simultaneously, which means that CA-GAN

always produces meaningful gradients, even in

the early training stage.

 In conditional GANs, training by applying

batch normalization [14] to the discriminator

induces the generator to distort the input

condition distribution.

 When batch normalization is applied to the

discriminator, and the real data and the

generated data condition distribution are

different, the discriminator may use the batch

condition distribution for real/fake

discrimination and the generated data

condition distribution follows the real data

condition distribution, not the input target

condition distribution.

 To prevent the generator from ignoring the

input target condition distribution, we suggest

mixed batch training. Mixed batch training is to

always configure each batch for discriminator

with the same ratio of real data and generated

data so that each batch always has the same

condition distribution.

2. Analysis of Auxiliary classifier GAN

 The loss of AC-GAN is defined as follows [5]:

𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝐿𝑐𝑙𝑠

𝑟 + 𝐿𝑐𝑙𝑠
𝑔

 (1)

𝐿𝑔 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝐿𝑐𝑙𝑠
𝑟 + 𝐿𝑐𝑙𝑠

𝑔
 (2)

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)] (3)

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)] (4)

𝐿𝑎𝑑𝑣
𝑑 = 𝐸𝑥~𝑃𝑟(𝑥)[− log 𝐷𝑎𝑑𝑣(𝑥)] +

𝐸𝑥~𝑃𝑔(𝑥)[− log(1 − 𝐷𝑎𝑑𝑣(𝑥))] (5)

𝐿𝑎𝑑𝑣
𝑔

= 𝐸𝑥~𝑃𝑔(𝑥)[log(1 − 𝐷𝑎𝑑𝑣(𝑥))] (6)

In (1) and (2), 𝐿𝑑 is the loss of the

discriminator and 𝐿𝑔 is the loss of the

generator. 𝐿𝑎𝑑𝑣
𝑑 is the adversarial loss of the

discriminator and 𝐿𝑎𝑑𝑣
𝑔

 is the adversarial loss of

the generator. In (5), 𝐷𝑎𝑑𝑣 is the probability

distribution function of the data in the

adversarial module. 𝐷𝑎𝑑𝑣(𝑥) is the probability

distribution of 𝑥, which is given as the input of

the adversarial module. 𝐸 is the expectation of

the given variable. Symbol “~” means “is

distributed as”. For example, 𝐸𝑥~𝑃𝑧(𝑥)[𝑓(𝑥)] is

an expectation value of 𝑓(𝑥) when 𝑥 follows

the distribution of 𝑃𝑧(𝑥).

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (3), 𝑥 is the real data,

and 𝑐𝑛𝑑 is the binary vector that expresses the

conditions of real data. In 𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′)

of (4), 𝑥′ is the generated data and 𝑐𝑛𝑑′ is the

target binary vector to generate 𝑥 ′. 𝐷𝑐𝑙𝑠(𝑥) is

the probability distribution of data 𝑥 within

auxiliary classifier of the discriminator.

− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥) is the cross-entropy loss

between 𝑐𝑛𝑑 and 𝐷𝑐𝑙𝑠(𝑥) . Minimizing

− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥) means that 𝐷𝑐𝑙𝑠 is trained to

estimate the conditions of 𝑥 (𝑐𝑛𝑑) well.

 Note that 𝐿𝑐𝑙𝑠
𝑟 in 𝐿𝑔 does not play any role

because the generator does not affect the

calculation of 𝐿𝑐𝑙𝑠
𝑟 .

 In AC-GAN, when real data distribution and

generated data distribution is the same,

auxiliary classifier of the discriminator and the

generator can be considered as a group of

GANs that each GAN trains each condition

using cross-entropy adversarial loss, and shares

all hidden layers as shown in Fig. 1.

BA
Real/
Fake

C

SigmoidLinear Sigmoid Sigmoid

Hidden Layers

CBA

Hidden Layers

Latent
Vector

Generator

Discriminator

Fig1. AC-GAN that trains A, B, and C conditions

 Suppose that AC-GAN training three

independent conditions (A, B, C) trains only

with adversarial loss, and the real data

distribution and the generated data distribution

are the same.

 Node A of the discriminator is trained by

𝐿𝑐𝑙𝑠
𝑟 [𝐴] in 𝐿𝑑 to output 1 to represent real

when it receives real data with condition A, and

0 to represent fake with condition not-A.

 When the generator receives 1 as its node A’s

input, it attempts to generate data by 𝐿𝑐𝑙𝑠
𝑔 [𝐴]

in 𝐿𝑔 with condition A, and trains the

discriminator’s node A output to be 1.

 If the generator attempts to generate data

with condition A but fails, the generated data

distribution will be close to the real data

distribution with condition not-A since it is

assumed that the real data distribution and the

generated data distribution are the same.

 Thus, the hidden layers of the discriminator

and node A, the hidden layers of the generator

and the latent vector input, and node A can be

thought of as a single GAN A that generates

data with condition A trained by 𝐿𝑐𝑙𝑠
𝑟 [𝐴] in 𝐿𝑑

and 𝐿𝑐𝑙𝑠
𝑔 [𝐴] in 𝐿𝑔 . However, 𝐿𝑐𝑙𝑠

𝑔 [𝐴] in 𝐿𝑑

trains node A of the discriminator to be 1

representing real when the discriminator

receives generated data. Therefore, 𝐿𝑐𝑙𝑠
𝑔 [𝐴] in

𝐿𝑑 interferes with the training of GAN A.

 Also, when the generator receives 0 as its node

A's input, it can be thought of as a GAN that

generates data with condition not-A.

 AC-GAN uses cross-entropy loss as an

adversarial loss. However, in order to use

advanced adversarial loss such as LSGAN or

WGAN-GP, a hyperparameter is needed to

adjust the ratio of adversarial loss and

classification loss.

 To solve these problems, the loss of the

modified AC-GANs used in StarGAN [10] or

AttGAN [11] is modified as follows:

𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟 (7)

𝐿𝑔 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑔

 (8)

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)] (9)

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)] (10)

 In (7) and (8), 𝐿𝑑 is loss of discriminator and

𝐿𝑔 is loss of generator. 𝐿𝑎𝑑𝑣
𝑑 is adversarial loss

of discriminator and 𝐿𝑎𝑑𝑣
𝑔

 is adversarial loss of

generator. In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (9), 𝑥 is real

data, and 𝑐𝑛𝑑 is the binary vector that

expresses the conditions of real data. In

𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′) of (10), 𝑥′ is generated

data and 𝑐𝑛𝑑′ is the target binary vector to

generate 𝑥′. 𝜆𝑐𝑙𝑠 is classification loss weight.

 As explained above, modified AC-GAN also

can be considered as a group of GANs. However,

each GAN can only be trained as a GAN for

each condition only if the real data distribution

and the generated data distribution for the

corresponding condition are the same.

Fig2. Data distribution at the beginning of

training using AC-GAN

 In other words, if the real data distribution

differs from the generated data distribution at

the beginning of the training, the training does

not proceed with classification loss, but only

with adversarial loss, as shown in Fig.2.

Fig3. After some training using AC-GAN

Real B

Generated B
Generated A

Real A

Real X: Real data distribution with condition X
Generated X: Generated data distribution to have condition X

Real B

Generated A
Generated B

Real A

Real X: Real data distribution with condition X
Generated X: Generated data distribution to have condition X

 By training with adversarial loss, the real data

distribution and the generated data distribution

gets closer. As these distributions get closer to

each other, the classification loss gradually acts

as the cross-entropy adversarial loss of each

GAN, and produces meaningful gradients and

training is performed to generate data with

each condition.

 AC-GAN has the disadvantage of requiring

one additional hyperparameter to adjust the

ratio of adversarial loss and classification loss in

both discriminator and generator and not

producing meaningful gradients early stage of

training.

3. Conditional activation GAN

 To solve these problems of AC-GAN, we

propose conditional activation GAN (CA-GAN),

which is similar to having multiple GANs each

of which is defined to train corresponding

condition.

Real B

Generated B

Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

GAN X: GAN which trains about only attribute X

Fig4. Conditional activation GAN

 Loss of conditional activation GAN is the sum

of each GAN’s loss where Each GAN trains only

one condition as defined in the following

equation.

𝐿𝑑 = ∑ 𝐿𝑑𝑐𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐 𝑖𝑛 𝑆𝑐𝑛𝑑
 (11)

𝐿𝑔 = ∑ 𝐿𝑔𝑐𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐 𝑖𝑛 𝑆𝑐𝑛𝑑
 (12)

𝐿𝑑𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[𝑓𝑟

𝑑(𝐷𝑐(𝑥))]

+𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝑓𝑔
𝑑(𝐷𝑐(𝑥′))] (13)

𝐿𝐺𝑐
= 𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝑓𝑔(𝐷𝑐(𝑥′))] (14)

 In (11) and (12), 𝐿𝑑 and 𝐿𝑔 represent the

discriminator and the generator losses of

conditional activation GAN, respectively. 𝑆𝑐𝑛𝑑

represents the set of conditions that the given

CA-GAN is intended to be trained for. 𝑐 is one

specific condition in 𝑆𝑐𝑛𝑑 . GAN 𝑐 is an

individual GAN that trains for only condition 𝑐.

𝑔𝑐 and 𝑑𝑐 are generator and discriminator of

GAN 𝑐 . 𝑔𝑐 receives a binary activation value

with a latent vector. If 𝑔𝑐 receives 1 as an

activation value, 𝑔𝑐 tries to trick 𝑑𝑐 , and 𝑑𝑐

tries to discriminate generated data from 𝑔𝑐 as

fake. If 𝑔𝑐 receives 0 as the activation value,

both 𝑔𝑐 and 𝑑𝑐 do not care about what has

been generated. 𝑑𝑐 only cares about

discriminating real data, which has condition 𝑐,

and does not care about other real data

including real data with condition not-𝑐.

 In 𝑥, 𝑐~𝑃𝑟(𝑥, 𝑐) of (13), 𝑥 is the real data

which has condition 𝑐 . In 𝑥′~𝑃𝑔𝑐
(𝑥′, 1) , 𝑥′ is

generated data by 𝑔𝑐 when it receives latent

vector with 1 as activation value.

 𝑓𝑟
𝑑 is a function that calculates the adversarial

loss of the discriminator about real data. 𝑓𝑔
𝑑 is

a function that calculates the adversarial loss of

the discriminator about generated data. In (14),

𝑓𝑔 is a function that calculates the adversarial

loss of the generator.

 The following equation is an example of the

adversarial loss of GAN 𝑐 that uses adversarial

loss given in LSGAN [12].

𝐿𝑑𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[(𝐷𝑐(𝑥) − 1)2]

+𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝐷𝑐(𝑥′)2] (15)

𝐿𝑔𝑐
= 𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[(𝐷𝑐(𝑥′) − 1)2] (16)

 In CA-GAN, since each GAN shares all hidden

layers, conditional activation loss can be

changed as the following equation.

𝐿𝑑 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[𝑓𝑟
𝑑(𝐷(𝑥)) ∙ 𝑐𝑛𝑑]

+𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[𝑓𝑔
𝑑(𝐷(𝑥′)) ∙ 𝑐𝑛𝑑′] (17)

𝐿𝑔 = 𝐸
𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′

)
[𝑓𝑔

(𝐷(𝑥′)) ∙ 𝑐𝑛𝑑′
] (18)

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (17), 𝑥 is real data, and

𝑐𝑛𝑑 is the binary vector that expresses the

conditions of real data. In 𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′)

of (18), 𝑥′ means generated data, and 𝑐𝑛𝑑′ is

the target binary vector to make 𝑥′. “∙” is an

inner product.

 The following equation is the loss of CA-GAN

when it is using the adversarial loss of LSGAN.

𝐿𝑑 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[(𝐷(𝑥) − 1)2 ∙ 𝑐𝑛𝑑]

+𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′) [(𝐷(𝑥′))
2

∙ 𝑐𝑛𝑑′] (19)

𝐿𝑔 = 𝐸
𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′

)
[(𝐷(𝑥′) − 1)

2
∙ 𝑐𝑛𝑑′] (20)

 In AC-GAN, GAN A that trains condition A also

generates data with condition not-A as well as

data with condition A.

 However, in CA-GAN, since GAN A, training

with condition A, does not care about condition

not-A, a new GAN training condition not-A

must be added to train condition not-A.

Fig5. AC-GAN discriminator output example

Fig6. AC-GAN generator input example

Fig7. conditional activation GAN discriminator

output example

Fig8. conditional activation GAN generator

Bald
Blond
Hair

Black
Hair

Male

SigmoidSoftmax

Real/
Fake

Linear

Hidden Layer

Bald
Blond
Hair

Black
Hair

Male

Hidden Layer

Latent Vector

Bald
Blond
Hair

Black
Hair

Male Female

LinearLinear Linear Linear Linear

Hidden Layer

Bald
Blond
Hair

Black
Hair

Male Female

Hidden Layer

Latent Vector

input example

(Assume 𝑃(𝐵𝑙𝑎𝑐𝑘 ℎ𝑎𝑖𝑟) + 𝑃(𝐵𝑙𝑜𝑛𝑑 ℎ𝑎𝑖𝑟) +

𝑃(𝐵𝑎𝑙𝑑) = 1, 𝑃(𝑀𝑎𝑙𝑒) + 𝑃(𝐹𝑒𝑚𝑎𝑙𝑒) = 1)

 In CA-GAN, since each GAN can be trained

through advanced adversarial loss that

generates meaningful gradients even if the real

data distribution and the generated data

distribution are different, meaningful gradients

are generated even at the beginning of the

training.

 Also, unlike AC-GAN's use of two losses

(adversarial loss, classification loss), CA-GAN

uses only one loss (conditional activation loss),

so there is no need to find the proper ratio of

adversarial loss and classification loss. This

means that it takes less time to search for an

important hyperparameter: the ratio of

adversarial loss and classification loss.

4. Mixed batch training

 In conditional GANs, training by applying

batch normalization to the discriminator may

induce the generator to distort the input

condition distribution.

 When batch normalization is applied to the

discriminator and the target condition

distribution used for training is different from

the real data condition distribution, the

discriminator may use the batch condition

distribution for real/fake discrimination, which

leads generated data condition distribution to

follow real data condition distribution. To

prevent the generator from ignoring the input

target condition distribution, we suggest mixed

batch training.

 Mixed batch training is configuring each batch

for discriminator always to have the same ratio

of real data and generated data so that each

batch always has the same condition

distribution. Since each training batch is always

configured to keep the same condition

distribution, the discriminator will not

discriminate real/fake by condition distribution,

and the generator will not attempt to follow the

real data condition distribution.

5. Material and methods

 In this experiment, we used the training

dataset of the MNIST handwriting number

dataset [15] for the training. The dataset has

60000 images with an image resolution of 28

pixels x 28 pixels, and the channel size is 1. The

basic design of DCGAN [16] without batch

normalization is used for the model architecture.

Adversarial loss of LSGAN was used both for

AC-GAN and CA-GAN. Adam optimizer [17] is

used and the network is trained for 50 epochs.

 The batch size of all experiments was 32 and

the latent vector dimension was 128.

 For the implementation, tensorflow2.0 is used

[18].

 For the evaluation of the proposed network,

an average of Fréchet Inception Distance (FID)

[19] over all conditions is used.

 All the experiments were conducted three

times each and the average of each result was

used.

 The size of the generated data set is the same

as the size of each test dataset in evaluation.

Since the MNIST dataset has one channel and

their resolution is too low for the inception

network, the resolution and channel are tripled

for the evaluation (84 × 84 × 3).

6. Experimental Results and Discussion

6.1 AC-GAN

 The convergence rate of AC-GAN is so fast

that it is difficult to compare the performance

when the learning rate is high, a low learning

rate of 3 × 10−6 is used.

The network is trained along 50 epochs, each

row has the same latent vector, and each

column has the same condition.

 First, to prove that AC-GAN is composed of

multiple GANs and 𝐿𝑐𝑙𝑠
𝑔

 of discriminator loss

interferes with training, when there is no

adversarial loss, the performance of the

modified AC-GAN with 𝐿𝑐𝑙𝑠
𝑔

 is compared with

one without 𝐿𝑐𝑙𝑠
𝑔

 in discriminator loss, in Fig. 9,

Fig. 10, and Fig. 11.

 As shown in Fig.9, even without adversarial

loss, AC-GAN generates MNIST handwriting

number data, although the quality is not very

good. As 𝐿𝑐𝑙𝑠
𝑔

 and 𝐿𝑐𝑙𝑠
𝑟 can be considered as

the summation of adversarial losses of

individual GAN, this shows that the AC-GAN

consists of multiple GANs. When 𝐿𝑐𝑙𝑠
𝑔

 is in

discriminator loss, the quality of the results gets

even worse than the one without it, as shown

in Fig. 10. This shows that 𝐿𝑐𝑙𝑠
𝑔

 in discriminator

loss interferes with the training of each GAN.

Performance comparison of those cases shown

in Fig. 9 and Fig. 10 is shown in Fig. 11 in terms

of FID.

Fig.9 Results of modified AC-GAN with 𝐿𝑑 =

𝐿𝑐𝑙𝑠
𝑟 and 𝐿𝑔 = 𝐿𝑐𝑙𝑠

𝑔
 after 50 epochs

Fig.10 Results of modified AC-GAN with 𝐿𝑑 =

𝐿𝑐𝑙𝑠
𝑟 + 𝐿𝑐𝑙𝑠

𝑔
 and 𝐿𝑔 = 𝐿𝑐𝑙𝑠

𝑔
 after 50 epochs

Fig.11 Effect of 𝐿𝑐𝑙𝑠
𝑔

 in AC-GAN without

adversarial loss

We also compared the performance of

modified AC-GAN with or without 𝐿𝑐𝑙𝑠
𝑔

 in

discriminator loss when the adversarial loss

exists.

Fig.12 Effect of 𝐿𝑐𝑙𝑠
𝑔

 in modified AC-GAN

performance with adversarial loss (𝐿𝑎𝑑𝑣
𝑑)

 In Fig. 12, the blue graph shows the average

FID of modified AC-GAN with 𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 +

𝜆𝑐𝑙𝑠(𝐿𝑐𝑙𝑠
𝑟 + 𝐿𝑐𝑙𝑠

𝑔
), 𝜆𝑐𝑙𝑠 = 1 and the orange graph

shows the average FID of modified AC-GAN

with 𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟 , 𝜆𝑐𝑙𝑠 = 1. As the graph

shows, the performance of the network without

𝐿𝑐𝑙𝑠
𝑔

 is better.

 The next experiment is to compare the

performance when the adversarial loss weight

and classification loss weight are different in

modified AC-GAN.

Fig.13 modified AC-GAN performance

comparison with different weight of adversarial

loss and classification loss

 Fig.13 shows the FID when the classification

loss weight 𝜆𝑐𝑙𝑠 varies from 0.1 to 10, with the

adversarial loss weight fixed to 1.0. The changes

in training speed and the quality of the results

as the ratio of the adversarial loss weight and

the classification loss weight changes can be

easily seen through this graph.

6.2 CA-GAN

 For the comparison of proposed CA-GAN with

modified AC-GAN, we also used the learning

rate of 3 × 10−6 which is the same as the case

of AC-GAN. The ratio of the adversarial loss

weight and the classification loss weight of 1.0

is used for AC-GAN.

Fig.14 Performance comparison of modified

AC-GAN vs CA-GAN

 As shown in Fig. 14, FID of CA-GAN is lower

than that of modified AC-GAN, meaning that

the generated images by the CA-GAN are more

realistic than the images generated by the

modified AC-GAN. The performance of CA-

GAN is better than modified AC-GAN.

6.3 Mixed batch training

 In the original MNIST handwriting number

training dataset, the number of images for each

number is almost the same. For the experiment,

we intentionally used a dataset consisting of

5500 of number 0 and 500 of other numbers

1~9 each from the MNIST handwriting number

training dataset, to create an unbalanced

dataset. The number 0 in the dataset occupies

55% of the total 10000 data, and the remaining

numbers 1~9 accounts for 5% each. Since the

number of data per epoch has been reduced

by 1/6 compared to the experiments presented

in the previous sections, the learning rate was

increased to 18 × 10−6, which is 6 times bigger

than the previous learning rate.

 We applied batch normalization in the

discriminator in this experiment.

 The effectiveness of mixed batch training in

modified AC-GAN is shown in Fig. 15, and in

CA-GAN is shown in Fig. 16.

Fig.15 Mixed batch training performance

comparison for modified AC-GAN

Fig.16 Mixed batch training performance

comparison for CA-GAN

These figures clearly show that the mixed batch

training provides better performance in general.

7. Conclusion

 In this paper, we tried to interpret AC-GAN as

a set of GANs and explained why generated

data classification loss of discriminator loss in

AC-GAN interferes with training and confirmed

this theory through the experiments.

 Based on this interpretation, we proposed a

novel approach of GAN, called Conditional

Activation GAN(CA-GAN). CA-GAN can be

interpreted as an integration of GANs in which

each individual GAN trains only one condition.

Unlike modified AC-GAN, CA-GAN generates a

meaningful gradient even at the beginning of

the training, so that the training speed is fast,

as shown in the experiments.

 CA-GAN is expected to be used as a

replacement for modified AC-GAN in many

GAN applications because it has fewer

hyperparameters and trains faster than

modified AC-GAN, while it is compatible with

AC-GAN.

We also predicted that the discriminator with

batch normalization might use batch condition

distribution to discriminate real/fake, which

would cause performance degradation, in

conditional GAN.

 To prevent this degradation, we proposed

mixed batch training. The mixed batch training

is configuring each batch for discriminator with

the same ratio of real data and generated data

so that each batch always has the same

condition distribution. Through experiments,

the performance improvement of conditional

GANs: modified AC-GAN and CA-GAN, due to

mixed batch training is confirmed.

Mixed batch training is expected to help train

conditional GANs using batch normalization for

discriminators.

In conclusion, CA-GAN, which we propose in

this paper, provides better performance than

AC-GAN in terms of training speed and

hyperparameter search. The mixed batch

training also improves conditional GAN

performance by inducing healthy competition

between generator and discriminator.

8. Funding

 This work was supported by "University

Innovation Grant" from the Ministry of

Education and National Research Foundation of

Korea

9. References

[1] Mehdi Mirza, Simon Osindero

“Conditional Generative Adversarial Nets”, arXiv

preprint arXiv:1411.1784, 2014.

https://arxiv.org/abs/1411.1784 (accessed 16

February 2020)

[2] Goodfellow, Ian and Pouget-Abadie, Jean

and Mirza, Mehdi and Xu, Bing and Warde-

Farley, David and Ozair, Sherjil and Courville,

Aaron and Bengio, Yoshua

Generative Adversarial Nets

Advances in Neural Information Processing

Systems 27 (NIPS), 2014, pp. 2672-2680

https://papers.nips.cc/paper/5423-generative-

adversarial-nets

[3] Takuhiro Kaneko, Kaoru Hiramatsu, Kunio

Kashino

Generative Attribute Controller With

Conditional Filtered Generative Adversarial

Networks

The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017, pp. 6089-

6098

http://openaccess.thecvf.com/content_cvpr_201

7/html/Kaneko_Generative_Attribute_Controller

_CVPR_2017_paper.html

[4] Chen, Xi and Duan, Yan and Houthooft, Rein

and Schulman, John and Sutskever, Ilya and

Abbeel, Pieter

InfoGAN: Interpretable Representation Learning

by Information Maximizing Generative

Adversarial Nets

Advances in Neural Information Processing

Systems 29 (NIPS), 2016, pp. 2172-2180

http://papers.nips.cc/paper/6399-infogan-

interpretable-representation

[5] Augustus Odena, Christopher Olah,

Christopher Olah, Jonathon B Shlens, Jonathon

Shlens

https://arxiv.org/abs/1411.1784
https://papers.nips.cc/paper/5423-generative-adversarial-nets
https://papers.nips.cc/paper/5423-generative-adversarial-nets
http://openaccess.thecvf.com/content_cvpr_2017/html/Kaneko_Generative_Attribute_Controller_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Kaneko_Generative_Attribute_Controller_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Kaneko_Generative_Attribute_Controller_CVPR_2017_paper.html
http://papers.nips.cc/paper/6399-infogan-interpretable-representation
http://papers.nips.cc/paper/6399-infogan-interpretable-representation

Conditional image synthesis with auxiliary

classifier GANs

ICML'17: Proceedings of the 34th International

Conference on Machine Learning – Volume 70,

2017, pp. 2642-2651

https://dl.acm.org/doi/10.5555/3305890.33059

54

[6] L. Zhang, Y. Ji, X. Lin and C. Liu

Style Transfer for Anime Sketches with

Enhanced Residual U-net and Auxiliary

Classifier GAN

2017 4th IAPR Asian Conference on Pattern

Recognition (ACPR), Nanjing, 2017, pp. 506-511.

https://ieeexplore.ieee.org/abstract/document/

8575875

[7] X. Xia, R. Togneri, F. Sohel and D. Huang

Auxiliary Classifier Generative Adversarial

Network With Soft Labels in Imbalanced

Acoustic Event Detection

IEEE Transactions on Multimedia, vol. 21, no. 6,

pp. 1359-1371, June 2019.

https://ieeexplore.ieee.org/document/8523637

[8] Prasanna Sattigeri, Samuel C. Hoffman, Vijil

Chenthamarakshan, Kush R. Varshney

Gated-GAN: Adversarial Gated Networks for

Multi-Collection Style Transfer

IEEE Transactions on Image Processing, vol. 28,

no. 2, pp. 546-560, Feb. 2019.

https://ieeexplore.ieee.org/abstract/document/

8463508

[9] Maayan Frid-Adar, Idit Diamant, Eyal Klang,

Michal Amitai, Jacob Goldberger, Hayit

Greenspan

GAN-based synthetic medical image

augmentation for increased CNN performance

in liver lesion classification

Neurocomputing, Volume 321, 2018, Pages

321-331, ISSN 0925-2312,

https://www.sciencedirect.com/science/article/a

bs/pii/S0925231218310749

[10] Z. He, W. Zuo, M. Kan, S. Shan and X. Chen

AttGAN: Facial Attribute Editing by Only

Changing What You Want

IEEE Transactions on Image Processing, vol. 28,

no. 11, pp. 5464-5478, Nov. 2019.

https://ieeexplore.ieee.org/document/8718508

[11] Yunjey Choi, Minje Choi, Munyoung Kim,

Jung-Woo Ha, Sunghun Kim, Jaegul Choo

StarGAN: Unified Generative Adversarial

Networks for Multi-Domain Image-to-Image

Translation

The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018, pp. 8789-

https://dl.acm.org/doi/10.5555/3305890.3305954
https://dl.acm.org/doi/10.5555/3305890.3305954
https://ieeexplore.ieee.org/abstract/document/8575875
https://ieeexplore.ieee.org/abstract/document/8575875
https://ieeexplore.ieee.org/document/8523637
https://ieeexplore.ieee.org/abstract/document/8463508
https://ieeexplore.ieee.org/abstract/document/8463508
https://www.sciencedirect.com/science/article/abs/pii/S0925231218310749
https://www.sciencedirect.com/science/article/abs/pii/S0925231218310749
https://ieeexplore.ieee.org/document/8718508

8797

http://openaccess.thecvf.com/content_cvpr_201

8/html/Choi_StarGAN_Unified_Generative_CVP

R_2018_paper.html

[12] Xudong Mao, Qing Li, Haoran Xie,

Raymond Y.K. Lau, Zhen Wang, Stephen Paul

Smolley

Least Squares Generative Adversarial Networks

The IEEE International Conference on Computer

Vision (ICCV), 2017, pp. 2794-2802

http://openaccess.thecvf.com/content_cvpr_201

8/html/Choi_StarGAN_Unified_Generative_CVP

R_2018_paper.html

[13] Gulrajani, Ishaan and Ahmed, Faruk and

Arjovsky, Martin and Dumoulin, Vincent and

Courville, Aaron C

Improved Training of Wasserstein GANs

Advances in Neural Information Processing

Systems 30 (NIPS), 2017, pp. 5767-5777

http://papers.nips.cc/paper/7159-improved-

training-of-wasserstein-gans

[14] Sergey Ioffe, Christian Szegedy

Batch Normalization: Accelerating Deep

Network Training by Reducing Internal

Covariate Shift

Proceedings of the 32nd International

Conference on Machine Learning, PMLR

37:448-456, 2015.

http://proceedings.mlr.press/v37/ioffe15.html

[dataset][15] Yann LeCun, Corinna Cortes,

Christopher J.C. Burges

THE MNIST DATABASE of handwritten digits

http://yann.lecun.com/exdb/mnist/

[16] Alec Radford, Luke Metz, Soumith Chintala

Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial

Networks

arXiv preprint arXiv:1511.06434v2 [cs.LG], 2015

https://arxiv.org/abs/1511.06434 (accessed 16

February 2020)

[17] Diederik P. Kingma, Jimmy Ba

Adam: A Method for Stochastic Optimization

arXiv preprint arXiv:1412.6980v9 [cs.LG], 2014

https://arxiv.org/abs/1412.6980 (accessed 16

February 2020)

[18] tensorflow 2.0

http://www.tensorflow.org (accessed 16

February 2020)

[19] Heusel, Martin and Ramsauer, Hubert and

Unterthiner, Thomas and Nessler, Bernhard and

http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
http://proceedings.mlr.press/v37/ioffe15.html
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1412.6980
http://www.tensorflow.org/

Hochreiter, Sepp

GANs Trained by a Two Time-Scale Update Rule

Converge to a Local Nash Equilibrium

Advances in Neural Information Processing

Systems 30 (NIPS), 2017, pp. 6626-6637

http://papers.nips.cc/paper/7240-gans-trained-

by-a-two-t

http://papers.nips.cc/paper/7240-gans-trained-by-a-two-t
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-t

