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Abstract 

  Conditional GAN is a GAN that generates 

data with the desired condition from the latent 

vector. The auxiliary classifier GAN is the most 

used among the variations of conditional GANs. 

In this study, we explain the problem of auxiliary 

classifier GAN and propose conditional 

activation GAN that can replace auxiliary 

classifier GAN to reduce the number of 

hyperparameters and improve training speed. 

The loss function of conditional activation GAN 

is defined as the sum of the loss of each GAN 

created for each condition. Since each GAN 

shares all hidden layers, the GANs can be 

considered as a single GAN and it does not 

increase the amount of computation much. 

Also, in order to apply batch normalization to 

the discriminator of conditional GANs, we 

propose a mixed batch training, in which each 

batch for discriminator is always configured to 

have the same ratio of real data and generated 

data so that each batch always has the same 

condition distribution. 

 

 

1. Introduction 

 Conditional GAN [1] is a GAN [2] that can 

generate data with the desired condition from 

the latent vector. Among the variations of 

conditional GANs [3, 4], the most commonly 

used conditional GAN is the Auxiliary Classifier 

GAN (AC-GAN) [5] used in [6, 7, 8, 9, 10, 11].  

Some papers used a variation of AC-GAN [10, 

11] without giving any details on the 

rationalization of the variations made. In this 

study, we explain the reasons for the 

modification of AC-GAN and the disadvantages 

of AC-GAN. 

 In AC-GAN, when real data distribution and 

generated data distribution is the same, 

auxiliary classifier of the discriminator and the 

generator can be considered as a group of 

GANs, each of which trains each condition and 

cross-entropy adversarial loss by sharing all 

hidden layers. Considering the AC-GAN as a set 

of GANs, the generated data classification loss 

of the AC-GAN discriminator loss interferes with 

the training of each GAN and hence is removed 

in the modified AC-GAN.  

 Since each GAN can be trained as a GAN only 
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when the real data distribution and the 

generated data distribution are the same, there 

is a problem that individual GAN may not be 

trained at the beginning of the AC-GAN 

training. 

 Also, to use the advanced adversarial loss as 

used in papers such as LSGAN [12] or WGAN-

GP [13] in AC-GAN, a hyperparameter that is 

adjusting the ratio of adversarial loss and 

classification loss should be decided. 

 We propose a conditional activation GAN (CA-

GAN) that can replace AC-GAN to reduce the 

number of hyperparameters and improve 

training speed to overcome the upper 

mentioned problems of AC-GAN. Loss of CA-

GAN is the sum of the losses of each GAN when 

each GAN is created for each condition. Since 

each GAN shares all hidden layers, the CA-GAN 

composed on a conceptual aggregation of 

individual GAN can be considered as a single 

GAN. 

 Unlike AC-GAN's use of two losses (adversarial 

loss, classification loss), CA-GAN uses only one 

loss (conditional activation loss), so there is no 

need to find the proper ratio of adversarial loss 

and classification loss. 

 Also, while AC-GAN starts to train each 

condition when the real data distribution is the 

same to the generated data distribution, CA-

GAN always trains each condition 

simultaneously, which means that CA-GAN 

always produces meaningful gradients, even in 

the early training stage. 

 In conditional GANs, training by applying 

batch normalization [14] to the discriminator 

induces the generator to distort the input 

condition distribution. 

 When batch normalization is applied to the 

discriminator, and the real data and the 

generated data condition distribution are 

different, the discriminator may use the batch 

condition distribution for real/fake 

discrimination and the generated data 

condition distribution follows the real data 

condition distribution, not the input target 

condition distribution. 

 To prevent the generator from ignoring the 

input target condition distribution, we suggest 

mixed batch training. Mixed batch training is to 

always configure each batch for discriminator 

with the same ratio of real data and generated 

data so that each batch always has the same 

condition distribution.  

 

2. Analysis of Auxiliary classifier GAN 

 The loss of AC-GAN is defined as follows [5]: 

𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝐿𝑐𝑙𝑠

𝑟 + 𝐿𝑐𝑙𝑠
𝑔

 (1) 

𝐿𝑔 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝐿𝑐𝑙𝑠
𝑟 + 𝐿𝑐𝑙𝑠

𝑔
 (2) 

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)] (3) 

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)] (4) 

𝐿𝑎𝑑𝑣
𝑑 = 𝐸𝑥~𝑃𝑟(𝑥)[− log 𝐷𝑎𝑑𝑣(𝑥)] +

𝐸𝑥~𝑃𝑔(𝑥)[− log(1 − 𝐷𝑎𝑑𝑣(𝑥))] (5) 

𝐿𝑎𝑑𝑣
𝑔

= 𝐸𝑥~𝑃𝑔(𝑥)[log(1 − 𝐷𝑎𝑑𝑣(𝑥))] (6) 

In (1) and (2), 𝐿𝑑  is the loss of the 

discriminator and 𝐿𝑔  is the loss of the 



generator. 𝐿𝑎𝑑𝑣
𝑑  is the adversarial loss of the 

discriminator and 𝐿𝑎𝑑𝑣
𝑔

 is the adversarial loss of 

the generator. In (5), 𝐷𝑎𝑑𝑣  is the probability 

distribution function of the data in the 

adversarial module. 𝐷𝑎𝑑𝑣(𝑥) is the probability 

distribution of 𝑥, which is given as the input of 

the adversarial module. 𝐸 is the expectation of 

the given variable. Symbol “~” means “is 

distributed as”. For example, 𝐸𝑥~𝑃𝑧(𝑥)[𝑓(𝑥)]  is 

an expectation value of 𝑓(𝑥) when 𝑥 follows 

the distribution of 𝑃𝑧(𝑥). 

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (3), 𝑥 is the real data, 

and 𝑐𝑛𝑑 is the binary vector that expresses the 

conditions of real data. In 𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′) 

of (4), 𝑥′ is the generated data and 𝑐𝑛𝑑′ is the 

target binary vector to generate 𝑥 ′. 𝐷𝑐𝑙𝑠(𝑥) is 

the probability distribution of data 𝑥  within 

auxiliary classifier of the discriminator. 

− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)  is the cross-entropy loss 

between 𝑐𝑛𝑑  and 𝐷𝑐𝑙𝑠(𝑥) . Minimizing 

− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥) means that 𝐷𝑐𝑙𝑠 is trained to 

estimate the conditions of 𝑥 (𝑐𝑛𝑑) well. 

 Note that 𝐿𝑐𝑙𝑠
𝑟  in 𝐿𝑔 does not play any role 

because the generator does not affect the 

calculation of 𝐿𝑐𝑙𝑠
𝑟 . 

 In AC-GAN, when real data distribution and 

generated data distribution is the same, 

auxiliary classifier of the discriminator and the 

generator can be considered as a group of 

GANs that each GAN trains each condition 

using cross-entropy adversarial loss, and shares 

all hidden layers as shown in Fig. 1. 
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Fig1. AC-GAN that trains A, B, and C conditions  

 

 Suppose that AC-GAN training three 

independent conditions (A, B, C) trains only 

with adversarial loss, and the real data 

distribution and the generated data distribution 

are the same. 

 Node A of the discriminator is trained by 

𝐿𝑐𝑙𝑠
𝑟 [𝐴]  in 𝐿𝑑  to output 1 to represent real 

when it receives real data with condition A, and 

0 to represent fake with condition not-A. 

 When the generator receives 1 as its node A’s 

input, it attempts to generate data by 𝐿𝑐𝑙𝑠
𝑔 [𝐴] 

in 𝐿𝑔  with condition A, and trains the 

discriminator’s node A output to be 1.  

 If the generator attempts to generate data 

with condition A but fails, the generated data 

distribution will be close to the real data 

distribution with condition not-A since it is 

assumed that the real data distribution and the 

generated data distribution are the same. 

 Thus, the hidden layers of the discriminator 

and node A, the hidden layers of the generator 

and the latent vector input, and node A can be 

thought of as a single GAN A that generates 



data with condition A trained by 𝐿𝑐𝑙𝑠
𝑟 [𝐴] in 𝐿𝑑 

and 𝐿𝑐𝑙𝑠
𝑔 [𝐴]  in 𝐿𝑔 . However, 𝐿𝑐𝑙𝑠

𝑔 [𝐴]  in 𝐿𝑑 

trains node A of the discriminator to be 1 

representing real when the discriminator 

receives generated data. Therefore, 𝐿𝑐𝑙𝑠
𝑔 [𝐴] in 

𝐿𝑑 interferes with the training of GAN A. 

 Also, when the generator receives 0 as its node 

A's input, it can be thought of as a GAN that 

generates data with condition not-A. 

 AC-GAN uses cross-entropy loss as an 

adversarial loss. However, in order to use 

advanced adversarial loss such as LSGAN or 

WGAN-GP, a hyperparameter is needed to 

adjust the ratio of adversarial loss and 

classification loss. 

 To solve these problems, the loss of the 

modified AC-GANs used in StarGAN [10] or 

AttGAN [11] is modified as follows: 

𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟  (7) 

𝐿𝑔 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑔

 (8) 

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)] (9) 

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)] (10) 

 In (7) and (8), 𝐿𝑑 is loss of discriminator and 

𝐿𝑔 is loss of generator. 𝐿𝑎𝑑𝑣
𝑑  is adversarial loss 

of discriminator and 𝐿𝑎𝑑𝑣
𝑔

 is adversarial loss of 

generator. In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (9), 𝑥 is real 

data, and 𝑐𝑛𝑑  is the binary vector that 

expresses the conditions of real data. In 

𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′)  of (10), 𝑥′  is generated 

data and 𝑐𝑛𝑑′ is the target binary vector to 

generate 𝑥′. 𝜆𝑐𝑙𝑠 is classification loss weight. 

 As explained above, modified AC-GAN also 

can be considered as a group of GANs. However, 

each GAN can only be trained as a GAN for 

each condition only if the real data distribution 

and the generated data distribution for the 

corresponding condition are the same.  

 

Fig2. Data distribution at the beginning of 

training using AC-GAN 

 

 In other words, if the real data distribution 

differs from the generated data distribution at 

the beginning of the training, the training does 

not proceed with classification loss, but only 

with adversarial loss, as shown in Fig.2. 

  

 

Fig3. After some training using AC-GAN 
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 By training with adversarial loss, the real data 

distribution and the generated data distribution 

gets closer. As these distributions get closer to 

each other, the classification loss gradually acts 

as the cross-entropy adversarial loss of each 

GAN, and produces meaningful gradients and 

training is performed to generate data with 

each condition. 

 AC-GAN has the disadvantage of requiring 

one additional hyperparameter to adjust the 

ratio of adversarial loss and classification loss in 

both discriminator and generator and not 

producing meaningful gradients early stage of 

training. 

 

3. Conditional activation GAN 

 To solve these problems of AC-GAN, we 

propose conditional activation GAN (CA-GAN), 

which is similar to having multiple GANs each 

of which is defined to train corresponding 

condition. 

Real B

Generated B

Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

GAN X: GAN which trains about only attribute X  

Fig4. Conditional activation GAN 

 

 Loss of conditional activation GAN is the sum 

of each GAN’s loss where Each GAN trains only 

one condition as defined in the following 

equation.  

𝐿𝑑 = ∑ 𝐿𝑑𝑐𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐 𝑖𝑛 𝑆𝑐𝑛𝑑
 (11) 

𝐿𝑔 = ∑ 𝐿𝑔𝑐𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐 𝑖𝑛 𝑆𝑐𝑛𝑑
 (12) 

𝐿𝑑𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[𝑓𝑟

𝑑(𝐷𝑐(𝑥))] 

+𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝑓𝑔
𝑑(𝐷𝑐(𝑥′))] (13) 

𝐿𝐺𝑐
= 𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝑓𝑔(𝐷𝑐(𝑥′))] (14) 

 In (11) and (12), 𝐿𝑑  and 𝐿𝑔  represent the 

discriminator and the generator losses of 

conditional activation GAN, respectively. 𝑆𝑐𝑛𝑑 

represents the set of conditions that the given 

CA-GAN is intended to be trained for. 𝑐 is one 

specific condition in 𝑆𝑐𝑛𝑑 . GAN 𝑐  is an 

individual GAN that trains for only condition 𝑐. 

𝑔𝑐 and 𝑑𝑐 are generator and discriminator of 

GAN 𝑐 . 𝑔𝑐  receives a binary activation value 

with a latent vector. If 𝑔𝑐  receives 1 as an 

activation value, 𝑔𝑐  tries to trick 𝑑𝑐 , and 𝑑𝑐 

tries to discriminate generated data from 𝑔𝑐 as 

fake. If 𝑔𝑐 receives 0 as the activation value, 

both 𝑔𝑐 and 𝑑𝑐 do not care about what has 

been generated. 𝑑𝑐  only cares about 

discriminating real data, which has condition 𝑐, 

and does not care about other real data 

including real data with condition not-𝑐. 

 In 𝑥, 𝑐~𝑃𝑟(𝑥, 𝑐)  of (13), 𝑥  is the real data 

which has condition 𝑐 . In 𝑥′~𝑃𝑔𝑐
(𝑥′, 1) , 𝑥′  is 

generated data by 𝑔𝑐 when it receives latent 

vector with 1 as activation value.  



 𝑓𝑟
𝑑 is a function that calculates the adversarial 

loss of the discriminator about real data. 𝑓𝑔
𝑑 is 

a function that calculates the adversarial loss of 

the discriminator about generated data. In (14), 

𝑓𝑔 is a function that calculates the adversarial 

loss of the generator. 

 The following equation is an example of the 

adversarial loss of GAN 𝑐 that uses adversarial 

loss given in LSGAN [12]. 

𝐿𝑑𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[(𝐷𝑐(𝑥) − 1)2] 

+𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝐷𝑐(𝑥′)2] (15) 

𝐿𝑔𝑐
= 𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[(𝐷𝑐(𝑥′) − 1)2] (16) 

 In CA-GAN, since each GAN shares all hidden 

layers, conditional activation loss can be 

changed as the following equation. 

𝐿𝑑 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[𝑓𝑟
𝑑(𝐷(𝑥)) ∙ 𝑐𝑛𝑑] 

+𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[𝑓𝑔
𝑑(𝐷(𝑥′)) ∙ 𝑐𝑛𝑑′] (17) 

𝐿𝑔 = 𝐸
𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′

)
[𝑓𝑔

(𝐷(𝑥′)) ∙ 𝑐𝑛𝑑′
] (18) 

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (17), 𝑥 is real data, and 

𝑐𝑛𝑑  is the binary vector that expresses the 

conditions of real data. In 𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′) 

of (18), 𝑥′ means generated data, and 𝑐𝑛𝑑′ is 

the target binary vector to make 𝑥′. “∙” is an 

inner product.  

 The following equation is the loss of CA-GAN 

when it is using the adversarial loss of LSGAN.  

𝐿𝑑 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[(𝐷(𝑥) − 1)2 ∙ 𝑐𝑛𝑑] 

+𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′) [(𝐷(𝑥′))
2

∙ 𝑐𝑛𝑑′] (19) 

𝐿𝑔 = 𝐸
𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′

)
[(𝐷(𝑥′) − 1)

2
∙ 𝑐𝑛𝑑′] (20) 

 In AC-GAN, GAN A that trains condition A also 

generates data with condition not-A as well as 

data with condition A. 

 However, in CA-GAN, since GAN A, training 

with condition A, does not care about condition 

not-A, a new GAN training condition not-A 

must be added to train condition not-A. 

 

Fig5. AC-GAN discriminator output example 

 

 

Fig6. AC-GAN generator input example 

 

 

Fig7. conditional activation GAN discriminator 

output example 

 

 

Fig8. conditional activation GAN generator 
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input example  

(Assume 𝑃(𝐵𝑙𝑎𝑐𝑘 ℎ𝑎𝑖𝑟) + 𝑃(𝐵𝑙𝑜𝑛𝑑 ℎ𝑎𝑖𝑟) +

𝑃(𝐵𝑎𝑙𝑑) = 1, 𝑃(𝑀𝑎𝑙𝑒) + 𝑃(𝐹𝑒𝑚𝑎𝑙𝑒) = 1) 

 In CA-GAN, since each GAN can be trained 

through advanced adversarial loss that 

generates meaningful gradients even if the real 

data distribution and the generated data 

distribution are different, meaningful gradients 

are generated even at the beginning of the 

training. 

 Also, unlike AC-GAN's use of two losses 

(adversarial loss, classification loss), CA-GAN 

uses only one loss (conditional activation loss), 

so there is no need to find the proper ratio of 

adversarial loss and classification loss. This 

means that it takes less time to search for an 

important hyperparameter: the ratio of 

adversarial loss and classification loss. 

 

4. Mixed batch training 

 In conditional GANs, training by applying 

batch normalization to the discriminator may 

induce the generator to distort the input 

condition distribution. 

 When batch normalization is applied to the 

discriminator and the target condition 

distribution used for training is different from 

the real data condition distribution, the 

discriminator may use the batch condition 

distribution for real/fake discrimination, which 

leads generated data condition distribution to 

follow real data condition distribution. To 

prevent the generator from ignoring the input 

target condition distribution, we suggest mixed 

batch training. 

 Mixed batch training is configuring each batch 

for discriminator always to have the same ratio 

of real data and generated data so that each 

batch always has the same condition 

distribution. Since each training batch is always 

configured to keep the same condition 

distribution, the discriminator will not 

discriminate real/fake by condition distribution, 

and the generator will not attempt to follow the 

real data condition distribution. 

 

5. Material and methods 

 In this experiment, we used the training 

dataset of the MNIST handwriting number 

dataset [15] for the training. The dataset has 

60000 images with an image resolution of 28 

pixels x 28 pixels, and the channel size is 1. The 

basic design of DCGAN [16] without batch 

normalization is used for the model architecture. 

Adversarial loss of LSGAN was used both for 

AC-GAN and CA-GAN. Adam optimizer [17] is 

used and the network is trained for 50 epochs.  

 The batch size of all experiments was 32 and 

the latent vector dimension was 128. 

 For the implementation, tensorflow2.0 is used 

[18]. 

 For the evaluation of the proposed network, 

an average of Fréchet Inception Distance (FID) 

[19] over all conditions is used. 

 All the experiments were conducted three 

times each and the average of each result was 



used. 

 The size of the generated data set is the same 

as the size of each test dataset in evaluation. 

Since the MNIST dataset has one channel and 

their resolution is too low for the inception 

network, the resolution and channel are tripled 

for the evaluation (84 × 84 × 3). 

 

6. Experimental Results and Discussion 

6.1 AC-GAN 

 The convergence rate of AC-GAN is so fast 

that it is difficult to compare the performance 

when the learning rate is high, a low learning 

rate of 3 × 10−6 is used. 

The network is trained along 50 epochs, each 

row has the same latent vector, and each 

column has the same condition. 

 First, to prove that AC-GAN is composed of 

multiple GANs and 𝐿𝑐𝑙𝑠
𝑔

 of discriminator loss 

interferes with training, when there is no 

adversarial loss, the performance of the 

modified AC-GAN with 𝐿𝑐𝑙𝑠
𝑔

 is compared with 

one without 𝐿𝑐𝑙𝑠
𝑔

 in discriminator loss, in Fig. 9, 

Fig. 10, and Fig. 11. 

 As shown in Fig.9, even without adversarial 

loss, AC-GAN generates MNIST handwriting 

number data, although the quality is not very 

good. As  𝐿𝑐𝑙𝑠
𝑔

 and 𝐿𝑐𝑙𝑠
𝑟  can be considered as 

the summation of adversarial losses of 

individual GAN, this shows that the AC-GAN 

consists of multiple GANs. When 𝐿𝑐𝑙𝑠
𝑔

 is in 

discriminator loss, the quality of the results gets 

even worse than the one without it, as shown 

in Fig. 10. This shows that 𝐿𝑐𝑙𝑠
𝑔

 in discriminator 

loss interferes with the training of each GAN. 

Performance comparison of those cases shown 

in Fig. 9 and Fig. 10 is shown in Fig. 11 in terms 

of FID. 

 

 

Fig.9 Results of modified AC-GAN with 𝐿𝑑 =

𝐿𝑐𝑙𝑠
𝑟  and 𝐿𝑔 = 𝐿𝑐𝑙𝑠

𝑔
 after 50 epochs 

 



 

Fig.10 Results of modified AC-GAN with 𝐿𝑑 =

𝐿𝑐𝑙𝑠
𝑟 + 𝐿𝑐𝑙𝑠

𝑔
 and 𝐿𝑔 = 𝐿𝑐𝑙𝑠

𝑔
 after 50 epochs 

 

 

Fig.11 Effect of 𝐿𝑐𝑙𝑠
𝑔

 in AC-GAN without 

adversarial loss  

 

We also compared the performance of 

modified AC-GAN with or without 𝐿𝑐𝑙𝑠
𝑔

 in 

discriminator loss when the adversarial loss 

exists. 

 

Fig.12 Effect of 𝐿𝑐𝑙𝑠
𝑔

 in modified AC-GAN 

performance with adversarial loss (𝐿𝑎𝑑𝑣
𝑑 ) 

 

 In Fig. 12, the blue graph shows the average 

FID of modified AC-GAN with 𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 +

𝜆𝑐𝑙𝑠(𝐿𝑐𝑙𝑠
𝑟 + 𝐿𝑐𝑙𝑠

𝑔
 ), 𝜆𝑐𝑙𝑠 = 1 and the orange graph 

shows the average FID of modified AC-GAN 

with 𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟 , 𝜆𝑐𝑙𝑠 = 1. As the graph 

shows, the performance of the network without 

𝐿𝑐𝑙𝑠
𝑔

 is better. 

 The next experiment is to compare the 

performance when the adversarial loss weight 

and classification loss weight are different in 

modified AC-GAN. 



 

Fig.13 modified AC-GAN performance 

comparison with different weight of adversarial 

loss and classification loss 

 

 Fig.13 shows the FID when the classification 

loss weight 𝜆𝑐𝑙𝑠 varies from 0.1 to 10, with the 

adversarial loss weight fixed to 1.0. The changes 

in training speed and the quality of the results 

as the ratio of the adversarial loss weight and 

the classification loss weight changes can be 

easily seen through this graph. 

 

6.2 CA-GAN 

 For the comparison of proposed CA-GAN with 

modified AC-GAN, we also used the learning 

rate of 3 × 10−6 which is the same as the case 

of AC-GAN. The ratio of the adversarial loss 

weight and the classification loss weight of 1.0 

is used for AC-GAN. 

 

Fig.14 Performance comparison of modified 

AC-GAN vs CA-GAN 

 

 As shown in Fig. 14, FID of CA-GAN is lower 

than that of modified AC-GAN, meaning that 

the generated images by the CA-GAN are more 

realistic than the images generated by the 

modified AC-GAN. The performance of CA-

GAN is better than modified AC-GAN. 

  

6.3 Mixed batch training 

 In the original MNIST handwriting number 

training dataset, the number of images for each 

number is almost the same. For the experiment, 

we intentionally used a dataset consisting of 

5500 of number 0 and 500 of other numbers 

1~9 each from the MNIST handwriting number 

training dataset, to create an unbalanced 

dataset. The number 0 in the dataset occupies 

55% of the total 10000 data, and the remaining 

numbers 1~9 accounts for 5% each. Since the 

number of data per epoch has been reduced 

by 1/6 compared to the experiments presented 

in the previous sections, the learning rate was 

increased to 18 × 10−6, which is 6 times bigger 



than the previous learning rate. 

 We applied batch normalization in the 

discriminator in this experiment. 

 The effectiveness of mixed batch training in 

modified AC-GAN is shown in Fig. 15, and in 

CA-GAN is shown in Fig. 16. 

 

Fig.15 Mixed batch training performance 

comparison for modified AC-GAN 

 

 

Fig.16 Mixed batch training performance 

comparison for CA-GAN 

 

These figures clearly show that the mixed batch 

training provides better performance in general. 

7. Conclusion 

 In this paper, we tried to interpret AC-GAN as 

a set of GANs and explained why generated 

data classification loss of discriminator loss in 

AC-GAN interferes with training and confirmed 

this theory through the experiments. 

 Based on this interpretation, we proposed a 

novel approach of GAN, called Conditional 

Activation GAN(CA-GAN). CA-GAN can be 

interpreted as an integration of GANs in which 

each individual GAN trains only one condition. 

Unlike modified AC-GAN, CA-GAN generates a 

meaningful gradient even at the beginning of 

the training, so that the training speed is fast, 

as shown in the experiments. 

 CA-GAN is expected to be used as a 

replacement for modified AC-GAN in many 

GAN applications because it has fewer 

hyperparameters and trains faster than 

modified AC-GAN, while it is compatible with 

AC-GAN. 

We also predicted that the discriminator with 

batch normalization might use batch condition 

distribution to discriminate real/fake, which 

would cause performance degradation, in 

conditional GAN. 

 To prevent this degradation, we proposed 

mixed batch training. The mixed batch training 

is configuring each batch for discriminator with 

the same ratio of real data and generated data 

so that each batch always has the same 

condition distribution. Through experiments, 

the performance improvement of conditional 

GANs: modified AC-GAN and CA-GAN, due to 



mixed batch training is confirmed. 

Mixed batch training is expected to help train 

conditional GANs using batch normalization for 

discriminators. 

In conclusion, CA-GAN, which we propose in 

this paper, provides better performance than 

AC-GAN in terms of training speed and 

hyperparameter search. The mixed batch 

training also improves conditional GAN 

performance by inducing healthy competition 

between generator and discriminator. 
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