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Abstract 
Jefimenko's generalization of the Coulomb and Bio-Savard laws is used to calculate the reaction of 

the radiation on the rotating electric dipole. It is found that the energy taken from the dipole is equal 

to the recognized value of the radiated energy. At the same time, it is confirmed that the angular 

momentum flux exceeds the generally accepted value by the spin radiation not seen before. 
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1. Introduction 

As shown in articles [1–4], the radiation of a rotating electric dipole contains, in addition to the 

generally recognized angular momentum flux [1 - 9] 
3

0

23 6// cpdtdLz πεω= ,                                      (1.1) 

which is localized mainly near the equatorial plane. with the angular distribution 
3

0

2223 16/sin/ cpdtddLz επθω=Ω ,                             (1.2) 

also the spin flux  
3

0

23 12// cpdtdS z πεω= ,                                         (1.3) 

which is localized mainly near the axis of rotation of the dipole, with the angular distribution  
3

0

2223 16/cos/ cpdtddS z επθω=Ω                              (1.4) 

( ϕθθ=Ω ddd sin , and the unit system is used in which 0/div ερ=E ). 

 Thus, the total angular momentum flux is  
3

0

23 4//// cpdtdSdtdLdtdJ zzz πεω=+= .                          (1.5) 

Meanwhile, the power radiated by a rotating dipole is recognized as 
3

0

24 6/ cpP πεω= ,                                              (1.6) 

and, therefore, the usual mechanics equality  

dtdJP /ω= .                                                       (1.7) 

is violated 

 The result (1.5) was obtained in [2 - 4] by integrating the sum of the spin tensor and the 

moment of the Poynting vector over the surface surrounding a rotating dipole. In [1], this result was 

confirmed using the quantum mechanical Feynman proof and, independently, calculating the reaction of 

the magnetic vector potential field on the dipole.  

 In the present work, the energy (1.6) and angular momentum (1.5) fluxes are calculated using 

the same type by the use of the retarded electromagnetic Jefimenko’s field [10]. It turned out that the 

forces acting on the dipole and responsible for the loss of energy differ from the forces responsible for 

the loss of angular momentum. 

 As a rotating electric dipole, we consider a pair of oscillating dipoles perpendicular to 

each other and having a quarter-period oscillation shift in time, 

)exp(),exp( tiipptipp yx ω−=ω−= ,                                     (1.8) 

 

2. Energy loss by a rotating dipole 
The value (1.6) is calculated as the result of the influence of the electromagnetic field of the dipole on 

the dipole itself, according to the formula for the density of the resulting power  

)( Ej ⋅−=∧P ;                                                     (2.1) 

here j  and E  are current density flowing along the dipole and the electric field in the dipole, 

respectively, and the index ∧  for ∧P  means, in this case, "volume density", xdPdP 3

∧= . First, the 

effect of the x-dipole on itself is calculated. 

 In this paper, the electric field near the dipole is calculated from the known formula, taking 

into account the retardation [10 (6.55)]: 
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and an "elementary vibrator" is considered as a dipole; the current of the dipole is the same at all 

points, and the charges are only at the ends (see Figure 1) 

 
Figure 1.  x-dipole 

 



The dipole current xI  is obtained by differentiating the charge  

)exp( tiqlp x ω−= ,                                                        (2.3) 
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x
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 The first term of expression (2.2),  
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is simply the retarded Coulomb field at the point x . Therefore, replacing  

qdxd ′→ρ′
(3 ,  cxltt /)2/( ±−→  ,  xlr ±→ 2/  

and taking into account the direction of the electric field, we obtain the electric field strength from 

both charges at the point x : 
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The corresponding contribution of this term to the power generated by the dipole is given by 

formula (2.1) (we replace Idxxjd →3  from (5), and the bar means complex conjugation) 
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Taking into account the small size of the dipole, we consider only two terms of the expansion of the 

sine in a series  
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Similarly to formula (2.5), we find the electric field provided by the second term of formula (2.2) 
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In contrast to formula (2.5), this formula contains i. 

Formula (2.1) gives the contribution of this term, xE2 , to the power generated by the dipole  
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Restricting ourselves to two terms of the expansion of cosine in a series, we have 
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Surprisingly, the integrals diverging at the ends of the dipole are shortened upon the addition 

21 PP + , and the remaining terms are constants. As 3/2/6/ lll −=− , this part of the power is 
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 The third term of formula (2.2), 
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uses the derivative of the current 
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To calculate the strength at the point x , we divided the region of integration into two parts by the 

point x  
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Using formula (2.1), dxIExddP x−=⋅−= 3)( Ej , and current (2.4), we obtain the power 

corresponding to the third term of formula (2.2) 
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Restricting ourselves to one term in the expansion of the sine in a series, we easily obtain 
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Thus, the power radiated by one x-dipole is 

)12/( 3
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Naturally, the y-dipole, acting on itself, makes the same contribution. It will be shown below that 

the electric field of one oscillating dipole in the territory of another oscillating dipole is 

perpendicular to the current, and therefore does not produce energy. So a rotating dipole delivers 

power (1.6) to the radiation: 
3

0

24 6/ cpP πεω= . 

 

3. The torque experienced by the charges of a rotating dipole 

We now calculate the electric field E  created by the y-dipole at the location of the charge of 

the x-dipole, that is, at the point 2/lx =  (see Fig. 2) 

 
Fig. 2. The pair of oscillating dipoles. Current 

elements and radii used in the formulas are 

indicated. 

 



 

To shorten the notation, we rewrite formula (2.2) in terms of charges and currents: 
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here the charge and current belong to the y-dipole: 
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The electric field created by the charge consists of two terms: 
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However, the forces created by these terms on the charge )exp( tiqqx ω−=  are mutually eliminated 

when the dipole size tends to zero, although they tend to infinity. 
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Similarly, the total interaction forces of other pairs of charges are zero. So the damping of 

the rotating dipole is provided only by the third term of the formula (3.1): 
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The force acting on the charge xq  along the y-axis is  

.8/8/8/})/sin(
1

8/})/exp(
1

{2/}{

3

0

233

0

2/

2/

23

0

2/

2/

22

2

0

2/

2/

22

233

clqcdyqdycrq
rc

dycriqi
rc

qEF

l

l

l

l

l

l

x

πεω−=πεω−→πεωω−=

πεωωℜ=ℜ=

∫∫

∫

−−

−
       (3.7) 

The torque acting on both charges of the x-dipole is .8/ 3

0
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clq πεω−  Therefore, the torque acting 

on the rotating dipole is directed against the rotation of the dipole and is equal to (1.5) 
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4. Magnetic field torque 

In addition to the electric field (2.2), Jefimenko's formulas give the magnetic field [10 (6.56)],  
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This field acts on dipoles (1.8) by the Lorentz force. Consider the magnetic field created by the y-

dipole on the territory of the x-dipole. By analogy with (3.1), we write 
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However, using (3.3) and (2.4), we find that the average value of the Lorentz force acting on the x-

dipole is zero: 
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So the total torque acting on the rotating dipole is (1.5) 

 

5. Conclusion 

This calculation confirms the presence of spin radiation by a rotating dipole, the radiation that was 

predicted using the spin tensor. This proves that the spin of electromagnetic radiation is actually 



described by the spin tensor. The spin tensor has been successfully used to describe also plane 

waves and beams [11–17]. 

I am eternally grateful to Professor Robert Romer for the courageous publication of my 

question: "Does a plane wave really not carry spin?” (was submitted on 07 October, 1999) [18].  

 

References 

[1]  Khrapko R I Spin radiation from a rotating dipole. Optik 181 (2019) 1080-1084   

[2]  Khrapko R I. Spin of dipole radiation. (2001) http://trudymai.ru/published.php?ID=34635 

[3]   Khrapko R I “Radiation of spin by a rotator”, http://www.ma.utexas.edu/cgi-bin/mps?key=03-

315 (2003) 

[4]  Khrapko R I. Spin is not a moment of momentum http://trudymai.ru/published.php?ID=28834 

(2012) 

[5] Landau L D, Lifshitz E M The Classical Theory of Fields (Pergamon: N. Y., 1975).  . 

[6]  Corney A. Atomic and Laser Spectroscopy; (Oxford University Press, 1977). 

[7]   Sommerfeld A. Atombau und Spektrallinien 1 Band (FR1EDR. V1EWEG & SOHN 

BRAUNSCHWEIO 1951) 

[8]   Vul’fson K S Angular momentum of electromagnetic waves  Sov. Phys. Usp. 30 724–728 

(1987)  

[9]   Barabanov A L Angular momentum in classical electrodynamics Phys. Usp. 36 (11) 1068–

1074 (1993)  
[10]   Jackson J D Classical Electrodynamics, (John Wiley, 1999). 

[11] Khrapko R. I. Absorption of angular momentum of a plane wave  Optik 154 (2018) 806–810    

[12] Khrapko R. I. "Reflection of light from a moving mirror" Optik 136 (2017) 503–506  

[13] Khrapko R.I. "Mechanical stresses produced by a light beam" J. Modern Optics, 55, 1487-1500 

(2008)  

[14] Khrapko R. I. True energy-momentum tensors are unique. Electrodynamics spin tensor is not 

zero https://arxiv.org/abs/physics/0102084  (2001). 

[15] Khapko R. I. Spin transferred to a mirror reflecting light. International Conference on 

Electrical, Communication, Electronics, Instrumentation and Computing (ICECEIC) during 

30th- 31
st
 January 2019. http://khrapkori.wmsite.ru/ftpgetfile.php?id=188&module=files  

[16]  Khapko R. I. Absorption of Spin by a Conducting Medium AASCIT Journal of Physics Vol. 4, 

No. 2, Page: 59-63 (2018) 

[17] Khrapko R. I. Origin of Spin: Paradox of the classical Beth experiment. In Unfolding the 

Labyrinth: Open Problems in Mathematics, Physics, Astrophysics, and other areas of science 

(Hexis - Phoenix 2006), pp. 57-71  https://arxiv.org/abs/math/0609238   

[18] Khrapko R. I. Does plane wave not carry a spin? Amer. J. Phys. 69, 405 (2001) 

 

 


