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Abstract

Jefimenko's generalization of the Coulomb and Bio-Savard laws is used to calculate the reaction of
the radiation on the rotating electric dipole. It is found that the energy taken from the dipole is equal
to the recognized value of the radiated energy. At the same time, it is confirmed that the angular
momentum flux exceeds the generally accepted value by the spin radiation not seen before.
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1. Introduction
As shown in articles [1-4], the radiation of a rotating electric dipole contains, in addition to the
generally recognized angular momentum flux [1 - 9]

dL./dt=w’p’/6me,c’, (1.1)
which is localized mainly near the equatorial plane. with the angular distribution
dL./dtdQ =@’ p*sin® /167 ¢,c”, (1.2)
also the spin flux
dS_/dt=o’p*/12me,c’, (1.3)
which is localized mainly near the axis of rotation of the dipole, with the angular distribution
dS./dtdQ = @’ p* cos® 8/167° ¢’ (1.4)

(d€Q =5sin6d0d@, and the unit system is used in which divE =p/g).
Thus, the total angular momentum flux is

dJ ldt=dL_/dt+dS_/dt=w’p*l4me,c’. (1.5)
Meanwhile, the power radiated by a rotating dipole is recognized as
P=w'p’/6me,c’, (1.6)

and, therefore, the usual mechanics equality
P=wdl/dt. 1.7)
is violated

The result (1.5) was obtained in [2 - 4] by integrating the sum of the spin tensor and the
moment of the Poynting vector over the surface surrounding a rotating dipole. In [1], this result was
confirmed using the quantum mechanical Feynman proof and, independently, calculating the reaction of
the magnetic vector potential field on the dipole.

In the present work, the energy (1.6) and angular momentum (1.5) fluxes are calculated using
the same type by the use of the retarded electromagnetic Jefimenko’s field [10]. It turned out that the
forces acting on the dipole and responsible for the loss of energy differ from the forces responsible for
the loss of angular momentum.

As a rotating electric dipole, we consider a pair of oscillating dipoles perpendicular to
each other and having a quarter-period oscillation shift in time,

p' = pexp(—iot), p’ =ipexp(-imr), (1.8)

2. Energy loss by a rotating dipole
The value (1.6) is calculated as the result of the influence of the electromagnetic field of the dipole on
the dipole itself, according to the formula for the density of the resulting power

P =-G-E); (2.1)
here j and E are current density flowing along the dipole and the electric field in the dipole,
respectively, and the index A for P_ means, in this case, "volume density", dP = P, d 3x . First, the

effect of the x-dipole on itself is calculated.
In this paper, the electric field near the dipole is calculated from the known formula, taking
into account the retardation [10 (6.55)]:

’ r ’ ’ r ’ 7’ 1 . ’ 7’
[ax {iz[p(x T +—10,p(X, 1], ———[0,§(X 1 ]} 2.2)
r cr cr

1
E(x,1) =
4me,
and an "elementary vibrator" is considered as a dipole; the current of the dipole is the same at all
points, and the charges are only at the ends (see Figure 1)
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Figure 1. x-dipole



The dipole current [ is obtained by differentiating the charge
p* =qlexp(—int), (2.3)
I .=9,p"/l=—ingexp(—int). 2.4
The first term of expression (2.2),

1 ’ 1 ’ 7
E' = [d*x {r—z[p(x,t ]m},

4me,

is simply the retarded Coulomb field at the point x . Therefore, replacing

d’xp—dqi, t >t—(1/2tx)/c, r—=>1/2%x
and taking into account the direction of the electric field, we obtain the electric field strength from
both charges at the point x:

E(x)= q | —exp[—iot+ il /22 +x)/c] 3 exp[—ior +ioxl/ 22 —x)/c] . 2.5)
4me, (1/2+x) (1/12-x)
The corresponding contribution of this term to the power generated by the dipole is given by
formula (2.1) (we replace jd’x — Idx from (5), and the bar means complex conjugation)
p="11" aRiE;
! _7.[-1/2 PUIE )
2 . . . .
__og’ o iexp(iwt){ expl—ior +ioxl /22+ x)/c] expl-ior + uo(l/zz x)/c]}
8me, 712 (I/2+x) (I/12-x)
2 . . _
__og” 2 I sin[(l/2+ )i)/c] N sin[w(//2 )2)/6] . 2.6)
8me, /2 (I/2+x) (l/2-x)

Taking into account the small size of the dipole, we consider only two terms of the expansion of the
sine in a series

2 3 3 _
wg ”zdx[ © @2+, o o2 x)}

P=-

8me, 2 | ce(l/2+x) 6¢’ c(l/2—-x) 6c’
2 3 3 _
Pl:_coq szx () _co(l/23+x)+ 0] _oJ(l/23 X) . .7
8ne, 2 | c(l/2+x) 6¢ c(l/2—x) 6¢

Similarly to formula (2.5), we find the electric field provided by the second term of formula (2.2)

o ing | exp[—iot+in(l/2+x)/c] N exp[—ior +io(l/2—x)/c] 2.8)
> 4me,c (112 +x) (1/2-x) '
In contrast to formula (2.5), this formula contains i.
Formula (2.1) gives the contribution of this term, E;, to the power generated by the dipole
2 2 . : i i _
P, = g /2 dxR explioon) exp[—iot +io(l /2 + x)/c] N exp[—ior +iol/2—x)/c]
8me,c o1/2 (I/12+x) (1/12-x)
2 2 2 + _
_ g 2 dx cos[m(l/ x)/c]+cos[0)(l/2 x)/c] ' 2.9)
8me, ¢ *-1/2 (I12+x) (l/12-x)
Restricting ourselves to two terms of the expansion of cosine in a series, we have
2 2 2 2 _
Pzzmq szx 1 _co(l/22+x)+ 1 _co(l/22 X) . (2.10)
e, ez | (1/12+x) 2¢ (1/2-x) 2¢
Surprisingly, the integrals diverging at the ends of the dipole are shortened upon the addition
P, + P, , and the remaining terms are constants. As [/6—1[/2=-[/3, this part of the power is
4 2
P+p=-2P @.11)



The third term of formula (2.2),
1 1
= dx'{——1[0 . 1(x",t"] . ¢,
4me, J. { czr[ A ]rel}

9,1, =—w’gexp(—iot). (2.12)
To calculate the strength at the point x, we divided the region of integration into two parts by the
point x
o 0’g : {r o exp[—iot +in(x—x")/c g exp[—iot +in(x' - x)/c
4me ¢

E;

uses the derivative of the current

}. (2.13)

112 x—x x x'—x
Using formula (2.1), dP = —(j-E)d’x = —IE*dx , and current (2.4), we obtain the power
corresponding to the third term of formula (2.2)

3 2 /2
P =- wq : J- &R iwexpior) J- dx ,exp[—iot +io(x — x)/c] jd ,exp[—iot +in(x" — x)/c]
8ne,c” 5, i x—x x —x
3 2 /2
__ g _[ d j dx sm[co(x x)/c Id —sin[o(x"—x)/c] ' (2.14)
8758 c’ -1/2 -1/2 X —x
Restricting ourselves to one term in the expansion of the sine in a series, we easily obtain
412
P, = wd T (2.15)
8me,c

Thus, the power radiated by one x-dipole is
P=P+P,+P,=0'p’/(12ne,c’). (2.16)
Naturally, the y-dipole, acting on itself, makes the same contribution. It will be shown below that
the electric field of one oscillating dipole in the territory of another oscillating dipole is
perpendicular to the current, and therefore does not produce energy. So a rotating dipole delivers
power (1.6) to the radiation:
P=w'p’/67e,c’.

3. The torque experienced by the charges of a rotating dipole
We now calculate the electric field E created by the y-dipole at the location of the charge of
the x-dipole, that is, at the point x =1/2 (see Fig. 2)
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?_
Fig. 2. The pair of oscillating dipoles. Current

elements and radii used in the formulas are
indicated.



To shorten the notation, we rewrite formula (2.2) in terms of charges and currents:

1 (¢ y S
E= (_2 [Qy]ret +_[at'q‘y]rel - j T[at’ly ]ret dyj’ (3.1
4me, \ r cr g,Cr

here the charge and current belong to the y-dipole:
q, =1q exp(—iot), [qy 1. = igexp(—iot +ior/c), [a,qy 1. = Ogexp(—iot +imr/c) (3.2)

= —i®’ g exp(—iot +ior/c).
(3.3)

I,=0,q, =0gexp(=iot), [I,], =wgexp(—iwt+iwr/c). [d,1 ],
The electric field created by the charge consists of two terms:
E +E, =t(q,]./r’ +[9,q,], /cr)/4me,. (3.4)
However, the forces created by these terms on the charge g = gexp(—i®t) are mutually eliminated
when the dipole size tends to zero, although they tend to infinity.
F +F,=R{(E, +E,)q,}/2=R{iexpior/c)/r’ + mexp(iowr/c)/cr}q” 8ne,

= {—sin(wr/c)/r* + wcos(wr/c)/cr}q’ /8me, = (—/cr+ w/cr)q’ /8me, = 0.
Similarly, the total interaction forces of other pairs of charges are zero. So the damping of

the rotating dipole is provided only by the third term of the formula (3.1):
1/2

E - | %[—imzq exp(—iot +ior / ¢)ldy (3.6)

—=1/2

(3.5)

The force acting on the charge ¢, along the y-axis is
1/2

F, =R{E,q.}/2=%{ j %ic\)zq2 exp(ior/c)dy}/8me,
—l/2c r (3 7)

/2 1/2
= —_;[zﬁwzqz sin(wr/c)dy}/8ne, — —_;[20)3q2dy/8n80c3 =-0'q’l/8ne,c’.
The torque acting on both charges of the x-dipole is — ®’q*l* /8ne,c’. Therefore, the torque acting
on the rotating dipole is directed against the rotation of the dipole and is equal to (1.5)
o' p’/ane,c’.

4. Magnetic field torque
In addition to the electric field (2.2), Jefimenko's formulas give the magnetic field [10 (6.56)],
[ 2,0 @b

4me,, r cr
This field acts on dipoles (1.8) by the Lorentz force. Consider the magnetic field created by the y-
dipole on the territory of the x-dipole. By analogy with (3.1), we write

1 .
B= [0 /72 +10,0,1 /erly xE, 4.2)
0

However, using (3.3) and (2.4), we find that the average value of the Lorentz force acting on the x-
dipole is zero:

F=%{ j 1.dxxB}/2=%R{ j j ioglagexp(ior/c)/ r* —in*gexp(ior/c)/ crldxx (dy X )} /87,

B(x,t) =

= j j [—sin(@r/c)®’ /r* +cos(or/ )@’ / crlg’dxx (dy x£)/8ne, =0 if r—0. 4.3)
So the total torque acting on the rotating dipole is (1.5)
5. Conclusion

This calculation confirms the presence of spin radiation by a rotating dipole, the radiation that was
predicted using the spin tensor. This proves that the spin of electromagnetic radiation is actually



described by the spin tensor. The spin tensor has been successfully used to describe also plane
waves and beams [11-17].

I am eternally grateful to Professor Robert Romer for the courageous publication of my
question: "Does a plane wave really not carry spin?” (was submitted on 07 October, 1999) [18].
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