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Abstract

The Lee model of the unstable particle V ⇀↽ N + Θ, where
N-particle is considered charged and Θ−particle uncharged, is
inserted into electromagnetic field. While the Θ−particle prop-
agates undisturbed, the N-particle is deflected by the extended
photon source. The result of such process is the additional mag-
netic moment of the Lee particle. The Schwinger source theory
is employed to present the calculation of the magnetic moment
of the Lee model of the unstable particle.

1 Introduction

The Lee model of elementary particle was originally introduced by Lee

(1954) as an exactly soluble and a renormalizable model that describes

the interaction between pions and two neutral nucleons, where the nucleon

can exist in two different intrinsic states. The particle corresponding to

the Bose field is called Θ and the particles corresponding to the intrinsic

states of the nucleon are called V and N particles.

The Lee unstable particle is defined by the equations

V ⇀↽ N +Θ, (1)
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where V,N,Θ are particles, the physical characteristics of which fulfil some

conservation laws.

We will suppose in this article that the particles participating in the

process (1) have spin, mass and charge as follows:

Θ ≡ Θ(0, 0, µ), N ≡ N

(
1

2
, e,m

)
, V ≡ V

(
1

2
, e, κ

)
. (2)

Although this model is not realistic, the important features of nucleon-

pion system can be understood in a relatively simple way and one can

get rid of the infinities without applying perturbation theory techniques.

Moreover, the complete non-relativistic version of this model that describes

one heavy particle sitting at some fixed point interacting with a field of

non-relativistic bosons is as important as its relativistic counterpart.

2 Source theory

Source theory (Schwinger, 1970; Schwinger et al., 1976; Dittrich, 1978) was

initially constructed for description of the particle physics situations occur-

ring in the high-energy physics experiments. However, it was found that the

original formulation simplifies the calculations in the electrodynamics and

gravity where the interactions are mediated by photon, or, graviton respec-

tively, where the source theory of gravity forms the analogue of quantum

electrodynamics where in QED the interaction is mediated by the photon

(with spin 1) and the gravitational interaction is mediated by the graviton

(with spin 2) (Schwinger, 1970). The basic formula in the source theory

is the vacuum-to-vacuum amplitude (Schwinger, 1970; Schwinger et al.,

1976):

⟨0+|0−⟩ = e
i
h̄W (S), (3)

where the minus and plus tags on the vacuum symbol are causal labels,

referring to any time before and after space-time region where sources are

manipulated. The exponential form is introduced with regard to the exis-

tence of the physically independent experimental arrangements which has

a simple consequence that the associated probability amplitudes multiply

and corresponding W expressions add (Schwinger, 1970; Schwinger et al.,

1976).
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Source theory has a number of important advantages over standard

quantum field theory. There are no ultraviolet divergences, no asymptotic

states and no adiabatic hypothesis with the inevitable difficulties in adia-

bacity. The diagrams in this theory have immediate physical meaning.

The source theory version of quantum field theory enables to construct

vacuum amplitudes and field equations for particles with arbitrary spins.

The question arises how to extend the formalism in order to involve

the specific experimental situation in particle physics. This situation

is characterized by the phenomenological definition of the elementary

particle. The elementary particle as such is defined only by the collision

that create it. Although we do not know the details of how a particle is

created, we recognize the production of the particle in a collision process

as the result of a transfer of certain characteristic as energy, charge, spin

etc. to the particle of interest. All the other particles are present to supply

the net balance i.e. all the other particles act as the source of the particle

of interest. They form so called the emission source.

We unite axiomatically the emission and the absorption sources under

general heading of source S(x) and this operation forms one of the

postulates of the source theory.

Source S(x) can be obviously defined indirectly through its effectiveness

to create a particle similarly to the electric field which is defined how it

acts on a charge. S(x) is then a numerical measure that describes where

the collision act occurs distributed in space-time.

The distribution of the collision process in momentum space is S(p),

and S(x) and S(p) are complementary aspects of the same source. They

are related by a Fourier transform

S(p) =
∫
(dx)S(x)e−ipx, (4)

where the notation and metrics was used as follows:

(dx) = dx0dx1dx2dx3; x = (ct,x) = (x0,x) = (−x0,x)

px = p · x− p0x0. (5)

We distinguish the strong sources and the weak ones. The strong source

emits several particles during one act, while the weak source is defined as
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the source which creates only one particle.

Scalar particles are created by the scalar sources; vector, tensor and

spinor particles are created by the vector , tensor and the spinor sources.

The neutral particles are described by the real sources, while charged

particles are described by the complex sources.

Every collision process involves three elementary events. The emission

of particle (or, particles), its propagation in space and the detection of the

particle.

The vacuum amplitude ought to involve these particular subprocesses

in order to describe the physical reality correctly. Let us show the

decomposition of the vacuum amplitude in order to involve emission,

propagation and detection of a particle.

W (K) in (3) is action which for the noninteracting spinless particles has

the following form:

W (K) =
1

2

∫
(dx)(dx′)K(x)∆+(x− x′)K(x′), (6)

where K(x) is the scalar source and ∆+(x−x′) is the propagation function

which propagates the source effect from x′ to x. It is symmetrical in x and

x′, or,

∆+(x− x′) = ∆+(x
′ − x). (7)

Now, let us consider the causal arrangement in which particles are

created by source K2, propagate in space-time and then are detected by

source K1 which is localized later in time than source K2. Then, if we

consider the case of the weak source, i.e. only one particle can be created or

annihilated by a source, then, we write the vacuum persistence probability

amplitude in the form:

⟨0+|0−⟩K = ⟨0+|0−⟩K1⟨0+|0−⟩K2 +
∑
p
⟨0+|1p−⟩K1⟨1p+|0−⟩K2, (8)

where ⟨1p+|0−⟩K2 is the probability amplitude of creation of the particle

with momentum p and ⟨0+|1p−⟩K1 is the probability amplitude of annihila-

tion of the particle with momentum p. We will show that the decomposition

of the vacuum amplitude (8) is equivalent with the original amplitude (3)

after suitable definition of the partial amplitudes in eq. (8) and accepting

some postulates which are fundamental ingredients of the source theory.
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In the source theory only the total source

K = K1 +K2 (9)

is of the physical significance which follows from the postulate of the space-

time conformity of sources (Schwinger, 1970). Then, the weak source limit

of the vacuum persistence amplitude follows from formula (8) in the form:

⟨0+|0−⟩K ≈ 1 +
i

2

∫
(dx)(dx′)K1(x)∆+(x− x′)K1(x

′) +

i

2

∫
(dx)(dx′)K2(x)∆+(x− x′)K2(x

′) +

i
1

2

∫
(dx)(dx′)K1(x)∆+(x− x′)K2(x

′). (10)

For the weak source limit we can also write

⟨0+|0−⟩ ≈ 1 + f(K); |f(K)| ≪ 1; f(0) = 0 (11)

and introducing definitions

⟨1p|0−⟩ d= iKp = i
√
dωpK(p) (12)

⟨0+|1p⟩ d= iK∗
p = i

√
dωpK(−p), (13)

where * denotes operation of complex conjugation, we have instead of eq.

(10):

⟨0+|0−⟩ ≈ 1 + f(K1) + f(K2) +
∑
p
iK∗

p iKp =

1 + f(K1) + f(K2) +
∑
p
i
√
dωpK1(−p)i

√
dωpK2(p). (14)

The quantity dωp is defined as

dωp =
(dp)

(2π)3
1

2p0
; p0 = +

√
(p2 +m2) (15)

and it represents the invariant measure in momentum space.
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3 Modified propagation function for scalar particles

When a source emits enough energy to produce a particle, the two-
particle emission can occur and the two-particle exchange between sources.
We will here assume the two-particle emission is caused by the interaction
which can be described by the interaction Lagrangian. The mathematical
structure of such Lagrangian depends on the physical model which is
either realistic i.e. correctly reflecting the physical reality, or instructive,
clarifying the substance of the theory.

In this section we will consider the instructive model with the interaction
Lagrangian (Dittrich, 1974; 1978)

Lint = gψ∗ψφ, (16)

which replaces the more realistic Lagrangians. The symbol g in eq. (1) is
the coupling constant, field ψ has mass m, µ is mass corresponding to the
field φ and sources corresponding to ψ∗, ψ and φ are H∗, H and K.

It is obvious that the two-particle exchange between sources is the
integral part of the one-particle exchange which leads to the modification
of the propagation function (propagator) of the free particle. In our case
we shall consider the modification of the µ-particle propagator, assuming
the two-particle exchange will be realized by ψ-particles. The two-particle
system has mass that ranges from 2m to ∞. Though we are here restricted
to Lint given by eq.(16), the generalization for the different interactions can
be obtained by some analogy.

The action corresponding to the scalar fields ψ∗, ψ, φ with the interac-
tion Lagrangian (16) is as follows:

W =
∫
(dx) [Kφ+H∗ψ +Hψ∗ + L] , (17)

where

L = −1

2

[
(∂φ)2 + µ2φ2

]
−
[
(∂ψ∗)(∂ψ) +m2ψ∗ψ

]
+ gψ∗ψφ. (18)

The principle of the stationary action then implies the following set of
the coupled field equations:

(−∂2 +m2)ψ(x) = H(x) + gψ(x)φ(x) (19)

(−∂2 +m2)ψ∗(x) = H(x)∗ + gψ∗(x)φ(x) (20)
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(−∂2 + µ2)φ(x) = K(x) + gψ∗(x)φ(x). (21)

For g = 0 we obtain the free theory, or in other words, the particles
traveling without interaction.

Such situation is involved in the amplitude

⟨0+|0−⟩K,H,H
∗
= ⟨0+|0−⟩K⟨0+|0−⟩H,H

∗
=

exp

{
i

2
K∆µ

+K

}
exp {iH∗∆m

+H} . (22)

Expanding eq. (22) in a series and adding the absorption and emission
indexes 1 and 2 to the fields and sources, we can write:

⟨0+|0−⟩ = −
∫
(dx)(dx′)ψ∗

1(x)H2(x)H
∗
2(x

′)ψ1(x
′), (23)

where the amplitude (23) corresponds to the situation where source H2H
∗
2

emits couple of particles with fields ψ∗
1 and ψ1. The vacuum amplitude

generated by expansion of exp {(i/2) ∫ (dx)Lint} is on the other hand equal
to

⟨0+|0−⟩ = ig
∫
(dx)ψ∗

1(x)ψ1(x)φ2(x). (24)

After comparison of eq. (23) with eq. (24) we get the relation for
so-called effective source H2H

∗
2 as follows:

iH2(x)H
∗
2(x

′)|eff emiss = gδ(x− x′)φ2(x). (25)

We can picture the process of the two-particle emission by the effective
source by means of the diagram. Circle represents there source, thin
lines represent the causal propagation of real particles and the heavy line
indicates the non-causal propagation of a virtual particle. Time is read
vertically.

For the two-particle absorption, we get by the analogical procedure so
called effective absorption source and its mathematical form is the following
one (Dittrich, 1974; 1978):

iH1(x)H
∗
1(x

′)|eff abs = gδ(x− x′)φ1(x). (26)

Unifying the process of emission and absorption, we get the real process
consisting of the two-particle exchange between sources.

The two-particle exchange between effective sources is obviously in-
volved in the vacuum amplitude
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⟨0+|0−⟩ = exp
{
i
∫
H∗

1∆
m
+H2

}
exp

{
i
∫
H1∆

m
+H

∗
2

}
, (27)

because the following formula can be extracted from its expansion:

⟨0+|0−⟩ =
∫
iH∗

1(x)H1(y)|eff abs∆m
+(x− x′) ×

∆m
+(y − y′)iH∗

2(x
′)H∗

2(y
′)|eff emiss, (28)

where we have introduced the effective sources.
Inserting relations (25) and (26) into eq. (28) we get the following

mathematical form of the vacuum to vacuum amplitude for the two-particle
exchange between effective sources:

⟨0+|0−⟩ = g2
∫
(dx)(dx′)φ1(x) [∆

m
+(x− x′)]

2
φ2(x), (29)

which may be easily interpreted as the process of emission, propagation
and absorption of the particle with mass µ by the field φ acting here as a
source.

For the causal arrangement of sources, i.e. x0 > x′0, we get:

[∆m
+(x− x′)]

2
=
[∫
idωpe

ip(x−x′)
]2

= −
∫
dωpdωp′e

i(p+p′)(x−x′) =

−
∫
dωpdωp′e

ik(x−x′)(2π)3δ(p+ p′ − k)
(dk)

(2π)3
, (30)

where we have inserted the unit factor 1 represented as

1 =
∫
(2π)3δ(p+ p′ − k)

(dk)

(2π)3
. (31)

Supposing that k is the four-momentum or the virtual photon, we have

−k2 =M 2 > (2m)2 (32)

from which follows

2k0dk0 = dM 2, (33)

which gives

(dk)

(2π)3
=

dk

(2π)3
dk0 =

dk

(2π)3
1

2k0
dM2 = dωkdM

2. (34)
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Using the last relations, we can write (x0 > x′0):

[∆m
+(x− x′)]

2
= i

∫
dM2idωke

ik(x−x′)dωpdωp′(2π)
3δ(p+ p′ − k) =

i
∫
dM 2∆+(x− x′,M 2)dωpdωp′(2π)

3δ(p+ p′ − k), (35)

where we have used relation

i
∫
idωke

ik(x−x′) = ∆+(x− x′,M 2). (36)

The last integral in (35) is a function of M 2. In order to evaluate it, we
have possibility to evaluate it in the rest frame of k, or, in other words for
k0 = 0. Then,

p+ p′ = 0; p0 = p′0 =
√
|p|2 +m2 =

M

2
; −k2 =M 2. (37)

Then, we get for this integral

f(M 2) =
∫
dωpdωp′(2π)

3δ(p+ p′ − k) =
1

(4π)2

1− 4m2

M 2

1/2

. (38)

The formula (35) does not involve the mathematical procedure called the
space-time extrapolation. This procedure involves the operational content
consisting in replacing the ∆+(x−x′,M 2) in (35) by the modified function

∆+(x− x′,M 2) =
∫ (dk)

(2π)4
eik(x−x

′)

k2 +M 2 − iε
, (39)

where C. T. is so called contact term and it will be determined later. For
the square [∆m

+(x− x′)]2, we get:

[∆m
+(x− x′)]

2
=

i

(4π)2

∫ 1− (
2m

M

)21/2∆+(x− x′,M 2)dM 2. (40)

Finally, we get the vacuum-vacuum amplitude corresponding to the two-
particle exchange between sources in the following form transformed into
the momentum space:

⟨0+|0−⟩ =
i

(4π)2
g2 ×
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∫
dM2

√√√√1− 4m2

M 2

(dk)

(2π)4
φ1(−k)

(
1

k2 +M 2 − iε
+ C.T.

)
φ2(k). (41)

Using field source equations

φ2(k) =
1

k2 + µ2 − iε
K2(k) (42a)

φ1(−k) =
1

k2 + µ2 − iε
K1(−k) (42b)

we get after insertion of (42a, 42b) in the vacuum-vacuum amplitude (41)

⟨0+|0−⟩ = i
∫ (dk)

(2π)4
K1(−k) ×

g2

(4π)2
dM 2

√
1− (2m/M)2

 1

(k2 + µ2)2
1

k2 +M 2 − iε

K2(k), (43)

which indicates about double poles in k2 = −µ2. We shall see in the
following text that the unacceptable poles can be suppressed by the suitable
choosing of the contact term.

The vacuum amplitude for the free µ-particle is

⟨0+|0−⟩(0) = i
∫ (dk)

(2π)4
K1(−k)∆µ

+(k)K2(k), (44)

which forms together with the amplitude (43) the total vacuum-to-vacuum
amplitude involving the two-particle exchange between effective sources.
The explicit form of this amplitude is as follows:

⟨0+|0−⟩ = i
∫ (dk)

(2π)4
K1(−k) ×

∆µ
+(k) +

g2

(4π)2

∫
dM 2I(M 2)

1

(k2 + µ2)2
1

k2 +M 2 − iε

K2(k), (45)

where

I(M2) =

√√√√1− (
2m

M

)2
. (46)
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From eq. (45) we can extract the total µ-propagation function involving
the two-particle exchange process in the form:

∆̃µ
+(k) =

1

k2 + µ2 − iε
+

1

k2 + µ2 − iε
M(k2)

1

k2 + µ2 − iε
, (47)

where

M(k2) =
g2

(4π)2

∫ ∞

(2m)2
dM 2I(M2)

(
1

k2 +M 2 − iε
+ C.T.

)
. (48)

As M(k2) does not vanish at k2 = −µ2 which means that the behavior
of propagation function is drastically modified in neighborhood k2 =
−µ2. This contradicts the phenomenological basis of the theory. But
on the other hand, the source couplings that are inferred through space-
time extrapolation of causal arrangement can always be supplemented by
contact interactions. Unless additional physical considerations adduced,
the contact terms can be omitted. In our case they play the role of
suppressing the singularities in the neighborhood of k2 = −µ2. The natural
requirement is

M(k2) = 0;
∂M(k2)

∂k2
= 0; for k2 = −µ2, (49)

which can be achieved by

C.T. = − 1

M2 + µ2 − iε
+

 k2 + µ2

M2 − µ2

2

, (50)

which gives

M(k2) = (k2 + µ2)
g2

(4π)2
×

∫ ∞

(2m)2
dM 2I(M 2)

1

(M2 − µ2)2
1

k2 +M2 − iε
. (51)

Then, the µ-particle propagator function is of the form

∆̃µ
+(k) =

1

k2 + µ2 − iε
+

g2

(4π)2

∫ ∞

(2m)2
dM 2I(M2)

1

(M2 − µ2)2
1

k2 +M 2 − iε
, (52)

or, in the configuration space
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∆̃µ
+(x− x′) = ∆µ

+(x− x′) +

g2

(4π)2

∫ ∞

(2m)2
dM 2I(M 2)

1

(M 2 − µ2)2
∆+(x− x′;M 2). (53)

4 The Lee model in the electromagnetic field

We follow here the article by author (Pardy, 1979) with the elimination
of the typographical errors. So, we use the following notation for the
corresponding fields, sources and the Green functions (propagators):

Θ ≡ Θ(φ, J,∆+), N ≡ N(ψ, η,G+), V ≡ V (χ, ζ,Gκ
+). (54)

The action W in the fundamental source ansatz

⟨0+|0−⟩ = e
i
h̄W (S), (55)

is

W = W (ζ, η, J) =
∫
(dx)

{
χ(x)γ0ζ(x) + ζ(x)γ0χ(x)+

ψ(x)γ0η(x) + η(x)γ0ψ(x) + φ∗(x)J(x) + J∗(x)φ(x) + L
}
, (56)

where

L = L0 + Lint (57)

and

L0 = χγ0
(
γ
1

i
∂ + κ

)
χ+ ψγ0

(
γ
1

i
∂ +m

)
ψ +

(
∂φ∗∂φ+ µ2φ∗φ

)
, (58)

Lint = −g(ψγ0φχ+ χγ0φψ), (59)

The differential equations for χ, ψ, φ follow from the variation of W .
Their integral representations are as follows:

χ(x) =
∫
(dx′)Gκ

+(x− x′)ζ(x′) (60a)

ψ(x) =
∫
(dx′)G+(x− x′)η(x′) (60b)
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φ(x) =
∫
(dx′)∆+(x− x′)J(x′). (60c)

where the causal Green functions Gκ
+, G+,∆+ obey equations

(
γ
1

i
∂ + κ

)
Gκ

+(x− x′) = δ(x− x′) (61a)

(
γ
1

i
∂ +m

)
G+(x− x′) = δ(x− x′) (61b)

(
−∂2 + µ2

)
∆+(x− x′) = δ(x− x′). (61c)

Now, we have in hands all the most important relations and we can
approach derivation of the propagation function corresponding the process
of emission and absorption (1).

5 The V-particle propagation function

The interaction term Lint involves the interaction which changes the motion
of the free V-particle and leads therefore to the modification of the V-
propagation function. The considered process includes the emission and
the absorption. First, we will consider the emission.

5.1 EMISSION

The process

V → N +Θ (62)

represents the emission of the N and Θ -particles by the V-particle.
In the language of the source theory the process (62) has the following

physical meaning: the extended V-particle source createdN and θ-particles
by emitting the time-like momentum P .

The vacuum amplitude of the process (62) is

⟨0+|0−⟩ηJ = ⟨0+|0−⟩η⟨0+|0−⟩J , (63)

where

⟨0+|0−⟩η = ei
∫
(dx)(dx′)η(x)γ0G+(x−x′)η(x′) (64)

⟨0+|0−⟩J = ei
∫
(dx)(dx′)J∗(x)∆+(x−x′)J(x′). (65)
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On the other hand, the first term in Lint describes of the emission of N-
and Θ−particles. Therefore

⟨0+|0−⟩ = e−ig
∫
(dx)(dx′)ψ(x)γ0φ∗(x)χ(x′). (66)

Expanding eqs. (63) and (66) gives for comparison:

⟨0+|0−⟩emission = (−i)2
∫
(dx)(dξ)ψ(x)γ0η(x)φ∗(ξ)J(ξ) (67)

and

⟨0+|0−⟩emission = −ig
∫
(dx)ψ(x)γ0φ∗(ξ)χ(x). (68)

After transition to the effective sources

J(ξ)η(x) → J(ξ)η(x)|eff. (69)

and putting

iJ(ξ)η(x) → iJ(ξ)η(x)|eff.emission = −gδ(x− ξ)χ(x) (70)

we get the vacuum amplitudes (67) and (68) are equal. Obviously, the
momentum representation of eq. (19) is as follows:

iJ(k)η(p)|eff.emission = −gχ(P ), (71)

where

η(p) =
∫
(dx)e−ipxη(x) (72)

J(k) =
∫
(dξ)e−ikξJ(ξ) (73)

P = p+ k. (74)

In connection with eq. (74) we still define a quantity M by relation:

−P 2 =M 2 (75)

5.2 ABSORPTION

We mean the process

N +Θ → V. (76)

The second term in Lint
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−g
∫
(dx)χ(x)γ0φ(x)ψ(x) (77)

involves the process (74). Thus we have to compare

⟨0+|0−⟩ηJ = ⟨0+|0−⟩η⟨0+|0−⟩J (78)

with

⟨0+|0−⟩ = e−g
∫
(dx)χ(x)γ0φ(x)ψ(x), (79)

or,

⟨0+|0−⟩absorption = (−i)2
∫
(dx)(dξ)J∗(ξ)η(x)γ0φ(ξ)ψ(ξ) (80)

and

⟨0+|0−⟩absorption = −ig
∫
(dx)χ(x)γ0φ(x)ψ(x). (81)

After transition to the effective sources

J∗(x)η(x)γ0 → J∗(ξ)η(x)γ0|eff., (82)

where we put

iJ∗(ξ)η(x)γ0|eff.absorption = −gδ(x− ξ)χ(x)γ0 (83)

we get the vacuum amplitudes (80) and (81) are equal. Obviously, the
momentum representation of eq. (70) is as follows:

iJ∗(−k)η(−p)γ0 = −gχ(−P ), (84)

Now, in view of the fact we are able to describe the process of emission
and absorption, we can describe the total process (1) as it represents the
causal arrangement of eq. (11) and eq. (25). The vacuum amplitude of
such causal arrangement for x0 ≥ x′0, ξ0 ≥ ξ′0 is the following

⟨0+|0−⟩|causal =
∫
(dx)(dx′)(dξ)(dξ′)×

[
iJ(ξ)η(x)γ0

]
eff.abs.

G+(x− x′)∆+(x− x′)[iJ(ξ′)η(x′)γ0]eff.emiss. (85)

Or, using eq.(70) and eq. (83), we have

⟨0+|0−⟩|causal = g2
∫
(dx)(dx′)χ(x)γ0G+(x− x′)∆+(x− x′)χ(x′). (86)
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At this stage, we can approach the determination of the causal vacuum
amplitude for the V-particle moving in the electromagnetic field.

6 The V-particle in the electromagnetic field

If electromagnetic field is present, the following transformations of the
Green functions and wave function must be used:

G+(x− x′) → GA
+(x− x′) (87a)

∆+(x− x′) → ∆A
+(x− x′) (87b)

χ(x− x′) → χA+(x− x′). (87c)

However, ∆+(x − x′) = ∆A
+(x − x′) because Θ−particle is neutral, So,

we have for the vacuum amplitude (86) the formula:

⟨0+|0−⟩ →= g2
∫
(dx)(dx′)χA(x)γ0GA

+(x− x′)∆+(x− x′)χA(x′), (88)

where GA
+(x− x′) is given by the formula (Schwinger, 1973)

GA
+(x− x′) =

∫ (dp)

(2π)4
eieq

∫ x

x′ dξ
µAµ(ξ)eip(x−x

′)(m− γp)
1

p2 +m2 − eqσF − iε
. (89)

Let us remark that from relation (89) follows, that the Green function
of a charged particle in electromagnetic field is formed from the Green
function of the free particle by multiplying the latter by the factor

Φ = eieq
∫ x

x′ dξ
µAµ(ξ) (90)

and the transformations

m2 → m2 − δ; δ = eqσF ; σF =
1

2
σµνFµν. (91)
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7 Determination of G+(x− x′)∆+(x− x′)

We shall use this fact in determination of GA
+(x−x′)∆+(x−x′) in eq. (88).

For x0 ≥ x′0 we have (Schwinger, 1973):

∆+(x− x′) = i
∫
dωke

ik(x−x′) (92)

G(x− x′) = i
∫
dωpe

ip(x−x′)(m− γp), (93)

where

dωk =
(dk)

(2π)3
1

2k0
(94a)

dωp =
(dp)

(2π)3
1

2p0
. (94b)

Eqs. (82) and (83) give

G+(x− x′)∆+(x− x′) = (i)2
∫
dωpdωke

i(p+k)(x−x′)(m− γp). (95)

From the spectral requirements

−P 2 =M2, P = p+ k, (96)

we have for the three-dimensional momentum

d(P 0)2 = −dM 2 (97)

and

(dP )

(2π)3
= dωpdM

2. (98)

Using identity

1 =
∫
(2π)3δ(P − p− k)

(dP )

(2π)3
=
∫
dωPdM

2(2π)3δ(P − p− k) (99)

we get

G+(x− x′)∆+(x− x′) =

∫
dωPdωkdM

2(2π)3δ(P − p− k)ei(P+k)(x−x
′)(m− γp). (100)

17



After performing k and p integration in the last formula, we have:

G+(x− x′)∆+(x− x′) =
∫
dωPdM

2eiP (x−x
′)F (P ), (101)

where

F (P ) =
1

(2π)2

m− M 2 +m2 − µ2

2M 2
γP

 ×

1− (m+ µ)2

M 2

1/2 1− (m− µ)2

M 2

1/2 . (102)

8 The space-time extrapolation and determination of

GA
+(x− x′)∆+(x− x′)

During the derivation of G+(x−x′)∆+(x−x′) it was assumed that x0 ≥ x′0

i.e. the detection source was in time later than the emission one. The
generalization of this assumption was enabled the source theoretical axiom
called space-time extrapolation (Schwinger, 1973). We mean by the space-
time extrapolation the transformation

∫
dωpdωke

iP (x−x′) → ∆+(x, x
′,M 2), (103)

where

∆+(x, x
′,M 2) =

∫ (dP )

(2π)4
eiP (x−x

′) 1

P 2 +M 2 − iε
. (104)

After insertion of eq. (103) in to eq. (101), we have

G+(x− x′)∆+(x− x′) →
∫
dM 2F (P )∆+(x, x

′,M 2), (105)

where F (P ) is given by eq. (102). As we have remarked in section 4. we can
obtain the productGA

+(x−x′)∆+(x−x′), which involves the electromagnetic
field, from the field product G+(x−x′)∆+(x−x′) by multiplication by the
factor

Φ = eieqφ(x,x
′) (106)

and using transformation

m2 → m2 − δ; δ = eqσF ; σF =
1

2
σµνFµν (107)
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in G+(x− x′)∆+(x− x′). In such a way we have:

GA
+(x− x′)∆+(x− x′) =

Φ
∫
dM2F (P )∆+(x, x

′,M 2)|m2→m2−δ,M2→M2−δ (108)

and after modification

GA
+(x− x′,m2)∆+(x− x′, µ2) →

→ Φ
∫
dM 2


m− M 2 +

√
αβ

2M 2
γΠ

+
M2 +

√
αβ

2M 4
γΠδ


× (I(0) + I ′(0)δ)(∆+(x− x′,M 2 − δ), (109)

where

α = (m+ µ)2; β = (m− µ)2 (110)

I =

(
1

4π

)2 [
1− α− δ

M2 − δ

]1/2 [
1− β − δ

M 2 − δ

]1/2
(111)

I(0) = I|δ→0; I ′(0) =
dI

dδ
|δ→0. (112)

In the presence of electromagnetic field we put

γP → γΠ, Π = p− eqA (113)

and using relation

Φ∆+(x− x′,M 2 − δ) → 1

−(γΠ)2 +M 2 − iε
(114)

we have to the first power of δ

GA
+(x− x′)∆+(x− x′) →

∫
dM 2

m− M 2 +
√
αβ

2M 2
γΠ

 I(0) 1

−(γΠ)2 +M 2 − iε
+

∫
dM 2

m− M 2 +
√
αβ

2M2

 I(0)γΠδ 1

−(γΠ)2 +M 2 − iε
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∫
dM 2

M2 +
√
αβ

2M 4

 I(0)γΠδ 1

−(γΠ)2 +M2 − iε
+ C.T., (115)

where at this stage we have introduced the so called contact term C.T..
It guarantees the nonsingular behavior propagation function at point
γΠ = −κ.

The conditions, which determine the contact terms are as follows:

L(γΠ = −κ) = 0 (116)

dL

(γΠ)
(γΠ = −κ) = 0, (117)

where L is the expression between χ(x)γ0 χ. The condition (116) and (117)
can be realized by the following transformations:

1

γΠ−M − iε
→ (γΠ+ κ)2

(M − κ)

1

γΠ−M − iε
(118)

1

γΠ+M − iε
→ (γΠ+ κ)2

(M − κ)

1

γΠ+M − iε
. (119)

Using the procedures (118) and (119), we have for the integral in (115):

−(γΠ+ κ)2g2
∫ ∞

m+µ

dM

M

(M +m)2 − µ2

(M − κ)

1

γΠ+M − iε
−

− (M −m)2

(M + κ)

1

γΠ−M − iε

 I(0). (120)

The last formula is at the limit γΠ → γP the propagation function
derived by Dittrich (1974).

9 The magnetic moment of the Lee model

The additional action term replacing

∫
(dx)(dx′)χ(x)γ0M(x, x′)χ(x′) (121)

is in the presence of electromagnetic field, the following one:

g2
∫
(dx)(dx′)χ(x)γ0M(x, x′, F )χ(x′), (122)
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where M(F ) is given by eq. (115). This supplements the initial action
expression

∫
(dx)χ(x)γ0(γΠ+ κ)χ(x′). (123)

In the presence of electromagnetic field, we have

(γΠ+ κ) = 0, (124)

or,

γΠ = −κ (125)

Then,

M(F )|γΠ=−κ =
∫ ∞

α
dM 2


m+

M 2 +
√
αβ

2M 2
κ

 I ′(0) 1

M2 − κ2
− M 2 −

√
αβ

2M 4
I(0)

κ

M 2 − κ2

 δ (126)

Further we have

g2M(F ) = λ
eqσF

2κ
, (127)

where, (if we put M2 = x)

λ =
2κ

(4π)2
g2
∫ ∞

α
dx


m+

x+
√
αβ

2x
κ

 1

x2
[(x− α)(x− β)]1/2

1

x− κ2
−

−
x+√

αβ

2x2

 1
x
[(x− α)(x− β)]1/2

κ

x− κ2

 . (128)

The effective action is equal as it follows:

∫
(dx)(dx′)χ(x)γ0

(
γΠ+ κ+ λ

eqσF

2κ

)
χ(x′), (129)

where

λ
eqσF

2κ
(130)

is the additional magnetic moment of the Lee model of elementary particle.
For small α we can put approximately
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[(x− α)(x− β)]1/2 ≈ x (131)

and we have from eq. (79) after elementary integration

λ =
2g2

(4π)2


√αβ
κ2

+
m

κ

 lg
α

α− κ2
−

√
αβ

α

 . (132)

10 Discussion

In this paper, we have considered the relativistic Lee model in the frame-
work of the Schwinger source theory of elementary particles. After inserting
the Lee model into the constant electromagnetic field we observe new term
in the Lee model which corresponds to the magnetic moment of the Lee
unstable particle.
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