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A proposed solution to the millennium problem on the existence and smoothness
of the Navier—Stokes equations.

1. Introduction

The Navier-Stokes equations are thought to govern the motion of a fluid in R?
where d € N, see [1,3,7]. Letu = u(x,?) € R be the fluid velocity and let
p = p(x,1) € R be the fluid pressure, each dependent on position x € R¢ and time
t > 0. I take the externally applied force acting on the fluid to be identically zero.
The fluid is assumed to be incompressible with constant viscosity v > 0 and to fill
all of R?. The Navier-Stokes equations can then be written as

Ju

= (u-Vu=vVu-Vp, (1)
V-u=0 ()

with initial condition
u(x,0) = ugy (3)

where uy = uy(x) € R?. In these equations

o9 9 9
(9X1’6X2"”’6xd

V=( ) “4)

is the gradient operator and

Vi= )y — (5)

is the Laplacian operator. Solutions of (1), (2), (3) are to be found with
uy(x + Le;) = up(x) (6)

for 1 < i < d where ¢, is the i unit vector in R? and L > 0 is a constant [7]. The
initial condition uy is a given C* divergence-free vector field on R. A solution of
(1), (2), (3) is then accepted to be physically reasonable [3] if

u(X + Lei’ t) = u(X, t)? p(x + Lei’ t) = p(X’ t) (7)
onR¢ x [0, 00) for 1 <i<dand

u,p € C°(RY x [0, 0)). (8)
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2. Solution to the Navier—Stokes problem

I provide a proof of the following theorem [2,3,6,7].

Theorem. Let uy be any smooth, divergence-free vector field satisfying (6). Then
there exist smooth functions u, p on R x [0, 00) that satisfy (1), (2), (3), (7), (8).
Proof. Let the Galerkin approximation of u, p be

i= Z uLeikL-X, (9)
L=—c0

p= ), pet™™ (10)
L=—00

respectively. Here uy, = uy(f) € C%, pr, = p(t) € C,i = V-1, k = 2n/L, and
2l denotes the sum over all L € Z¢. The initial condition u, is a Fourier series
[2] of which is convergent for all x € R?. Substituting u = i1, p = p into (1) gives

0
uL QikLx Z Z (uy, - ikM)uygei@-Mx

L=-c0 L=—c0o M=—

o0

= Z VILPug el — Z KL pye>. (11)

L=—c0 L=—00

Equating like powers of the exponentials in (11) yields

a (o]
Ty > (upw - ikMuy = —v|LPuy, — ikLpy, (12)
ot Y

on using the Cauchy product type formula [4]

Z ax! Z b, x" Z Z b (13)

m=—oco —00 M=—00
Substituting u = @ into (2) gives

(&)

Z ikL - ugetx = 0, (14)

L=-00

Equating like powers of the exponentials in (14) yields

L-u,=0. (15)



Applying L- to (12) and noting (15) leads to
- > (uw-Dyuy ) (16)
M=-c0

where py is arbitrary and L. = L/|L| is the unit vector in the direction of L. Then
substituting (16) into (12) gives

(o]

= _ Z (ug_n - ikM)uy — VL Puy, + Z ikL(ug v - L)y - 1) (17)

M=-c0 M=-c0

ouy
ot

where uy = uy(0). Without loss of generality [2], I take uy = 0. This is due to
the Galilean invariance property of solutions to the Navier—Stokes equations. The
equations for uy, are to be solved for all L € Z¢.
Let

up, = ar, + ibL, (18)

pL = cL +idy, (19)

where a;, = ap(7) € Rd, by, = bL(?) € Rd, c, = c(t) € R, and dy, = di,(¥) € R.
Substituting (18), (19) into (12) gives

Oa ob
— i Z (ar-m + i) - ikM)(an + iby)

= —vi*|LP*(ay, + iby) — ikL(cy, + idy). (20)
Equating real and imaginary parts in (20) gives

0
O (o - KMy by - KMy = ~VEILPay + KLy, (21)

M=-c

ab
e Z ((ap-m - kM)ay — (b - kM)by) = —vE*[LIPby, — kL. (22)

Substituting (18) into (15) gives
L (ay +iby) = 0. (23)
Equating real and imaginary parts in (23) gives
L-a; =0, (24)
L by =0. (25)
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From (21) and in light of (24) it is possible to write

Oay, . = . ~
—r Lt ) (~(@u AMDby — (b KMDa) - r, = —vE|LPag -4y, (26)
M=—00

where 4, = ag,/|ay | is the unit vector in the direction of a;,. Then (26) implies

Jlay|
ot

+ Z (—(ar_m - kM)by — (br_y - kM)ayy) - &g, = —vi*|LPlag].  (27)
M=—00

From (27) it is possible to write

Olay|
ot

< Z (laL-wlkIM|[by| + [by_w|k[Mlap]) — v&*[LI%jay | (28)
M=—00

on using the Cauchy—Schwarz inequality [5]
la - b| < |a||bl. (29)

It then follows from (28) that

0
ol x5 o Myt

L=-c L=—00 M=—0c0

(o]

* Z Z Ibr wlkMlayle™ — > vi?[LPlag ™ (30)

—oo M=— L=-c0

where 0 < X < 1, implying that

0
|aL| ShILIX Z Z |aL|k|M||bM|ek‘L+M|X

L=-c0 L=-0c0o M=—

(o]

+ 30 b kiMlayle™ ™M — N vi2ILPlag ™ 31

L=—0c0o M=—00 L=-00

in light of (13), which yields

8|a |
L k|L|X< Z Z |aL|k|M||b |ek(|L|+|M|)X

=—00 L=—00 M=-00

0

* Z Z by KiMllayle ™ MY — % v2ILPlag [ (32)

L=—00o M=— L=-0c0

on using the triangle inequality [5]

la +b| < [a] + [b]. (33)



From (22) and in light of (25) it is possible to write

6bL .
ot

by, + Z ((ap-m - kM)ay — (br—m - kM)byy) - bL = —Vk2|L|2bL bL (34)

where by, = by, /|by| is the unit vector in the direction of by.. Then (34) implies

dlbul
ot

Z ((ap_m - kMDay; — (by_y - kM)byy) - by, = —vK*[LP[by|.

From (35) it is possible to write

dlby |
ot

< Z (Jar-wmlkIMlay| + by ylkIM[by]) — v&*[L[by |

on using the Cauchy—Schwarz inequality. It then follows from (36) that

[oo]

olb
> Ml < $0 S oy My

L=-00 L=—00 M=-00

+ >0 I kMY - Z VICILP by Je ¥
L=—0c0o M=—00

L=
implying that

olb
> Ml < 505" oy M

=—00 L=—0c0o M=—0c0

oo

£ kMl ™ME — 2L by e

L=-00 M=-c0 L=—-c

in light of (13), which yields

Z IbLI SHILIX Z Z lag kM ]Jay|ek MDY

L=-0c0 L=—0c0 M=—00

n Z Z Iy [[M] [y ek MDY _ Z VRIL[by [

—00o M=—oc0 L=-00

on using the triangle inequality.

Let
= laue™,
L=-0c0

(35)

(36)

(37)

(38)

(39)

(40)



p= > Ibyle @1)

L=—00
and note that |G| < Q where Q = ¢ + ¢. Then (32) can be written as

32

and (39) can be written as

(9¢ oy dp 0%

2 <Vax *95% ~Vaxz (43)
Adding (42) and (43) yields
Q 00 &0
Now both -
oy = ) a0 (45)
L=-0c0
and -
Blo = ) by(0)e™ (46)
L=—0co0

converge for all x € R? since uy = ii|,—¢ = |~ + ibl,—o is smooth. Then

0o

D {aO)? <o (47)

L=-00

for 1 <i < d in light of Theorem 3.5-2 of [5] which yields

o

D a0 < . (48)

L=—c0

Then with n € N
DOl = > auOlLIL

L#0 L+#0
< O laLOPILP) 2 L (49)
L+#0 L#0

on using the Cauchy—Schwarz inequality. It can be found that there are less than
cq? vectors L with |L|> = g where ¢ = c(d). Then

D s Z heq™" (50)

L+0



where £, is the number of vectors L with [L|* = g. Therefore
DL < Y eqlq (51)
L+0 g=1

It is possible to choose n > d + 1 € N so that (50) converges. It then follows that

D lan(0) < o (52)

since Uy = Ui,—o 1s smooth. Likewise,

Z Iby.(0)] < 0. (53)

L+0

. . 2
Therefore Q|x-,—o converges. Similarly ZT%X:,IO converges and therefore Q|-
converges for 0 < X < 1. Note also that

&0
X’

>0 for s> 0. (54)

At points where Q is a maximum,

90
—=>0.
5 0 (55)
Equation (44) can be written as
2
99 _ Qa_Q Q0 _ H (56)

where H = H(X,t) < O can be thought of as a force. The extreme case is then
0 = Q where

0Q 0Q) 0*Q

00— _y_ 57

o oX | ox? 7)
Let

0A 0
=1—/A=1—1log. A
Q /laX/ ﬂax og, (58)

where A is a constant. Substituting (58) into (57) gives

o 0A 19 0A 9 &A
ox (o™ = V3 ax Gx ) ~ v (Gxa

Then with 4 = —2v, equation (59) gives

0A
A— (a—X)Z)/Az)- (59)

0 0A 0 0°A
~(—/A) = (W

ox " o1 “ax o (60)



which leads to P e
A A
- v 4 HA
o e Tl

where h = h(t) is arbitrary.

The separation of variables method and the form of Q necessitates to let

A= Ay et
L:Z—oo

where Ay, = AL (7). Substituting (62) into (61) gives

OAu o _ _, Z LPAL MY + Z ApefllX,

ot

L=—00 L=-00 L=-00
Equating like powers of the exponentials in (63) leads to

oAy
ot

Equation (64) is easily solved to find

= —vk?[L|*PAL + ALh.

217 12 1
Ay = AL(0) e VRILP e+ s h(-r)d‘r‘

It then follows that

a 0o
Q= = log.(( Z Ap(0)e " FILPIGHLIXY -2y
L=—co

)

Now with .
Q= > Q™ Q=0
L=—co
where Qp, = Q. (¢) > 0 it follows that

X0
Ay = el 1%

. Qg )kILIX
— e 1 ZL#O (9]

+
A

L+0 k|L|

k|L{

L+0

1 Q0™ 1 1 Qu0)eltX
DR e

)* +

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

which is valid since Q|,-y converges for 0 < X < 1. For consistency, matching

(62) with (68) yields
Q,(0)

Ap(0) =1, AL(0) = + O( ! ) for L # 0.

Ak|L| A2k?

8

(69)



Then (66) becomes

0
Q= X — log,(A") (70)
where Q (O) i
L VAL KX _ L [¥ 2 ax
L+ ) gy + O™ ettt = el 7D

L#0

Equation (71) can be written as

Qr(0)Qm(0) o 2 2,
A = 1+ (ILI+MDX ,—vk=(IL|+M])~t
3 /lk) 22 I ©

L+0 M+0 | ”Ml

Qr(0)Q2Mm(0)Q2n(0)2p(0)
W(ﬂ’ 2,202 2 LIMINIP

L+#0 M0 N0 P#0

—vi2 2
@R (LI+MI+NI+HPDX o —vE“(ILI+HMI+HNI+HP)™r

)Z QL(O) ehILIX o —vk2|LI2t
L0

+l(i)3 Z Z Z (020 (0)2n(0) kILI+IMI+INDX o =V (LI+[MI+IN)??
S ILIIMIIN|
#0 M=0 N+0

+...) (72)

In light of (72) and due to A € [0, 1] from (71) it is then clear that A increases with
increasing ¢ > 0. This is more easily seen to be the case by applying the Cauchy
product type formula to (72). It then follows that Q has no finite-time singularity

at X = 0 and [4] < Q|y=o. Similarly it can be shown that ‘;X% has no finite-time

smgularlty at X = 0 and |V < axz 2|x=0. Then 35> k*[L|*lug|* converges for all
> 0 1n light of Theorem 3.5-2 of [5]. It then follows that [2]

(s3]

sup v > [LP P < oo (73)
0<i<T  ['=oo
for all T > 0. Therefore the theorem is true. O
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