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A proposed solution to the millennium problem on the existence and smoothness
of the Navier—Stokes equations.

1. Introduction

The Navier-Stokes equations are thought to govern the motion of a fluid in R?
where d € N, see [1,3,7]. Letu = u(x,?) € R be the fluid velocity and let
p = p(x,1) € R be the fluid pressure, each dependent on position x € R¢ and time
t > 0. I take the externally applied force acting on the fluid to be identically zero.
The fluid is assumed to be incompressible with constant viscosity v > 0 and to fill
all of R?. The Navier-Stokes equations can then be written as

Ju

= (u-Vu=vVu-Vp, (1)
V-u=0 ()

with initial condition
u(x,0) = ugy (3)

where uy = uy(x) € R?. In these equations

o9 9 9
(9X1’6X2"”’6xd

V=( ) “4)

is the gradient operator and

Vi= )y — (5)

is the Laplacian operator. Solutions of (1), (2), (3) are to be found with
uy(x + Le;) = up(x) (6)

for 1 < i < d where ¢, is the i unit vector in R? and L > 0 is a constant [7]. The
initial condition uy is a given C* divergence-free vector field on R. A solution of
(1), (2), (3) is then accepted to be physically reasonable [3] if

u(X + Lei’ t) = u(X, t)? p(x + Lei’ t) = p(X’ t) (7)
onR¢ x [0, 00) for 1 <i<dand

u,p € C°(RY x [0, 0)). (8)
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2. Solution to the Navier—Stokes problem

I provide a proof of the following theorem [2,3,6,7].

Theorem. Let uy be any smooth, divergence-free vector field satisfying (6). Then
there exist smooth functions u, p on R x [0, 00) that satisfy (1), (2), (3), (7), (8).
Proof. Let the Galerkin approximation of u, p be

i= Z uLeikL-X, (9)
L=—c0

p= ), pet™™ (10)
L=—00

respectively. Here uy, = uy(f) € C%, pr, = p(t) € C,i = V-1, k = 2n/L, and
2l denotes the sum over all L € Z¢. The initial condition u, is a Fourier series
[2] of which is convergent for all x € R?. Substituting u = i1, p = p into (1) gives

0
uL QikLx Z Z (uy, - ikM)uygei@-Mx

L=-c0 L=—c0o M=—

o0

= Z VILPug el — Z KL pye>. (11)

L=—c0 L=—00

Equating like powers of the exponentials in (11) yields

a (o]
Ty > (upw - ikMuy = —v|LPuy, — ikLpy, (12)
ot Y

on using the Cauchy product type formula [4]

Z ax! Z b, x" Z Z b (13)

m=—oco —00 M=—00
Substituting u = @ into (2) gives

(&)

Z ikL - ugetx = 0, (14)

L=-00

Equating like powers of the exponentials in (14) yields

L-u,=0. (15)



Applying L- to (12) and noting (15) leads to
- > (uw-Dyuy ) (16)
M=-c0

where py is arbitrary and L. = L/|L| is the unit vector in the direction of L. Then
substituting (16) into (12) gives

(o]

= _ Z (ug_n - ikM)uy — VL Puy, + Z ikL(ug v - L)y - 1) (17)

M=-c0 M=-c0

ouy
ot

where uy = uy(0). Without loss of generality [2], I take uy = 0. This is due to
the Galilean invariance property of solutions to the Navier—Stokes equations. The
equations for uy, are to be solved for all L € Z¢.
Let

up, = ar, + ibL, (18)

pL = cL +idy, (19)

where a;, = ap(7) € Rd, by, = bL(?) € Rd, c, = c(t) € R, and dy, = di,(¥) € R.
Substituting (18), (19) into (12) gives

Oa ob
— i Z (ar-m + i) - ikM)(an + iby)

= —vi*|LP*(ay, + iby) — ikL(cy, + idy). (20)
Equating real and imaginary parts in (20) gives

0
O (o - KMy by - KMy = ~VEILPay + KLy, (21)

M=-c

ab
e Z ((ap-m - kM)ay — (b - kM)by) = —vE*[LIPby, — kL. (22)

Substituting (18) into (15) gives
L (ay +iby) = 0. (23)
Equating real and imaginary parts in (23) gives
L-a; =0, (24)
L by =0. (25)
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From (21) and in light of (24) it is possible to write

Oay, . = . ~
—r Lt ) (~(@u AMDby — (b KMDa) - r, = —vE|LPag -4y, (26)
M=—00

where 4, = ag,/|ay | is the unit vector in the direction of a;,. Then (26) implies

Jlay|
ot

+ Z (—(ar_m - kM)by — (br_y - kM)ayy) - &g, = —vi*|LPlag].  (27)
M=—00

From (27) it is possible to write

Olay|
ot

< Z (laL-wlkIM|[by| + [by_w|k[Mlap]) — v&*[LI%jay | (28)
M=—00

on using the Cauchy—Schwarz inequality [5]
la - b| < |a||bl. (29)

It then follows from (28) that

0
ol x5 o Myt

L=-c L=—00 M=—0c0

(o]

* Z Z Ibr wlkMlayle™ — > vi?[LPlag ™ (30)

—oo M=— L=-c0

where 0 < X < 1, implying that

0
|aL| ShILIX Z Z |aL|k|M||bM|ek‘L+M|X

L=-c0 L=-0c0o M=—

(o]

+ 30 b kiMlayle™ ™M — N vi2ILPlag ™ 31

L=—0c0o M=—00 L=-00

in light of (13), which yields

8|a |
L k|L|X< Z Z |aL|k|M||b |ek(|L|+|M|)X

=—00 L=—00 M=-00

0

* Z Z by KiMllayle ™ MY — % v2ILPlag [ (32)

L=—00o M=— L=-0c0

on using the triangle inequality [5]

la +b| < [a] + [b]. (33)



From (22) and in light of (25) it is possible to write

6bL .
ot

by, + Z ((ap-m - kM)ay — (br—m - kM)byy) - bL = —Vk2|L|2bL bL (34)

where by, = by, /|by| is the unit vector in the direction of by.. Then (34) implies

dlbul
ot

Z ((ap_m - kMDay; — (by_y - kM)byy) - by, = —vK*[LP[by|.

From (35) it is possible to write

dlby |
ot

< Z (Jar-wmlkIMlay| + by ylkIM[by]) — v&*[L[by |

on using the Cauchy—Schwarz inequality. It then follows from (36) that

[oo]

olb
> Ml < $0 S oy My

L=-00 L=—00 M=-00

+ >0 I kMY - Z VICILP by Je ¥
L=—0c0o M=—00

L=
implying that

olb
> Ml < 505" oy M

=—00 L=—0c0o M=—0c0

oo

£ kMl ™ME — 2L by e

L=-00 M=-c0 L=—-c

in light of (13), which yields

Z IbLI SHILIX Z Z lag kM ]Jay|ek MDY

L=-0c0 L=—0c0 M=—00

n Z Z Iy [[M] [y ek MDY _ Z VRIL[by [

—00o M=—oc0 L=-00

on using the triangle inequality.

Let
= laue™,
L=-0c0

(35)

(36)

(37)

(38)

(39)

(40)



6= ), I

L=—00
and note that |ii]| < Q where Q = ¢ + ¢. Then (32) can be written as

oy op O Oy
o SVax Tax T Vaxe

and (39) can be written as

?gwaw op  0%¢
t

Adding (42) and (43) yields

ox "%ax Voxz

90 _ 00 30

or S%ox Voxz

(41)

(42)

(43)

(44)

Here Q|- converges for 0 < X < 1 since uy = 1|, is smooth. Note also that

aS Q

>0 for s > 0.

At points where Q is a maximum,
0
90
ot

The extreme case is then Q = Q where

0.

0 _ 09 FO
o ax  Voxr

Let oA 5
Q= /16—)(/14 = /16—)( IOgeA

where A is a constant. Substituting (48) into (47) gives

o 0A ,1 0 0A 0*A

_ I Y el 2y i T A a_AZ 2
A—~(==/A) =4 (Gx/A)) = v (5574 = (F))/AD).

0X ot 20X 0X 0x?

Then with A = —2v, equation (49) gives

o 0A 0 A
Ty = 2 (ZL 4
x o'V 7 ax eV
which leads to oA A
LNy o/
o~ Vox2 T
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(45)

(46)

(47)

(48)

(49)

(50)

(5D



where h = h(t) is arbitrary.
Let -
A= Ay el
L;oo
where Ay, = AL (7). Substituting (52) into (51) gives

AL i _ _, Z ILPALe X 4 Z ApedLiX

ot

L=-co L=-c0 L=-o0
Equating like powers of the exponentials in (53) leads to

oA,

= —vK’|LP*AL + ALh.
o1 v | | L L

Equation (54) is easily solved to find
Ap = Ap(0)e I o dr

It then follows that

_ 0 N —VE2|L|?t Jk|L|X\—2v
Q= a—Xloge((L;wAL(O)e HLy-2r),

Now with -
Q= > e Q=0
L=-0c0
where Qp, = Qg ,(¢) > 0 it follows that

X9
Al=o = ef 1 Xmt:O

i o, ekLX
— e} ZL¢0 kL]

A “ k|L| 2°1 “ kIL|
For consistency, matching (52) with (58) yields
Q1.(0) 1
Ap(0) =1, AL0) = (0] for L # 0.
0(0) 1(0) = S+ Ol) for L

Then (56) becomes

o
0= 2 10 (A
ox 084"

1 QL)X 11 Qp(0)eMX
1+_Z&+ Z&)z-i_

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)



where

QL(O) 1 VIR KLIX _ [ 2ax
¢ = 142, 61
LZ:( /llel /lez )e e e (61)
#0
Equation (61) can be written as
~ Q(0)Qpm(0) ALHMIX A2 (LI M1
D My v
L0 M#0

OL(0)21(0) QN (0)2p(0)
ﬁ%ﬂzzzz ILIMIN|[P]

L#0 M#0 N+0 P#0

Xek(lL|+\M\+|N|+|P|)Xe—vk2(|L|+|M|+|N|+|P|)2t + )Z QL(O) k|L|X —vk2|L|2
' IL|

1 QL O)MOINO) (LpME+NDX =Lk M N
DI c c

6 Ak L+#0 M+#0 N0 |L”M”N|

+...0 (62)

In light of (62) and due to A € [0, 1] it is then clear that A increases with increasing
t > 0. This is more easily seen to be the case by applying the Cauchy product type
formula to (62). It then follows that Q has no finite-time singularity at X = 0 and

[ta] < Q|x—o. Similarly it can be shown that ZX% has no finite time singularity at

X = 0and |V < ‘;%lxzo. Then Yp> ., k*|L[*lug|* converges for all ¢ > 0 due to

a convergence theorem of ([5], page 164). It then follows that ([2], page 119)

(s3]

sup v > UL < oo (63)
(USES A il
forall T > 0. .. the theorem is true. O
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