The Navier-Stokes problem

Daniel Thomas Hayes

February 20, 2020

A proposed solution to the millennium problem on the existence and smoothness of the Navier–Stokes equations.

1. Introduction

The Navier–Stokes equations are thought to govern the motion of a fluid in \mathbb{R}^d where $d \in \mathbb{N}$, see [1,3,7]. Let $\mathbf{u} = \mathbf{u}(\mathbf{x},t) \in \mathbb{R}^d$ be the velocity and let $p = p(\mathbf{x},t) \in \mathbb{R}$ be the pressure, each dependent on position $\mathbf{x} \in \mathbb{R}^d$ and time $t \ge 0$. I take the externally applied force to be identically zero. The fluid is assumed to be incompressible with constant viscosity $v \ge 0$ and to fill all of \mathbb{R}^d . The Navier–Stokes equations can then be written as

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = \nu \nabla^2 \mathbf{u} - \nabla p, \tag{1}$$

$$\nabla \cdot \mathbf{u} = 0 \tag{2}$$

with initial condition

$$\mathbf{u}(\mathbf{x},0) = \mathbf{u}_0 \tag{3}$$

where $\mathbf{u}_0 = \mathbf{u}_0(\mathbf{x}) \in \mathbb{R}^d$. In these equations

$$\nabla = (\frac{\partial}{\partial \mathbf{x}_1}, \frac{\partial}{\partial \mathbf{x}_2}, \dots, \frac{\partial}{\partial \mathbf{x}_d}) \tag{4}$$

is the gradient operator and

$$\nabla^2 = \sum_{i=1}^d \frac{\partial^2}{\partial \mathbf{x}_i^2} \tag{5}$$

is the Laplacian operator. When $\nu = 0$, equations (1), (2), (3) are called the Euler equations. Solutions of (1), (2), (3) are to be found with

$$\mathbf{u}_0(\mathbf{x} + Le_i) = \mathbf{u}_0(\mathbf{x}) \tag{6}$$

for $1 \le i \le d$ where e_i is the i^{th} unit vector in \mathbb{R}^d and L > 0 is a constant [7]. The initial condition \mathbf{u}_0 is a given C^{∞} divergence-free vector field on \mathbb{R}^d . A solution of (1), (2), (3) is then accepted to be physically reasonable [3] if

$$\mathbf{u}(\mathbf{x} + Le_i, t) = \mathbf{u}(\mathbf{x}, t), \quad p(\mathbf{x} + Le_i, t) = p(\mathbf{x}, t)$$
(7)

on $\mathbb{R}^d \times [0, \infty)$ for $1 \le i \le d$ and

$$\mathbf{u}, p \in C^{\infty}(\mathbb{R}^d \times [0, \infty)). \tag{8}$$

2. Solution to the Navier-Stokes problem

I provide a proof of the following theorem [2,3,6,7].

Theorem. Take $\nu > 0$. Let \mathbf{u}_0 be any smooth, divergence-free vector field satisfying (6). Then there exist smooth functions \mathbf{u} , p on $\mathbb{R}^d \times [0, \infty)$ that satisfy (1), (2), (3), (7), (8).

Proof. It is sufficient to rule out the possibility that there is a smooth, divergence-free \mathbf{u}_0 for which (1), (2), (3) have a solution with a finite blowup time [3]. Let the Fourier series of \mathbf{u} , p be

$$\tilde{\mathbf{u}} = \sum_{\mathbf{L} = -\infty}^{\infty} \mathbf{u}_{\mathbf{L}} e^{ik\mathbf{L} \cdot \mathbf{x}},\tag{9}$$

$$\tilde{p} = \sum_{L=-\infty}^{\infty} p_L e^{ikL \cdot x}$$
 (10)

respectively. Here $\mathbf{u}_{\mathbf{L}} = \mathbf{u}_{\mathbf{L}}(t) \in \mathbb{C}^d$, $p_{\mathbf{L}} = p_{\mathbf{L}}(t) \in \mathbb{C}$, $\mathbf{i} = \sqrt{-1}$, $k = 2\pi/L$, and $\sum_{\mathbf{L}=-\infty}^{\infty}$ denotes the sum over all $\mathbf{L} \in \mathbb{Z}^d$. The initial condition \mathbf{u}_0 is a Fourier series [2] of which is convergent for all $\mathbf{x} \in \mathbb{R}^d$. Substituting $\mathbf{u} = \tilde{\mathbf{u}}$, $p = \tilde{p}$ into (1) gives

$$\sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t} e^{ik\mathbf{L}\cdot\mathbf{x}} + \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} (\mathbf{u}_{\mathbf{L}} \cdot ik\mathbf{M}) \mathbf{u}_{\mathbf{M}} e^{ik(\mathbf{L}+\mathbf{M})\cdot\mathbf{x}}$$

$$= -\sum_{\mathbf{L}=-\infty}^{\infty} \nu k^{2} |\mathbf{L}|^{2} \mathbf{u}_{\mathbf{L}} e^{ik\mathbf{L}\cdot\mathbf{x}} - \sum_{\mathbf{L}=-\infty}^{\infty} ik\mathbf{L} p_{\mathbf{L}} e^{ik\mathbf{L}\cdot\mathbf{x}}.$$
(11)

Equating like powers of the exponentials in (11) yields

$$\frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t} + \sum_{\mathbf{M}=-\infty}^{\infty} (\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot ik\mathbf{M}) \mathbf{u}_{\mathbf{M}} = -\nu k^2 |\mathbf{L}|^2 \mathbf{u}_{\mathbf{L}} - ik\mathbf{L}p_{\mathbf{L}}$$
(12)

on using the Cauchy product type formula [4]

$$\sum_{l=-\infty}^{\infty} a_l x^l \sum_{m=-\infty}^{\infty} b_m x^m = \sum_{l=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a_{l-m} b_m x^l.$$
 (13)

Substituting $\mathbf{u} = \tilde{\mathbf{u}}$ into (2) gives

$$\sum_{\mathbf{L}=-\infty}^{\infty} i k \mathbf{L} \cdot \mathbf{u}_{\mathbf{L}} e^{i k \mathbf{L} \cdot \mathbf{x}} = 0.$$
 (14)

Equating like powers of the exponentials in (14) yields

$$\mathbf{L} \cdot \mathbf{u}_{\mathbf{L}} = 0. \tag{15}$$

Applying L \cdot to (12) and noting (15) leads to

$$p_{\mathbf{L}} = -\sum_{\mathbf{M}=-\infty}^{\infty} (\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot \hat{\mathbf{L}})(\mathbf{u}_{\mathbf{M}} \cdot \hat{\mathbf{L}})$$
 (16)

where p_0 is arbitrary and $\hat{\mathbf{L}} = \mathbf{L}/|\mathbf{L}|$ is the unit vector in the direction of \mathbf{L} . Then substituting (16) into (12) gives

$$\frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t} = -\sum_{\mathbf{M}=-\infty}^{\infty} (\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot ik\mathbf{M})\mathbf{u}_{\mathbf{M}} - \nu k^{2} |\mathbf{L}|^{2} \mathbf{u}_{\mathbf{L}} + \sum_{\mathbf{M}=-\infty}^{\infty} ik\mathbf{L} (\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot \hat{\mathbf{L}}) (\mathbf{u}_{\mathbf{M}} \cdot \hat{\mathbf{L}})$$
(17)

where $\mathbf{u_0} = \mathbf{u_0}(0)$. Without loss of generality [2], I take $\mathbf{u_0} = \mathbf{0}$. The equations for $\mathbf{u_L}$ are to be solved for all $\mathbf{L} \in \mathbb{Z}^d$. Let

$$\mathbf{u}_{\mathbf{L}} = \mathbf{a}_{\mathbf{L}} + \mathrm{i}\mathbf{b}_{\mathbf{L}},\tag{18}$$

$$p_{\mathbf{L}} = c_{\mathbf{L}} + \mathrm{i}d_{\mathbf{L}} \tag{19}$$

where $\mathbf{a}_{\mathbf{L}} = \mathbf{a}_{\mathbf{L}}(t) \in \mathbb{R}^d$, $\mathbf{b}_{\mathbf{L}} = \mathbf{b}_{\mathbf{L}}(t) \in \mathbb{R}^d$, $c_{\mathbf{L}} = c_{\mathbf{L}}(t) \in \mathbb{R}$, and $d_{\mathbf{L}} = d_{\mathbf{L}}(t) \in \mathbb{R}$. Substituting (18), (19) into (12) gives

$$\frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} + i \frac{\partial \mathbf{b}_{\mathbf{L}}}{\partial t} + \sum_{\mathbf{M} = -\infty}^{\infty} ((\mathbf{a}_{\mathbf{L} - \mathbf{M}} + i\mathbf{b}_{\mathbf{L} - \mathbf{M}}) \cdot ik\mathbf{M})(\mathbf{a}_{\mathbf{M}} + i\mathbf{b}_{\mathbf{M}})$$

$$= -\nu k^{2} |\mathbf{L}|^{2} (\mathbf{a}_{\mathbf{L}} + i\mathbf{b}_{\mathbf{L}}) - ik\mathbf{L}(c_{\mathbf{L}} + id_{\mathbf{L}}). \tag{20}$$

Equating real and imaginary parts in (20) gives

$$\frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} + \sum_{\mathbf{M}=-\infty}^{\infty} (-(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M})\mathbf{b}_{\mathbf{M}} - (\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M})\mathbf{a}_{\mathbf{M}}) = -\nu k^{2}|\mathbf{L}|^{2}\mathbf{a}_{\mathbf{L}} + k\mathbf{L}d_{\mathbf{L}}, \quad (21)$$

$$\frac{\partial \mathbf{b_L}}{\partial t} + \sum_{\mathbf{M}=-\infty}^{\infty} ((\mathbf{a_{L-M}} \cdot k\mathbf{M})\mathbf{a_M} - (\mathbf{b_{L-M}} \cdot k\mathbf{M})\mathbf{b_M}) = -\nu k^2 |\mathbf{L}|^2 \mathbf{b_L} - k\mathbf{L}c_{\mathbf{L}}.$$
 (22)

Substituting (18) into (15) gives

$$\mathbf{L} \cdot (\mathbf{a_L} + i\mathbf{b_L}) = 0. \tag{23}$$

Equating real and imaginary parts in (23) gives

$$\mathbf{L} \cdot \mathbf{a}_{\mathbf{L}} = 0, \tag{24}$$

$$\mathbf{L} \cdot \mathbf{b}_{\mathbf{L}} = 0. \tag{25}$$

From (21) and in light of (24) it is possible to write

$$\frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} \cdot \hat{\mathbf{a}}_{\mathbf{L}} + \sum_{\mathbf{M}=-\infty}^{\infty} (-(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M})\mathbf{b}_{\mathbf{M}} - (\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M})\mathbf{a}_{\mathbf{M}}) \cdot \hat{\mathbf{a}}_{\mathbf{L}} = -\nu k^{2} |\mathbf{L}|^{2} \mathbf{a}_{\mathbf{L}} \cdot \hat{\mathbf{a}}_{\mathbf{L}}$$
(26)

where $\hat{\mathbf{a}}_L = \mathbf{a}_L/|\mathbf{a}_L|$ is the unit vector in the direction of \mathbf{a}_L . Then (26) implies

$$\frac{\partial |\mathbf{a}_{L}|}{\partial t} + \sum_{\mathbf{M}=-\infty}^{\infty} (-(\mathbf{a}_{L-\mathbf{M}} \cdot k\mathbf{M})\mathbf{b}_{\mathbf{M}} - (\mathbf{b}_{L-\mathbf{M}} \cdot k\mathbf{M})\mathbf{a}_{\mathbf{M}}) \cdot \hat{\mathbf{a}}_{L} = -\nu k^{2}|\mathbf{L}|^{2}|\mathbf{a}_{L}|. \tag{27}$$

From (27) it is possible to write

$$\frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} \leq \sum_{\mathbf{M}=-\infty}^{\infty} (|\mathbf{a}_{\mathbf{L}-\mathbf{M}}|k|\mathbf{M}||\mathbf{b}_{\mathbf{M}}| + |\mathbf{b}_{\mathbf{L}-\mathbf{M}}|k|\mathbf{M}||\mathbf{a}_{\mathbf{M}}|) - \nu k^{2}|\mathbf{L}|^{2}|\mathbf{a}_{\mathbf{L}}|$$
(28)

on using the Cauchy–Schwarz inequality [5]

$$|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}||\mathbf{b}|. \tag{29}$$

It then follows from (28) that

$$\sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{a}_{\mathbf{L}-\mathbf{M}}|k|\mathbf{M}||\mathbf{b}_{\mathbf{M}}|e^{k|\mathbf{L}||\mathbf{x}|} + \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{b}_{\mathbf{L}-\mathbf{M}}|k|\mathbf{M}||\mathbf{a}_{\mathbf{M}}|e^{k|\mathbf{L}||\mathbf{x}|} - \sum_{\mathbf{L}=-\infty}^{\infty} \nu k^{2} |\mathbf{L}|^{2} |\mathbf{a}_{\mathbf{L}}|e^{k|\mathbf{L}||\mathbf{x}|}$$
(30)

implying that

$$\sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{a}_{\mathbf{L}}|k|\mathbf{M}||\mathbf{b}_{\mathbf{M}}||e^{k|\mathbf{L}+\mathbf{M}||\mathbf{x}|}$$

$$+ \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{b}_{\mathbf{L}}|k|\mathbf{M}||\mathbf{a}_{\mathbf{M}}||e^{k|\mathbf{L}+\mathbf{M}||\mathbf{x}|} - \sum_{\mathbf{L}=-\infty}^{\infty} \nu k^{2}|\mathbf{L}|^{2}|\mathbf{a}_{\mathbf{L}}||e^{k|\mathbf{L}||\mathbf{x}|}$$
(31)

in light of (13), which yields

$$\sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{a}_{\mathbf{L}}|k|\mathbf{M}||\mathbf{b}_{\mathbf{M}}||e^{k(|\mathbf{L}|+|\mathbf{M}|)|\mathbf{x}|}$$

$$+ \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{b}_{\mathbf{L}}|k|\mathbf{M}||\mathbf{a}_{\mathbf{M}}||e^{k(|\mathbf{L}|+|\mathbf{M}|)|\mathbf{x}|} - \sum_{\mathbf{L}=-\infty}^{\infty} \nu k^{2}|\mathbf{L}|^{2}|\mathbf{a}_{\mathbf{L}}||e^{k|\mathbf{L}||\mathbf{x}|}$$
(32)

on using the triangle inequality [5]

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|. \tag{33}$$

From (22) and in light of (25) it is possible to write

$$\frac{\partial \mathbf{b_L}}{\partial t} \cdot \hat{\mathbf{b}_L} + \sum_{\mathbf{M} = -\infty}^{\infty} ((\mathbf{a_{L-M}} \cdot k\mathbf{M})\mathbf{a_M} - (\mathbf{b_{L-M}} \cdot k\mathbf{M})\mathbf{b_M}) \cdot \hat{\mathbf{b}_L} = -\nu k^2 |\mathbf{L}|^2 \mathbf{b_L} \cdot \hat{\mathbf{b}_L}$$
(34)

where $\hat{\mathbf{b}}_{L} = \mathbf{b}_{L}/|\mathbf{b}_{L}|$ is the unit vector in the direction of \mathbf{b}_{L} . Then (34) implies

$$\frac{\partial |\mathbf{b}_{\mathbf{L}}|}{\partial t} + \sum_{\mathbf{M}=-\infty}^{\infty} ((\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M})\mathbf{a}_{\mathbf{M}} - (\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M})\mathbf{b}_{\mathbf{M}}) \cdot \hat{\mathbf{b}}_{\mathbf{L}} = -\nu k^{2}|\mathbf{L}|^{2}|\mathbf{b}_{\mathbf{L}}|. \tag{35}$$

From (35) it is possible to write

$$\frac{\partial |\mathbf{b}_{\mathbf{L}}|}{\partial t} \leq \sum_{\mathbf{M}=-\infty}^{\infty} (|\mathbf{a}_{\mathbf{L}-\mathbf{M}}|k|\mathbf{M}||\mathbf{a}_{\mathbf{M}}| + |\mathbf{b}_{\mathbf{L}-\mathbf{M}}|k|\mathbf{M}||\mathbf{b}_{\mathbf{M}}|) - \nu k^{2}|\mathbf{L}|^{2}|\mathbf{b}_{\mathbf{L}}|$$
(36)

on using the Cauchy-Schwarz inequality. It then follows from (36) that

$$\sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial |\mathbf{b_L}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{a_{L-M}}| k |\mathbf{M}| |\mathbf{a_M}| e^{k|\mathbf{L}||\mathbf{x}|}$$

$$+ \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{b_{L-M}}| k |\mathbf{M}| |\mathbf{b_M}| e^{k|\mathbf{L}||\mathbf{x}|} - \sum_{\mathbf{L}=-\infty}^{\infty} \nu k^2 |\mathbf{L}|^2 |\mathbf{b_L}| e^{k|\mathbf{L}||\mathbf{x}|}$$
(37)

implying that

$$\sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial |\mathbf{b}_{\mathbf{L}}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{a}_{\mathbf{L}}|k|\mathbf{M}||\mathbf{a}_{\mathbf{M}}|e^{k|\mathbf{L}+\mathbf{M}||\mathbf{x}|} + \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{b}_{\mathbf{L}}|k|\mathbf{M}||\mathbf{b}_{\mathbf{M}}|e^{k|\mathbf{L}+\mathbf{M}||\mathbf{x}|} - \sum_{\mathbf{L}=-\infty}^{\infty} \nu k^{2} |\mathbf{L}|^{2} |\mathbf{b}_{\mathbf{L}}|e^{k|\mathbf{L}||\mathbf{x}|}$$
(38)

in light of (13), which yields

$$\sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial |\mathbf{b}_{\mathbf{L}}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{a}_{\mathbf{L}}| k |\mathbf{M}| |\mathbf{a}_{\mathbf{M}}| e^{k(|\mathbf{L}|+|\mathbf{M}|)|\mathbf{x}|}
+ \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} |\mathbf{b}_{\mathbf{L}}| k |\mathbf{M}| |\mathbf{b}_{\mathbf{M}}| e^{k(|\mathbf{L}|+|\mathbf{M}|)|\mathbf{x}|} - \sum_{\mathbf{L}=-\infty}^{\infty} \nu k^{2} |\mathbf{L}|^{2} |\mathbf{b}_{\mathbf{L}}| e^{k|\mathbf{L}||\mathbf{x}|}$$
(39)

on using the triangle inequality.

Let

$$\psi = \sum_{L=-\infty}^{\infty} |\mathbf{a}_{L}| e^{k|\mathbf{L}|X},\tag{40}$$

$$\phi = \sum_{\mathbf{L}=-\infty}^{\infty} |\mathbf{b}_{\mathbf{L}}| e^{k|\mathbf{L}|X}$$
 (41)

where $X = |\mathbf{x}|$ and note that $|\tilde{\mathbf{u}}| \leq Q$ where $Q = \psi + \phi$. Then (32) can be written as

$$\frac{\partial \psi}{\partial t} \le \psi \frac{\partial \phi}{\partial X} + \phi \frac{\partial \psi}{\partial X} - \nu \frac{\partial^2 \psi}{\partial X^2} \tag{42}$$

and (39) can be written as

$$\frac{\partial \phi}{\partial t} \le \psi \frac{\partial \psi}{\partial X} + \phi \frac{\partial \phi}{\partial X} - \nu \frac{\partial^2 \phi}{\partial X^2}.$$
 (43)

Adding (42) and (43) yields

$$\frac{\partial Q}{\partial t} \le Q \frac{\partial Q}{\partial X} - \nu \frac{\partial^2 Q}{\partial X^2}.$$
 (44)

Equation (44) can be written as

$$\frac{\partial Q}{\partial t} - Q \frac{\partial Q}{\partial X} + \nu \frac{\partial^2 Q}{\partial X^2} = H \tag{45}$$

where $H = H(X, t) \le 0$. Here $Q|_{t=0}$ converges for all $X \ge 0$ since $\tilde{\mathbf{u}}|_{t=0}$ converges for all $\mathbf{x} \in \mathbb{R}^d$. Note also that

$$\frac{\partial^s Q}{\partial X^s} \ge 0 \text{ for } s \ge 0. \tag{46}$$

At points where Q is a maximum,

$$\frac{\partial Q}{\partial t} \geqslant 0. \tag{47}$$

The extreme case is then $Q = \Omega$ where

$$\frac{\partial \Omega}{\partial t} = \Omega \frac{\partial \Omega}{\partial X} - \nu \frac{\partial^2 \Omega}{\partial X^2}.$$
 (48)

Let

$$\Omega = \lambda \frac{\partial A}{\partial X} / A = \lambda \frac{\partial}{\partial X} \log_{e} A \tag{49}$$

where λ is a constant. Substituting (49) into (48) gives

$$\lambda \frac{\partial}{\partial X} (\frac{\partial A}{\partial t}/A) = \lambda^2 \frac{1}{2} \frac{\partial}{\partial X} ((\frac{\partial A}{\partial X}/A)^2) - \lambda \nu \frac{\partial}{\partial X} ((\frac{\partial^2 A}{\partial X^2}A - (\frac{\partial A}{\partial X})^2)/A^2). \tag{50}$$

Then with $\lambda = -2\nu$, equation (50) gives

$$\frac{\partial}{\partial X}(\frac{\partial A}{\partial t}/A) = -\nu \frac{\partial}{\partial X}(\frac{\partial^2 A}{\partial X^2}/A) \tag{51}$$

which leads to

$$\frac{\partial A}{\partial t} = -\nu \frac{\partial^2 A}{\partial X^2} + hA \tag{52}$$

where h = h(t) is arbitrary.

Let

$$A = \sum_{\mathbf{L} = -\infty}^{\infty} A_{\mathbf{L}} e^{k|\mathbf{L}|X}$$
 (53)

where $A_{\rm L} = A_{\rm L}(t)$. Substituting (53) into (52) gives

$$\sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial A_{\mathbf{L}}}{\partial t} e^{k|\mathbf{L}|X} = -\nu \sum_{\mathbf{L}=-\infty}^{\infty} k^2 |\mathbf{L}|^2 A_{\mathbf{L}} e^{k|\mathbf{L}|X} + h \sum_{\mathbf{L}=-\infty}^{\infty} A_{\mathbf{L}} e^{k|\mathbf{L}|X}.$$
 (54)

Equating like powers of the exponentials in (54) leads to

$$\frac{\partial A_{\mathbf{L}}}{\partial t} = -\nu k^2 |\mathbf{L}|^2 A_{\mathbf{L}} + A_{\mathbf{L}} h. \tag{55}$$

Equation (55) is easily solved to find

$$A_{\mathbf{L}} = A_{\mathbf{L}}(0)e^{-\nu k^2|\mathbf{L}|^2t + \int_0^t h(\tau) d\tau}.$$
 (56)

It then follows that

$$\Omega = \frac{\partial}{\partial X} \log_{e} \left(\left(\sum_{\mathbf{L} = -\infty}^{\infty} A_{\mathbf{L}}(0) e^{-\nu k^{2} |\mathbf{L}|^{2} t} e^{k|\mathbf{L}|X} \right)^{-2\nu} \right). \tag{57}$$

Now with

$$\Omega = \sum_{L=-\infty}^{\infty} \Omega_L e^{k|L|X}, \ \Omega_0 = 0$$
 (58)

where $\Omega_{\mathbf{L}} = \Omega_{\mathbf{L}}(t) \ge 0$ it follows that

$$A|_{t=0} = e^{\int_{-L}^{X} \frac{\Omega}{\lambda} dX}|_{t=0}$$

$$= e^{\frac{1}{\lambda} \sum_{\mathbf{L} \neq 0} \frac{\Omega_{\mathbf{L}}(0)e^{k|\mathbf{L}|X}}{k|\mathbf{L}|}}$$

$$= 1 + \frac{1}{\lambda} \sum_{\mathbf{L} \neq 0} \frac{\Omega_{\mathbf{L}}(0)e^{k|\mathbf{L}|X}}{k|\mathbf{L}|} + \frac{1}{2} (\frac{1}{\lambda} \sum_{\mathbf{L} \neq 0} \frac{\Omega_{\mathbf{L}}(0)e^{k|\mathbf{L}|X}}{k|\mathbf{L}|})^{2} + \dots$$
 (59)

For consistency, matching (53) with (59) yields

$$A_{\mathbf{0}}(0) = 1, \ A_{\mathbf{L}}(0) = \frac{\Omega_{\mathbf{L}}(0)}{\lambda k |\mathbf{L}|} + O(\frac{1}{\lambda^2 k^2}) \text{ for } \mathbf{L} \neq \mathbf{0}.$$
 (60)

Then (57) becomes

$$\Omega = \frac{\partial}{\partial X} \log_{e}(A^{\lambda}) \tag{61}$$

where

$$A = 1 + \sum_{\mathbf{L} \neq \mathbf{0}} (\frac{\Omega_{\mathbf{L}}(0)}{\lambda k |\mathbf{L}|} + O(\frac{1}{\lambda^2 k^2})) e^{-\nu k^2 |\mathbf{L}|^2 t} e^{k|\mathbf{L}|X} = e^{\int_{-\lambda}^{X} \frac{\Omega}{\lambda} dX}.$$
 (62)

Equation (62) can be written as

$$A = 1 + \{\frac{1}{2}(\frac{1}{\lambda k})^{2} \sum_{\mathbf{L} \neq \mathbf{0}} \sum_{\mathbf{M} \neq \mathbf{0}} \frac{\Omega_{\mathbf{L}}(0)\Omega_{\mathbf{M}}(0)}{|\mathbf{L}||\mathbf{M}|} e^{k(|\mathbf{L}| + |\mathbf{M}|)X} e^{-\nu k^{2}(|\mathbf{L}| + |\mathbf{M}|)^{2}t}$$

$$+ \frac{1}{24}(\frac{1}{\lambda k})^{4} \sum_{\mathbf{L} \neq \mathbf{0}} \sum_{\mathbf{M} \neq \mathbf{0}} \sum_{\mathbf{N} \neq \mathbf{0}} \sum_{\mathbf{P} \neq \mathbf{0}} \frac{\Omega_{\mathbf{L}}(0)\Omega_{\mathbf{M}}(0)\Omega_{\mathbf{N}}(0)\Omega_{\mathbf{P}}(0)}{|\mathbf{L}||\mathbf{M}||\mathbf{N}||\mathbf{P}|}$$

$$\times e^{k(|\mathbf{L}| + |\mathbf{M}| + |\mathbf{N}| + |\mathbf{P}|)X} e^{-\nu k^{2}(|\mathbf{L}| + |\mathbf{M}| + |\mathbf{N}| + |\mathbf{P}|)^{2}t} + \dots\} + \{(\frac{1}{\lambda k}) \sum_{\mathbf{L} \neq \mathbf{0}} \frac{\Omega_{\mathbf{L}}(0)}{|\mathbf{L}|} e^{k|\mathbf{L}|X} e^{-\nu k^{2}|\mathbf{L}|^{2}t}$$

$$+ \frac{1}{6}(\frac{1}{\lambda k})^{3} \sum_{\mathbf{L} \neq \mathbf{0}} \sum_{\mathbf{M} \neq \mathbf{0}} \sum_{\mathbf{N} \neq \mathbf{0}} \frac{\Omega_{\mathbf{L}}(0)\Omega_{\mathbf{M}}(0)\Omega_{\mathbf{N}}(0)}{|\mathbf{L}||\mathbf{M}||\mathbf{N}|} e^{k(|\mathbf{L}| + |\mathbf{M}| + |\mathbf{N}|)X} e^{-\nu k^{2}(|\mathbf{L}| + |\mathbf{M}| + |\mathbf{N}|)^{2}t}$$

$$+ \dots \}.$$

$$(63)$$

In light of (63) and due to $A \in [0, 1]$ it is then clear that A increases with increasing $t \ge 0$. Note that it is sufficient to take X to be in a finite domain due to the spatially periodic boundary conditions. It then follows that Ω has no finite-time singularity and $|\tilde{\mathbf{u}}| \le \Omega$. \therefore blowup is ruled out.

References

- [1] Batchelor G. 1967. *An introduction to fluid dynamics*. Cambridge U. Press, Cambridge.
- [2] Doering C. 2009. The 3D Navier–Stokes problem. *Annu. Rev. Fluid Mech.* **41**: 109–128.
- [3] Fefferman C. 2000. Existence and smoothness of the Navier–Stokes equation. *Clay Mathematics Institute*. Official problem description.
- [4] Hardy G. 1949. *Divergent series*. Oxford University Press.
- [5] Kreyszig E. 1989. *Introductory functional analysis with applications*. Wiley Classics Library.
- [6] Ladyzhenskaya O. 1969. *The mathematical theory of viscous incompressible flows*. Gordon and Breach, New York.
- [7] Tao T. 2013. Localisation and compactness properties of the Navier–Stokes global regularity problem. *Analysis and PDE*. **6**: 25–107.