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A proposed solution to the millennium problem on the existence and smoothness
of the Navier–Stokes equations.

1. Introduction

The Navier–Stokes equations are thought to govern the motion of a fluid in Rd

where d ∈ N, see [1,3,7]. Let u = u(x, t) ∈ Rd be the velocity and let p =

p(x, t) ∈ R be the pressure, each dependent on position x ∈ Rd and time t > 0.
I take the externally applied force to be identically zero. The fluid is assumed to
be incompressible with constant viscosity ν > 0 and to fill all of Rd. The Navier–
Stokes equations can then be written as

∂u
∂t

+ (u · ∇)u = ν∇2u − ∇p, (1)

∇ · u = 0 (2)

with initial condition
u(x, 0) = u0 (3)

where u0 = u0(x) ∈ Rd. In these equations

∇ = (
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xd
) (4)

is the gradient operator and

∇2 =

d∑
i=1

∂2

∂xi
2 (5)

is the Laplacian operator. When ν = 0, equations (1), (2), (3) are called the Euler
equations. Solutions of (1), (2), (3) are to be found with

u0(x + Lei) = u0(x) (6)

for 1 6 i 6 d where ei is the ith unit vector in Rd and L > 0 is a constant [7]. The
initial condition u0 is a given C∞ divergence-free vector field on Rd. A solution of
(1), (2), (3) is then accepted to be physically reasonable [3] if

u(x + Lei, t) = u(x, t), p(x + Lei, t) = p(x, t) (7)

on Rd × [0,∞) for 1 6 i 6 d and

u, p ∈ C∞(Rd × [0,∞)). (8)
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2. Solution to the Navier–Stokes problem

I provide a proof of the following theorem [2,3,6,7].
Theorem. Take ν > 0. Let u0 be any smooth, divergence-free vector field satisfy-
ing (6). Then there exist smooth functions u, p on Rd × [0,∞) that satisfy (1), (2),
(3), (7), (8).
Proof. It is sufficient to rule out the possibility that there is a smooth, divergence-
free u0 for which (1), (2), (3) have a solution with a finite blowup time [3].
Let the Fourier series of u, p be

ũ =

∞∑
L=−∞

uLeikL·x, (9)

p̃ =

∞∑
L=−∞

pLeikL·x (10)

respectively. Here uL = uL(t) ∈ Cd, pL = pL(t) ∈ C, i =
√
−1, k = 2π/L, and∑∞

L=−∞ denotes the sum over all L ∈ Zd. The initial condition u0 is a Fourier series
[2] of which is convergent for all x ∈ Rd. Substituting u = ũ, p = p̃ into (1) gives

∞∑
L=−∞

∂uL

∂t
eikL·x +

∞∑
L=−∞

∞∑
M=−∞

(uL · ikM)uMeik(L+M)·x

= −

∞∑
L=−∞

νk2|L|2uLeikL·x −

∞∑
L=−∞

ikLpLeikL·x. (11)

Equating like powers of the exponentials in (11) yields

∂uL

∂t
+

∞∑
M=−∞

(uL−M · ikM)uM = −νk2|L|2uL − ikLpL (12)

on using the Cauchy product type formula [4]

∞∑
l=−∞

alxl
∞∑

m=−∞

bmxm =

∞∑
l=−∞

∞∑
m=−∞

al−mbmxl. (13)

Substituting u = ũ into (2) gives

∞∑
L=−∞

ikL · uLeikL·x = 0. (14)

Equating like powers of the exponentials in (14) yields

L · uL = 0. (15)
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Applying L· to (12) and noting (15) leads to

pL = −

∞∑
M=−∞

(uL−M · L̂)(uM · L̂) (16)

where p0 is arbitrary and L̂ = L/|L| is the unit vector in the direction of L. Then
substituting (16) into (12) gives

∂uL

∂t
= −

∞∑
M=−∞

(uL−M · ikM)uM − νk2|L|2uL +

∞∑
M=−∞

ikL(uL−M · L̂)(uM · L̂) (17)

where u0 = u0(0). Without loss of generality [2], due to Galilean invariance, I
take u0 = 0. The equations for uL are to be solved for all L ∈ Zd.
Let

uL = aL + ibL, (18)

pL = cL + idL (19)

where aL = aL(t) ∈ Rd, bL = bL(t) ∈ Rd, cL = cL(t) ∈ R, and dL = dL(t) ∈ R.
Substituting (18), (19) into (12) gives

∂aL

∂t
+ i

∂bL

∂t
+

∞∑
M=−∞

((aL−M + ibL−M) · ikM)(aM + ibM)

= −νk2|L|2(aL + ibL) − ikL(cL + idL). (20)

Equating real and imaginary parts in (20) gives

∂aL

∂t
+

∞∑
M=−∞

(−(aL−M · kM)bM − (bL−M · kM)aM) = −νk2|L|2aL + kLdL, (21)

∂bL

∂t
+

∞∑
M=−∞

((aL−M · kM)aM − (bL−M · kM)bM) = −νk2|L|2bL − kLcL. (22)

Substituting (18) into (15) gives

L · (aL + ibL) = 0. (23)

Equating real and imaginary parts in (23) gives

L · aL = 0, (24)

L · bL = 0. (25)
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From (21) and in light of (24) it is possible to write

∂aL

∂t
· âL +

∞∑
M=−∞

(−(aL−M · kM)bM − (bL−M · kM)aM) · âL = −νk2|L|2aL · âL (26)

where âL = aL/|aL| is the unit vector in the direction of aL. Then (26) implies

∂|aL|

∂t
+

∞∑
M=−∞

(−(aL−M · kM)bM − (bL−M · kM)aM) · âL = −νk2|L|2|aL|. (27)

From (27) it is possible to write

∂|aL|

∂t
6

∞∑
M=−∞

(|aL−M|k|M||bM| + |bL−M|k|M||aM|) − νk2|L|2|aL| (28)

on using the Cauchy–Schwarz inequality [5]

|a · b| 6 |a||b|. (29)

It then follows from (28) that
∞∑

L=−∞

∂|aL|

∂t
ek|L||x| 6

∞∑
L=−∞

∞∑
M=−∞

|aL−M|k|M||bM|ek|L||x|

+

∞∑
L=−∞

∞∑
M=−∞

|bL−M|k|M||aM|ek|L||x| −

∞∑
L=−∞

νk2|L|2|aL|ek|L||x| (30)

implying that
∞∑

L=−∞

∂|aL|

∂t
ek|L||x| 6

∞∑
L=−∞

∞∑
M=−∞

|aL|k|M||bM|ek|L+M||x|

+

∞∑
L=−∞

∞∑
M=−∞

|bL|k|M||aM|ek|L+M||x| −

∞∑
L=−∞

νk2|L|2|aL|ek|L||x| (31)

in light of (13), which yields
∞∑

L=−∞

∂|aL|

∂t
ek|L||x| 6

∞∑
L=−∞

∞∑
M=−∞

|aL|k|M||bM|ek(|L|+|M|)|x|

+

∞∑
L=−∞

∞∑
M=−∞

|bL|k|M||aM|ek(|L|+|M|)|x| −

∞∑
L=−∞

νk2|L|2|aL|ek|L||x| (32)

on using the triangle inequality [5]

|a + b| 6 |a| + |b|. (33)
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From (22) and in light of (25) it is possible to write

∂bL

∂t
· b̂L +

∞∑
M=−∞

((aL−M · kM)aM − (bL−M · kM)bM) · b̂L = −νk2|L|2bL · b̂L (34)

where b̂L = bL/|bL| is the unit vector in the direction of bL. Then (34) implies

∂|bL|

∂t
+

∞∑
M=−∞

((aL−M · kM)aM − (bL−M · kM)bM) · b̂L = −νk2|L|2|bL|. (35)

From (35) it is possible to write

∂|bL|

∂t
6

∞∑
M=−∞

(|aL−M|k|M||aM| + |bL−M|k|M||bM|) − νk2|L|2|bL| (36)

on using the Cauchy–Schwarz inequality. It then follows from (36) that

∞∑
L=−∞

∂|bL|

∂t
ek|L||x| 6

∞∑
L=−∞

∞∑
M=−∞

|aL−M|k|M||aM|ek|L||x|

+

∞∑
L=−∞

∞∑
M=−∞

|bL−M|k|M||bM|ek|L||x| −

∞∑
L=−∞

νk2|L|2|bL|ek|L||x| (37)

implying that

∞∑
L=−∞

∂|bL|

∂t
ek|L||x| 6

∞∑
L=−∞

∞∑
M=−∞

|aL|k|M||aM|ek|L+M||x|

+

∞∑
L=−∞

∞∑
M=−∞

|bL|k|M||bM|ek|L+M||x| −

∞∑
L=−∞

νk2|L|2|bL|ek|L||x| (38)

in light of (13), which yields

∞∑
L=−∞

∂|bL|

∂t
ek|L||x| 6

∞∑
L=−∞

∞∑
M=−∞

|aL|k|M||aM|ek(|L|+|M|)|x|

+

∞∑
L=−∞

∞∑
M=−∞

|bL|k|M||bM|ek(|L|+|M|)|x| −

∞∑
L=−∞

νk2|L|2|bL|ek|L||x| (39)

on using the triangle inequality.
Let

ψ =

∞∑
L=−∞

|aL|ek|L|X, (40)
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φ =

∞∑
L=−∞

|bL|ek|L|X (41)

where X = |x| and note that |ũ| 6 Q where Q = ψ+ φ. Then (32) can be written as

∂ψ

∂t
6 ψ

∂φ

∂X
+ φ

∂ψ

∂X
− ν

∂2ψ

∂X2 (42)

and (39) can be written as

∂φ

∂t
6 ψ

∂ψ

∂X
+ φ

∂φ

∂X
− ν

∂2φ

∂X2 . (43)

Adding (42) and (43) yields

∂Q
∂t
6 Q

∂Q
∂X
− ν

∂2Q
∂X2 . (44)

Equation (44) can be written as

∂Q
∂t
− Q

∂Q
∂X

+ ν
∂2Q
∂X2 = H (45)

where H = H(X, t) 6 0 and can be thought of as a force. Here Q|t=0 converges for
all X > 0 since ũ|t=0 converges for all x ∈ Rd. Note also that

∂sQ
∂Xs > 0 for s > 0. (46)

At points where Q is a maximum,

∂Q
∂t
> 0. (47)

The extreme case is then Q = Ω where

∂Ω

∂t
= Ω

∂Ω

∂X
− ν

∂2Ω

∂X2 . (48)

Let
Ω = λ

∂A
∂X

/A = λ
∂

∂X
loge A (49)

where λ is a constant. Substituting (49) into (48) gives

λ
∂

∂X
(
∂A
∂t
/A) = λ2 1

2
∂

∂X
((
∂A
∂X

/A)2) − λν
∂

∂X
((
∂2A
∂X2 A − (

∂A
∂X

)2)/A2). (50)
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Then with λ = −2ν, equation (50) gives

∂

∂X
(
∂A
∂t
/A) = −ν

∂

∂X
(
∂2A
∂X2 /A) (51)

which leads to
∂A
∂t

= −ν
∂2A
∂X2 + hA (52)

where h = h(t) is arbitrary.
Let

A =

∞∑
L=−∞

ALek|L|X (53)

where AL = AL(t). Substituting (53) into (52) gives
∞∑

L=−∞

∂AL

∂t
ek|L|X = −ν

∞∑
L=−∞

k2|L|2ALek|L|X + h
∞∑

L=−∞

ALek|L|X. (54)

Equating like powers of the exponentials in (54) leads to

∂AL

∂t
= −νk2|L|2AL + ALh. (55)

Equation (55) is easily solved to find

AL = AL(0)e−νk
2 |L|2t+

∫ t
0 h(τ) dτ. (56)

It then follows that

Ω =
∂

∂X
loge((

∞∑
L=−∞

AL(0)e−νk
2 |L|2tek|L|X)−2ν). (57)

Now with

Ω =

∞∑
L=−∞

ΩLek|L|X, Ω0 = 0 (58)

where ΩL = ΩL(t) > 0 it follows that

A = e
∫ X Ω

λ dX

= e
1
λ

∑
L,0

ΩLek|L|X
k|L|

= 1 +
1
λ

∑
L,0

ΩLek|L|X

k|L|
+

1
2

(
1
λ

∑
L,0

ΩLek|L|X

k|L|
)2 + . . . . (59)

For consistency, matching (53) with (59) yields

A0 = 1, AL =
ΩL

λk|L|
+ O(

1
λ2k2 ) for L , 0. (60)

7



Then (57) becomes

Ω =
∂

∂X
loge((1 + M)−2ν) (61)

where
M =

∑
L,0

(
ΩL(0)
λk|L|

+ O(
1

λ2k2 ))e−νk
2 |L|2tek|L|X. (62)

At t = 0,
M|t=0 = e

1
λ

∫ X
Ω|t=0 dX − 1 ∈ (−1, 0] (63)

and for t > 0, |M| decreases with increasing t. It is here also sufficient to take X to
be in a finite domain due to the spatially periodic boundary conditions. It is then
found that Ω has no finite-time singularity and |ũ| 6 Ω. ∴ blowup is ruled out. �
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