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A proposed solution to the millennium problem on the existence and smoothness
of the Navier—Stokes equations.

1. Introduction

The Navier-Stokes equations are thought to govern the motion of a fluid in R?
where d € N, see [1,3,7]. Let u = u(x, t) € R? be the velocity and let p = p(x, ) €
R be the pressure, each dependent on position x € R? and time ¢ > 0. We take
the externally applied force to be identically zero. The fluid is assumed to be
incompressible with constant viscosity v > 0 and to fill all of R?. The Navier—
Stokes equations can then be written as

0
5_ll‘l +(u-Vyu = wWu-Vp, 1)
V-u=0 (2)
with initial condition
u(x,0) = ug (3)
where uy = uy(x) € R?. In these equations
o 0 0
V=(———...,— 4
(axl 6X2 8Xd) ( )
is the gradient operator and
d 62
V? = — 5
o2 (%)

is the Laplacian operator. When v = 0, equations (1), (2), (3) are called the Euler
equations. Solutions of (1), (2), (3) are to be found with

uy(x + Le;) = uy(x) (6)

for 1 < i < d where ¢ is the i unit vector in R? and L > 0 is a constant [7]. The
initial condition uy is a given C* divergence-free vector field on R?. A solution of
(1), (2), (3) is then accepted to be physically reasonable [3] if

u(X + Lei’ t) = u(X’ t)? p(X + Lei, t) = p(X’ t) (7)
onR? x [0, o) for 1 < i < d and

u,p € C(R? X [0, 0)). (8)
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2. Solution to the Navier—Stokes problem

I provide a proof of the following theorem [2,3,6,7].

Theorem. Take v > 0. Let uy be any smooth, divergence-free vector field satisfy-
ing (6). Then there exist smooth functions u, p on R? x [0, o) that satisfy (1), (2),
(3), (1), (8).

Proof. It is sufficient to rule out the possibility that there is a smooth, divergence-
free uy for which (1), (2), (3) have a solution with a finite blowup time [3].

Let the Fourier series of u, p be

i= Z ugel, 9)
L=—c0

p= ), pet™? (10)
L=—c0

respectively. Here uy, = up(¥) € C4, pr, = p(t) € C,i = V-1, k = 2n/L, and
Dl _o denotes the sum over all L € Z¢. The initial condition u, is a Fourier series
[2] of which is convergent for all x € R?. Substituting u = i1, p = p into (1) gives

0
uL QikLx Z Z (uy, - kM) e <M=

L=-0c0 L=—00o M=—

=— Z VI |Luy eFx — Z ikLpye*. (11)

L=—c0 L=-0c0

Equating like powers of the exponentials in (11) yields

0
== Z (ug, w1 - ikM)uy = —viZ Ly, — ikLpy, (12)

on using the Cauchy product type formula [4]

Zalx be ZZa,mmx (13)

m=—0o —00 M=—00
Substituting u = u into (2) gives

(&)

Z ikL - ugex = 0, (14)

L=-c0

Equating like powers of the exponentials in (14) yields

L-u,=0. (15)
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Applying L- to (12) and noting (15) leads to
D IRC R R DICIYES B (16)
M=-c0

where py is arbitrary and I. = L/|L| is the unit vector in the direction of L. Then
substituting (16) into (12) gives

ou,

o Z (v - ikM)uy — vE*|Luy, + Z KL(up-v - D)(un - L) (17)

M=-0c0 M=-00

where uy = uy(0). Without loss of generality [2] I take uy = 0. The equations for
uy, are to be solved for all L € Z¢.
Let
uy, = ay, + iby,, (18)
pL = cL +1dy, (19)

where a;, = ap(7) € Rd, by, = bL(?) € Rd, c, = c(t) € R, and dy, = di,(¥) € R.
Substituting (18), (19) into (12) gives
oay, (9b
— +i
ot
= —vk2|L| (ar, + iby) — ikL(cy, + idy). (20)

Ly Z ((ap-m + ibp_m) - ikM)(ay + ibyp)

Equating real and imaginary parts in (20) gives

0
aL + Z (—(ap-m - kM)by — (by_m - kM)ay) = —vK*|LI%ay, + kLdy,  (21)

abL b3 (@ KMDayi = (b o~ EVDbyp) = —vILPhy — KLy, (2)

M=—co
Substituting (18) into (15) gives

L (ay +iby) = 0. (23)
Equating real and imaginary parts in (23) gives
L-ap, =0, (24)

L-by =0. (25)



From (21) and in light of (24) it is possible to write

Oay, . = . ~
—r Lt ) (~(@u AMDby — (b KMDa) - r, = —vE|LPag -4y, (26)
M=—00

where 4, = ag,/|ay | is the unit vector in the direction of a;,. Then (26) implies

Jlay|
ot

+ Z (—(ar_m - kM)by — (br_y - kM)ayy) - &g, = —vi*|LPlag].  (27)
M=—00

From (27) it is possible to write

Olay|
ot

< Z (laL-wlkIM|[by| + [by_w|k[Mlap]) — v&*[LI%jay | (28)
M=—00

on using the Cauchy—Schwarz inequality [5]
la - b| < |a||bl. (29)

It then follows from (28) that

0
T e <30S o wlkMilbye

=—00 L=—00 M=—0c0

+ > > bumlkMlayle™ - ) vi2LPlag ™™ (30)
L=-00 M=—c0 L=-00

implying that
(9|aL| okILIX| Z Z |aL|k|M”bM|ek\L+M||XI

L=-c0 L=—0c0 M=—

£ 3T IukiMiayet N - ST L Page™ 1)
L=—c0o M=—c0 L=-00

in light of (13), which yields

Z 3IaL| GHLIN ¢ Z Z (g |V [y <0+ MO

=—00 L=—00 M=-00

* Z Z b KMy fe* MO Z vICILPla ™ (32)

—oo M=— L=-c0

on using the triangle inequality [5]

la +b| < [a] + [b]. (33)



From (22) and in light of (25) it is possible to write

6bL .
ot

by, + Z ((ap-m - kM)ay — (br—m - kM)byy) - bL = —Vk2|L|2bL bL (34)

where by, = by, /|by| is the unit vector in the direction of by.. Then (34) implies

dlbul
ot

Z ((ap_m - kMDay; — (by_y - kM)byy) - by, = —vK*[LP[by|.

From (35) it is possible to write

dlby |
ot

< Z (Jar-wmlkIMlay| + by ylkIM[by]) — v&*[L[by |

on using the Cauchy—Schwarz inequality. It then follows from (36) that

= db
PR S R

L=-00 L=—00 M=-00

+ 25 2 DowlkiMby e - Z vie L2 by Je N
L=—0c0 M=—c0

L=—o
implying that

dlb
Z Ml L' AU <3S fay My

=—00 L=—0c0o M=—0c0

(o]

+ Z Z |bL|k|M”leele+Mllxl _ Z Vk2|L|2|bL|ele”X|

L=—0c0o M=-co L=—-c

in light of (13), which yields

Z IbLI LN Z Z lag KM ]Jay[ek MO

L=-00 L=—0c0 M=—00

+ Z Z |bL|k|M||bM|ek(ILI+IMI)Ix| Z Vk2|L| |bL|ek|L||x|

L=—c0 M=— L=-c0

on using the triangle inequality.

Let
w= ) laue™
L=-0c0

(35)

(36)

(37)

(38)

(39)

(40)



6= ), I

L=-0c0
where X = |x| and note that
lal < 0
where Q = ¢ + ¢. Then (32) can be written as
o _ 3¢ Py

_\,7[/_ — —y—

ox ~ ax2

and (39) can be written as

82
% 20

0X  0X?
Adding (43) and (44) yields

90 _ 00 _ &0

or S¥ox Voxr

Equation (45) can be written as

00 00 &0
o CoxVVaxe T

(41)

(42)

(43)

(44)

(45)

(46)

where H = H(X, t) < 0 and can be thought of as a force. Here Q|,-¢ converges for

all X > 0 since ],y converges for all x € R. Note also that

&0

8XS>O for s > 0.

At points where Q is a maximum,

00
ot

The extreme case is then Q = Q where

> 0.

0Q) Q(?Q 0*Q
— =0Q— -v—.
ot X  0X?
Let oA 6
Q=1—/A=A1—1log A
Lox /4 = A5x loge
where A is a constant. Substituting (50) into (49) gives

0 0A 10 0A A

_ 2= 7 _ I _ a_AZ 2
A—~(==/A) =4 (55/4)) v (6X2 (Gx))/AD-

0X ot 20X 0X
6

(47)

(48)

(49)

(50)

(5D



Then with 4 = -2y, equation (51) gives

0 O0A J O0*A
—(— = —v—(—/A
ax '™ = 7 ax G
which leads to 5 o
A A
— =—yv—+HhA
a - axe
where h = h(t) is arbitrary.
Let -
A= ALekILIX
L=Z—oo

where Ay, = AL (7). Substituting (54) into (53) gives

o

L=-c0 L=
Equating like powers of the exponentials in (55) leads to

AA
6—; = —VI3|LPAL + ALk

Equation (56) is easily solved to find
A = AL0) e—vk2|L|21+ J h(x) dr

It then follows that

0 —VvK2|L|?t k|L|X -2y
Q = = log.(( Z Av(0)e ).

Now with -
Q= > e, Q=0
L=—co
where Qp, = Q () > 0 it follows that

A = e X Q{ X
— e% ZI #0 %
_ 1 Z QLelelx QLelelX )2 N
KIL| ARy
For consistency, matching (54) with (60) yields
Qr 1
Ag=1, Ap = —— for L # 0.
’ L= e o L

aAL k|L|X Z k2|L|2A ele|X+h Z A ek|L|X

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)



Then (58) becomes

Q(0) 1 V2Lt KLIX \—2v
Q-= loge 1+Z[/1k|L| O(p)le ety =), (62)

It is here also sufficient to take X to be in a finite domain due to the spatially
periodic boundary conditions. Then with vk > 0 it is found that Q has no finite-
time singularity and

[al < Q. (63)

.". blowup is ruled out. O
References

[1] Batchelor G. 1967. An introduction to fluid dynamics. Cambridge U. Press,
Cambridge.

[2] Doering C. 2009. The 3D Navier—Stokes problem. Annu. Rev. Fluid Mech.
41: 109-128.

[3] Fefferman C. 2000. Existence and smoothness of the Navier—Stokes equation.
Clay Mathematics Institute. Official problem description.

[4] Hardy G. 1949. Divergent series. Oxford University Press.

[5] Kreyszig E. 1989. Introductory functional analysis with applications. Wiley
Classics Lib.

[6] Ladyzhenskaya O. 1969. The mathematical theory of viscous incompressible
flows. Gordon and Breach, New York.

[7] Tao T. 2013. Localisation and compactness properties of the Navier—Stokes
global regularity problem. Analysis and PDE. 6: 25-107.



