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A proposed solution to the millennium problem on the existence and smoothness
of the Navier—Stokes equations.

1. Introduction

The Navier-Stokes equations are thought to govern the motion of a fluid in R?
where d € N, see [1,3]. Letu = u(x, ) € R be the velocity and let p = p(x,7) € R
be the pressure, each dependent on position x € R and time t > 0. We take
the externally applied force to be identically zero. The fluid is assumed to be
incompressible with constant viscosity v > 0 and to fill all of R?. The Navier—
Stokes equations can then be written as

0
5_ll‘l +(u-Vyu = wWu-Vp, 1)
V-u=0 (2)
with initial condition
u(x,0) = ug (3)
where uy = uy(x) € R?. In these equations
o 0 0
V=(———...,— 4
(axl 6X2 8Xd) ( )
is the gradient operator and
d 62
V? = — 5
o2 (%)

is the Laplacian operator. When v = 0, equations (1), (2), (3) are called the Euler
equations. Solutions of (1), (2), (3) are to be found with

uy(X + ¢;) = up(X) (6)

for 1 < i < d where ¢; is the i™ unit vector in R?. The initial condition u is a given
C® divergence-free vector field on R?. A solution of (1), (2), (3) is then accepted
to be physically reasonable [3] if

u(X + €, t) = u(X’ t)? p(X + €, t) = p(X’ t) (7)
onRY x [0,00) for 1 <i<dand

u, p € C*(R? X [0, 0)). (8)
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2. Solution to the Navier—Stokes problem

I provide a proof of the following theorem [2,3,6].
Theorem. Take v > 0. Let uy be any smooth, divergence-free vector field satisfy-
ing (6). Then there exist smooth functions u, p on R¥ X [0, co) that satisfy (1), (2),

(3), (1), (3.

Proof. It is sufficient to rule out the possibility that there is a smooth, divergence-
free uy for which (1), (2), (3) have a solution with a finite blowup time [3].

Let the Fourier series of u, p be

i= Z lkLx 9)

p= ), pet™? (10)

L=-00

respectively. Here uy, = up,(1) € C%, pp, = pr() € C,i= V-1,k =2n,and Y5>
denotes the sum over all L € Z¢. The initial condition u, is a Fourier series [2] of
which is convergent for all x € R?. Substituting u = @, p = p into (1) gives

0
uL QikLx Z Z (uy, - kM) e <M=

L=-0c0 L=—00o M=—

=— Z VI |Luy eFx — Z ikLpye*. (11)

L=—c0 L=-0c0

Equating like powers of the exponentials in (11) yields

0
== Z (ug, w1 - ikM)uy = —viZ Ly, — ikLpy, (12)

on using the Cauchy product type formula [4]

Zalx be ZZa,mmx (13)

m=—0o —00 M=—00
Substituting u = u into (2) gives

(&)

Z ikL - ugex = 0, (14)

L=-c0

Equating like powers of the exponentials in (14) yields

L-u,=0. (15)
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Applying L- to (12) and noting (15) leads to
= > (e m- Dy - 1) (16)
M=-c0

where py 1s arbitrary and L= L/|L| is the unit vector in the direction of L. Then
substituting (16) into (12) gives

dw, _

=~ Z (g, - ikM)uyy — v |LIPuy, + Z ikL(up_p - L)(uy - L) (17)

M=—0c0 M=—00

where uy = uy(0). The equations for uy, are to be solved for all L € Z.
Let
up, = ar, + ibL, (18)

pL = cp +idy, (19)

where a;, € RY, by, € R?, ¢, € R, and dy, € R. Substituting (18), (19) into (12)
gives

Oa db
— i Z (ar-m + i) - ikM)(ans + iby)

= —vi*|LP*(ay, + iby) — ikL(cy, + idy). (20)
Equating real and imaginary parts in (20) gives

0
ke Z( (agx - KMy = (buyt - KMDay) = —viILPay + KLy, (21)

abL Z (-t - kMDays = (bryr - AMDby) = ~vPILPby, — KLcr.  (22)

Substituting (18) into (15) gives
L - (aL +iby) = 0. (23)
Equating real and imaginary parts in (23) gives
L-ap =0, (24)

L by =0. (25)
From (21) and in light of (24) it is possible to write

oa; = . ~
— AL Z (~(@r v - kM)byt = (br - KMDay) - &, = —vK’|LPay, - &, (26)



where 4, = ag,/|ay | is the unit vector in the direction of a;,. Then (26) implies

Olay |
ot

From (27) it is possible to write

Olay|
ot

< Z (| -mIkIM][by| + [br lkIMllam]) + vA*|L|[a|
M=-c0

on using the Cauchy—Schwarz inequality [5]
la - b| < |a|bl.

It then follows from (28) that

(o]

a [se)
Dol < 3T fag kM

L=-—c0 at L——oc0 M=——co
+ 30> b alkMilaple ™ + " viCILPjag [
L=-co M=-co L=—c0
implying that

Z alaLl k|L||x| < Z Z |aL|k|M||bM|ek\L+M||X|

L=—00 M=—0c0

+ Z Z |bL|k|M||aM|ele+Mllx| + Z Vk2|L|2|aL|ele”X|

L=—00 M=—00 L=—o00

in light of (13), which yields

(o]

dla| GHILIX K(LI+M)
D D) 57 My

=—00 L=—0c0 M=—00

+ Z Z Ibu KM aggJel (LM Z VL Plag e

—oo M=—

on using the triangle inequality [5]
|a + bl < |a| + [b|.
From (22) and in light of (25) it is possible to write

obL o
or

+ Z (—(ar_m - kM)by; — (br_p - kM)ayy) - 4y, = —vik*|L|ay,|.
M=—00

27)

(28)

(29)

(30)

3D

(32)

(33)

b, + Z ((ar_m - kMDay — (b_y - kM)byy) - by, = —vk*[L*by, - by, (34)



where by, = by /|by| is the unit vector in the direction of by.. Then (34) implies

dlbul
ot

Z ((ap_m - kMDay; — (by_y - kM)byy) - by, = —vK*[LP[by|.

From (35) it is possible to write

by |
ot

< Z (laL-mlkMllay] + [br_nlk[Mbyl) + viZ|LP by |

on using the Cauchy—Schwarz inequality. It then follows from (36) that

(o]

o Il N MLl
2, g S 2, 0 twlkiMifae

L=—0c0o M=—00

+ Z Z by _mlk[M|[bygle ¥ 4 Z VI2|L[2 by ekl
L=—00 M=—c0

L=-00

implying that

Z albLl eMLIN Z Z |ay[k[M]|ap |ek|L+M||X|

=—00 L=—0c0o M=—0c0

+ Z Z |bL|k|M”leele+Mllxl + Z Vk2|L|2|bL|ele”X|

L=—00 M=-00 L=-—00

in light of (13), which yields

Z 8IbL| LI ¢ Z Z lag [K[Mlayg|ek MO

L=—c0o M=—

+ Z Z |bL|k|M||bM|ek(ILI+IM|)Ix| + Z Vk2|L| |b lek|L||X|

L=—00 M=-00 L=-00

on using the triangle inequality.

Let -
y= > lale™,
L=—co
6= ) Ibre™™
L=—00
where X = |x| and note that
lal < 0

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)



where Q = ¢ + ¢. Then (32) can be written as

oy op Oy Oy
o <Vax T Pox TV ax2

and (39) can be written as

¢ oy ap 8¢
o SVax T TVaxe

Adding (43) and (44) yields

00 00 &0
—_ < - B ——
o S %x TVaxz

(43)

(44)

(45)

Here Q|,—o converges for all X > 0 since @iy converges for all x € RY. Note also

that
aS Q
o0xs
At points where Q is a maximum,

>0 for s > 0.

99,

> 0.
ot

The extreme case is then Q = Q where

0Q 0Q 0’Q
— =Q0— +v—.
ot oxX  0X?
Let oA 5
Q=1—/A=1—1log A
x4 = Aax loge
where A is a constant. Substituting (49) into (48) gives

0 O0A 10 0A d A

0A
Ao (- /A) = 85— (G5 /A)) + v (54 — (a—X)Z)/Az)-

0X ot 20X 0X 0X  0X?
Then with A = 2y, equation (50) gives

0 0A 0 0*A
ﬁ(E/A) = Vﬁ(@/z‘\)
which leads to o 24
E = Vﬁ + hA

(46)

(47)

(48)

(49)

(50)

(D

(52)



where h = h(t) is arbitrary.
Let

A= ZAlele
1=0

where A; = A,(¢). Substituting (53) into (52) gives
00 %eklx - i vkzlelele + iAlheklx
ot '

=0 =0 1=0
Equating like powers of the exponentials in (54) yields

0A, 272
— =vkI"A; + Ah.
or v l l

Equation (55) is easily solved to find
A = Clevkzlzm [ hat

where c; are constants. It then follows that

6 (o)
Q= 2V6_X loge(; e’V Tk

(53)

(54)

(55)

(56)

(57)

It is sufficient to take X to be in a finite domain due to the spatially periodic

boundary conditions. Then € has no finite-time singularity and

o] < Q.
.". blowup is ruled out.
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