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Minimal Fractal Manifold as Foundation of Quantum Information Theory 

Ervin Goldfain 

Abstract 

Derived from the mathematics of the Renormalization Group, the minimal fractal manifold 

(MFM) represents a spacetime continuum endowed with arbitrarily small deviations from four 

dimensions ( 4 1D    ).  The geometrical structure of the MFM can be conveniently 

formulated using the concept of dimensional quaternion, a vector-like entity built from 

component deviations along the four spacetime coordinates. Our analysis shows that dimensional 

quaternions form a natural basis for qubit systems and Quantum Information Theory.  
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1. Dimensional quaternions from the topological entropy 

It was shown in [1] that the topological entropy of a geometrical object of normalized size 

r  covered by M  measuring boxes is given by 

 0( ) lnS r M   (1) 

By definition, the box-counting dimension of the same object is   

 0 0

0

ln

ln

D DM
D M r

r
 

      (2) 

in which 1r   stands for the normalized size of the box. The dimension of ordinary 

Euclidean space corresponds to integer and positive-definite values of the box-counting 
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dimension, 
0 , 0,1,2...D k k  . By contrast, the box-counting dimension of non-smooth 

objects assumes non-integer values, an often-cited hallmark of fractal geometry and 

nonlinear dynamics.     

Comparing (1) to (2) leads to the connection between the box-counting dimension and 

topological entropy via 

 0

0exp[ ( )]
D

S r 
   (3) 

Two straightforward conclusions may be drawn from (3): 

 Maximal topological entropy ( 0( )S r  ) matches the limit 0   and 

corresponds to the four-dimensional continuum of both General Relativity and 

Quantum Field Theory.  

 The steady growth of topological entropy along the Renormalization Group flow 

implies that, near or above the Fermi scale, spacetime exhibits a continuous 

spectrum of dimensions, described through 04 1D     and asymptotically 

reaching 0 4D   as 0   [2].    

The link between topological entropy and fractal dimension 0 4D    means that the 

deviation   acts as an inherent carrier of information, an attribute which may be readily 

translated to qubits and Quantum Information Theory. To uncover this connection, we 

proceed with the straightforward assumption that component deviations along the four 

spacetime coordinates are independent from each other. The overall deviation   amounts 

to the sum [3] 

 04 (1 ), 0,1,2,3D D 
 

           (4) 
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Using the change of variables, 

 
1 1
2 2,             (5) 

opens the possibility of casting the MFM formalism in the language of quaternions. The 

dimensional quaternion ( )q  and its conjugate ( )q  are accordingly defined as  

 
0 1 2 3q i j k         (6a) 

 
0 1 2 3q i j k         (6b) 

with magnitude and norm given by, respectively, 

 2 2 2 2

0 1 2 3 0 1 2 3q                    (7) 

 
2

0 1 2 3q qq             (8) 

The next two sections delve into the construction of single and two-qubit systems from 

the dimensional quaternions (6).  

2. Single qubit representation from dimensional quaternions  

Since unit quaternions form a group that is isomorphic to the (2)SU group, they naturally 

reflect the behavior of pure spin-1 2  quantum states and qubits [4]. It is known, in this 

context, that the Bloch sphere provides the appropriate geometrical representation of 

qubits. This is because qubits are  arbitrary points along the surface of the Bloch sphere, 
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whose “north” and “south” poles correspond to the binary states 0  and 1 , respectively. 

The representation of qubits in spherical coordinates ( , )   is given by  

 0 1     ,    , C     (9) 

where 

 2cos( 2)ie     (10) 

 2sin( 2)ie     (11) 

 
2 2

1     (12) 

The so-called Hopf map enables conversion of the complex coefficients ,   to a triplet 

of coordinates on the Bloch sphere, namely [5] 

 
1 2Re( )x    (13a) 

 
2 2Im( )x    (13b) 

 
2 2

3x      (13c) 

The Hopf map works by taking points on the 3-sphere 

  3 2 2 2 2

1 2 3 4 1 2 3 4( , , , : 1}S X X X X X X X X       (14) 

to points on a 2-sphere  

 2 2 2 2

1 2 3 1 2 3{( , , ) : 1}S x x x x x x      (15) 
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according to the following prescription [6] 

 
1 1 2 3 42( )x X X X X    (16a) 

 2 1 4 2 32( )x X X X X    (16b) 

 2 2 2 2

3 1 3 2 4( ) ( )x X X X X      (16c) 

As any other quaternions, (6) represent points on the unit 3-sphere and are subject to the 

normalization constraint (8) for 
2

1q  . Combined use of (13) and (14-16), along with the 

identification 1X   , yields the connection between qubits and the dimensional 

quaternions (6), expressed symbolically as 

 ( , ) ( )     (17a) 

 ( , ) ( )     (17b) 

3. Quantum entanglement from dimensional quaternions 

Following [7] in detail, consider now the case of a two-qubit system whose state is defined 

as  

 00 01 10 11        ,    , , , C       (18) 

where 

 
2 2 2 2

1         (19) 
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and 

 
R Ii    ,   

R Ii    ,     
R Ii    ,   

R Ii       (20) 

The qubits are entangled if 0    and disentangled otherwise. We introduce the 

following pair of dimensional quaternions 

 i j kA R I R I          (21a) 

 i j k
B R I R I          (21b) 

subject to 

 
2 2

1A B     (22) 

The explicit expression for the quaternion equivalent to the two-qubit (18) can be shown 

to assume the form 

 
0 1 2 3( , ) 2( ) i j kA B A BQ Q Q Q Q          (23) 

in which 

 
0 2Re( )Q      (24a) 

 
1 2Im( )Q      (24b) 

 2 2Re( )Q      (24c) 

 3 2Im( )Q      (24d) 
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and 

 
2 2 2

1 A BQ       (25) 

These considerations suggest that quantum entanglement – a fundamental aspect of 

Quantum Mechanics – is deeply related to the non-local and scale-invariant properties of 

the MFM, as embodied in the dimensional deviation 4 D    [2].   
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