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Abstract. Robust methods for finding the best rotation aligning two sets
of corresponding vectors are formulated in the linear algebra framework,
using tools like the SVD for polar decomposition or QR for finding eigen-
vectors. Those are well established numerical algorithms which on the
other hand are iterative and computationally expensive. Recently, closed
form solutions has been proposed in the quaternion’s framework, those
methods are fast but they have singularities i.e., they completely fail on
certain input data. In this paper we propose a robust attitude estima-
tor based on a formulation of the problem in Geometric Algebra. We
find the optimal eigenquaternion in closed form with high accuracy and
with competitive performance respect to the fastest methods reported
in literature.
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1. Introduction

The estimation of rotations has been studied for over half a century [15]. The
problem consist on finding the optimal rotation aligning two sets of corre-
sponding vectors. Many effective methods have been developed [1,8,12,14,20]
using 3 X 3 matrices and quaternions. Formulations based on quaternions
solves a max-eigenvalue problem, while formulations based on linear algebra
relies on Singular Value Decomposition (SVD). In the last decade formula-
tions based on geometric algebra [4,13] were introduced but they also rely
on linear algebra numerical algorithms such as SVD due to the lack of native
numerical algorithms. Closed form solutions for finding the optimal quater-
nion has been proposed [16,17,19,21] based on analytic formulas for solving
the roots of the quartic polynomial associated with eigenvalue problem.
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Accuracy and speed of prominent methods have been compared in
[5,11,19] evidencing a trade-off between performance and robustness. In par-
ticular SVD based methods exhibit the best accuracy but low performance
and quaternion based methods are faster but less accurate. Regarding the
later methods, the closed form solutions exhibit the best performance so far
but they have singularities i.e., they completely fail on certain input data.

In this paper we propose a robust estimator of the best quaternion
aligning two sets of corresponding vectors. We maximize a convex quadratic
energy functional formulated in the G3 o geometric algebra which allow us
to find an optimal quaternion in a robust way without resorting to linear
algebra numerical algorithms. Geometric algebra rotors are isomorphic to
quaternions, we find geometric algebra to be a more natural choice for study-
ing this problem since rotations and subspaces of R? are treated in the same
manner, facilitating meaningful algebraic manipulations. We primarily work
with bivectos instead of vectors for the sake of mathematical convenience.
Due to mathematical (and geometric) duality of vectors and bivectors in G3
our formulation is also valid for vectors.

2. Geometric Algebra G3

A geometric algebra G3 is constructed over a real vector space R?, with basis
vectors {ej, e, e3}. The associative geometric product is defined on vectors
so that the square of any vector a is a scalar aa = a? € R and the geometric
product of two vectors ¢ and bis ab=a-b+aAband ba =b-a—aAb. From
the vector space R3, the geometric product generates the geometric algebra
G3 with elements {X, R, A...} called multivectors.

For a pair of vectors a and b, a symmetric inner product a-b=b-a and
antisymmetric outer product a A b = —b A a can be defined implicitly by the
geometric product. It is easy to prove that a-b = %(ab—i— ba) is a scalar, while
the quantity aAb = 3 (ab—ba), called a bivector or 2-vector, is a new algebraic
entity that can be visualized as the two-dimensional analogue of a direction
i.e., a planar direction. Similar to vectors, bivectors can be decomposed in a
bivector basis {eq2, €13, €23} where e;; = e; A e;.

The outer product of three vectors a A b A ¢ generates a 3-vector also
known as the pseudoscalar, because the trivector basis consist of single ele-
ment eja3 = €1 Aeg Aes. Similarly, the scalars are regarded as 0-vectors whose
basis is the number 1. It follows that the outer product of k-vectors is the
completely antisymmetric part of their geometric product: a1 Aas A ... Aag =
(a1as...ax ), where the angle bracket means k-vector part, and k is its grade.
The term grade is used to refer to the number of vectors in any exterior prod-
uct. This product vanishes if and only if the vectors are linearly dependent.
Consequently, the maximal grade for nonzero k-vectors is 3. It follows that
every multivector X can be expanded into its k-vector parts and the entire
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algebra can be decomposed into k-vector subspaces:
n n
Gs=)» Gy={X=> (X)}
k=0 k=0

This is called a grading of the algebra.

Reversing the order of multiplication is called reversion, as expressed by
(arag...a;) = ag...a2a; and (a1 Aag A ... Nag) = ag A ... Aaz A aq, and the
reverse of an arbitrary multivector is defined by X = S"7_, (X).

2.1. Rotors

Rotations are even grade multivectors known as rotors. We denote the subal-
gebra of rotors as G;f. A rotor R can be generated as the geometric product
of an even number of vectors. A reflection of any k-vector X in a plane with
normal n is expressed as the sandwitch product (—1)*nXn. The most basic
rotor R is defined as the product of two unit vectors a and b with angle of g.

The rotation plane is the bivector B = ﬁ.
0 . [0
ab=a-b+aANb=cos 3 + Bsin 5 (2.1)

Rotors act on all k-vectors using the sandwitch product X’ = RX R, where
R is the reverse of R and can be obtained by reversing the order of all the
products of vectors.

2.2. Bivector products

We define the commutator product of two bivectors p; and g¢; as p; x ¢; =
%(quj —¢;p;). The commutator product of bivectors in Gz can be interpreted
as a cross-product of bivectors i.e., the resulting bivector B = p; x g¢; is
orthogonal to both p; and g;. The commutator product allow us to define
the geometric product of two bivectors as AB = A- B+ A x B. The inner
product of bivectors differs from the inner product of vectors on the sign,
since the square of bivectors is negative, the inner product of bivectors is a
negative scalar e.g., (ae1a +beig +ceas) - (dera +ee1s + feas) = —ad —be —cf .

2.3. Quaternions

A quaternion (Q = w + ¥ consists of two parts: a scalar part w and vector
part ¥ which denotes the axis of rotation. The vector part ¢ is defined in a
basis of complex vectors {, j, k} that squares to —1 and anticommute i.e.,

i? = j2 = k2 = —1 and ijk = —1. In geometric algebra they corresponds to
bivectors:
’i = €23 ] = €13 ]{3 = €12 (22)
Z]]{} — €923€13€12 — -1

Rotors can easily be transformed to quaternions and vice versa. A rotor R =
w—+ B corresponds with a quaternion Q = w+v, where B = aejo+£e13+veas
and ¥ =i + B + ak.
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3. Geometric Algebra Rotor Estimation

Given two sets of n corresponding bivectors P = {p;}!_; and @ = {g;}}_;,
we attempt to maximize the following energy function:

E(R) = max Z ¢jllp; + Ra:R|’? (3.1)
S

st. RR=1

where {c;}"_; are scalar weights such that }°7 ¢; = 1. It is a quadratic max-
imization problem with a non-linear constraint in R. Notice that the term
|p; + Rg;R||? is dual to the traditional least squares error ||q; — Rp;R|>.
Duality is stated in the sense that the optimal R is a critical point of both
energies. Notice also that p; + Rq;R is equivalent to Rp; + ¢;R i.e., by mul-
tiplying by R on the left and using the fact that RR = 1. The equivalent
problem is:

B(R) = max > ¢sl|Rp; + 4, (32)
J

st. RR=1

which exposes the that R is only quadratic in 3.2.

We can take the multivector derivative of the energy F(R) with respect
to the rotor R to find the critical multivector of it i.e., solve for dE(R) = 0
using e.g., Newton’s method (provided the energy is convex). The multivec-
tor derivative is an extrinsic operator which produces gradient multivectors
outside the energy’s tangent bundle. That implies the crtical multivector R
of such gradient might lie outside the rotor manifold. In general it would be
needed to either work directly on the Lie algebra of SO(3) or add a Lagrange
multiplier term L(R) = A(RR — 1) to E(R) to constrain critical multivector
to SO(3). However we can avoid that inconvinience in Gg since a rotor can be
orthogonally projected to manifold by simply normalization. In other words,
once the critical multivector is found it can be projected to the manifold by
normalizing it.

Note that since p; and g; are bivectors then Rp; and ¢; R are also
bivectors. Since the square of a bivector X is a scalar i.e., | X[ = XX, we
have:

|Rp; + i R|* = (Rp; +q; R)(5; R + Ray)

= (Rp; + ¢;R)(—p; R — Ry;)

= —(Rp;p;R) — (Rp; Rq;) — (q;Bp; R) — (¢; RRq;)
Where we recognize that everything inside () is a scalar. So the multivec-
tor derivative of a scalar-valued function gives a gradient function (equivalent
to a Jacobian matrix in vector calculus). Also note that () acts in a similar

way to the trace operator in matrix algebra. So it can be shown that any
cyclic permutation of the bivector products inside the () produces the same
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scalar. That’s a useful fact to take into account when taking the multivector
derivative. For example:

—0(Rp;p; R) = —0(R * p;p; R) — O(R * Rp;p;)
—(OR % p;p;R) — (OR = Rp,p;)
=P [—PijR - Rpjpj}

= —ppi R = p;p; R

= —2pjp; R

(3.3)

where P[] is a grade projection to even grades (i.e., grades 0 and 2) of the
resulting multivector which, in this case, is simply the identity function.
Doing something similar to all other terms we get:

an (R) = —ijij — 4ijqj' — 2R%‘(]j
(3.4)

taking the~reverse to express it in terms of R (recall that X=-X, XY =
YX and X = X) we get OF;(R) = —Rpp — 2qRp — qqR from which follows
the eigenrotor equation for E(R) = 0:

AR =2 Z CjL]jRpj
J
(3.5)

where A = — 3 ¢;(p7 + ¢7) which shows that the eigenrotor R associated
with the eigenvalue A is the optimal one. However this equation only holds
for exact matches, i.e., when the input bivectors can be aligned by a rotor. In
general that is not the case since some arbitrary noise is expected on input
bivectors therefore we are looking for the best alignment in the least squares
sense. The eigenrotor equation can be stated in matrix algebra as:

(A+M)R=0
(3.6)

where A is a matrix derived from =23, ¢;¢;Rpj and A = =3, ¢; (05 +47)-
Note that A is a positive number since the square of a bivector is a negative
number and c¢; > 0. Let’s define the 4 x 4 symmetric matrix M = A+ A
where M is singular when the input bivectors can be aligned by a rotor and
otherwise is positive definite i.e., M is a positive semi-definite matrix.

The matrix A = Zj Aj can be derived from —2c;q;Rp; as follows. First
split R as w+ B where w is a scalar and B is a bivector, second split geometric
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product of bivectors on inner and commutator products

—2¢;jq;(w + B)p; = —2¢;(wq;p; + q;Bp;)

= —2¢;(w(q; - p;) +w(g; X pj) +

(qj - B)pj + B - (pj x q;) — B(p; - ¢;) +4;(B - pj))
(3.7

the last rearrange uses the identity ¢Bp = (¢-B)p+B-(pxq)—B(p-q)+q(B-p).
Now that everything is in terms of inner products and commutators we can re-
write that equation in matrix form using the correspondence X -Y = —XTy
for bivectors X, Y and 3x 1 column vectors X and Y. We also use the fact that
bivector’s commutator corresponds to vector’s cross-product X xY = X xY:

q; pj (pj x ;)"

A; = 2¢;
T ppx g ap] +pia) — (0] )1

(3.8)

(3.9)

To proof the positive semi-definiteness of M =Y j Aj + Al we proceed
to express E(R) in matrix algebra as the quadratic form E(R) = RTMR as
follows: the constraint Rp; + ¢; R can be rewriten as (w + B)p; + ¢;j(w + B).
Expanding the geometric product of bivectors in terms of the inner product
and the communtator product we get:

w(pj +4;) + B (pj +¢;) + (¢ —pj) x B (3.10)
In matrix language we can define the following matrix system M; R = 0:
0 —sT w —sI'B
- J - J
M;R [ s ldil, } [ B } [ ws; +d; x B (3:11)

dj =q; —pj sj=Dj+4
where d; and s; are 3 x 1 column vectors holding bivector’s coefficients, M
is a skew-symmetric 4 x 4 real matrix, so that MJT = —Mj. The rotor R
is represented as 4 x 1 column vector made of the scalar w and the 3 x 1
column vector B holding the bivector’s components. The 3 x 3 matrix [d;]
is representing the skew-symmetric cross-product matrix as usually defined
for vectors in R3.
Therefore we can express E(R) as the quadratic form:

E(R) = R"MR

where M = Z;L ;M JT M. Note that since M is skew-symmetric, the product
M ]T M; is symmetric and positive semi-definite. Consequently the matrix M
is also symmetric positive semi-definite. It follows that all eigenvalues of M
are real and \; > 0.
s 12 (s5 x ;)"

S; X dj SjS]T — [dﬂi
dj =q; —pj s;=p;j+4j

M} M; = (3.12)
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By the spectral theorem the maximizer of E(R) is the eigenvector of M
associated with the largest eigenvalue which is non-negative number.

4. Convexity

The multivector derivative gives the gradient of the energy 8E(R)7 which
is equal to zero at critical points and gives the eigenrotor equation AR =
22]‘ ¢;q; Rp; which implies the matrix equation (A + AI)R = 0. From the
eigenrotor equation follows that M = A+ AI is singular when input bivectors
can be aligned by a rotor R associated with eigenvalue A. Otherwise, e.g., in
presence of noisy input bivectors, the matrix M is positive definite. That
means the enery E(R) is convex.

The convexity of the energy FE(R) can be proved by showing that its
Hessian matrix of second partial derivatives is positive semi-definite. The Hes-
sian matrix of E(R) is % =5 M T M; which is symmetric, moreover
since M; is skew-symmetric matrix, the product M ]T M; is symmetric positive
semi-definite. Then follows that Y- ¢; M} M; is positive semi-definite and
therefore convex, provided that the sum of weights is convex i.e., Z? cj = 1.

5. Optimal Quaternion using 4D Geometric Algebra

The most time consuming task of the estimation is to compute the eigenrotor
of M associated with the greatest eigenvalue. In this section we show how to
find the largest eigenvalue and its corresponding eigenrotor i.e., the required
quaternion, using the 4D Geometric Algebra G4 which is robust, efficient and
accurate.

Let us define four vectors m;, my, m3, my corresponding to the columns
of matrix M:

M = ZCijTMj = m; Ims ms Iy (51)
J
The matrix system that we want to solve is MR = AR for some A\

corresponding to the largest eigenvalue of M. We can write the system in its
homogeneous form:

0
mp — )\61 ms — )\62 ms — )\63 my — )\64 Bl 8 (52)
0

The matrix in equation 5.2, called characteristic matriz, is of rank 3
and thus singular i.e., the vectors (m; — Aep), (my — Aez), (m3 — Aes) and
()my — Xey) are linearly dependent. It follows that its outer product must be
Zero:

(m1 — )\61) A\ (l’ng — )\62) VAN (m3 - )\63) AN (m4 - /\64) =0 (53)
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Which is called the charactetistic outer porduct and is equivalent to the
characteristic polynomial P(\) = det(M — AI). A simple way to find the
largest eigenvalue is using Newton-Raphson method A;11 = A; — P(A)/P’()).
This method is indeed robust given that all eigenvalues are non-negative
real numbers, it wasn’t however for methods based on Davenport’s matrix
[2] which eigenvalues can be negative. We found that 3= ¢;(||p; > + [lg;/1*)
is a robust guess for Newton-Raphson iteration because it is close to largest
eigenvalue (under certain input it is the actual largest eigenvalue, as discussed
earlier) and thus converges to it in few iterations. For the sake of completeness
we show the first derivative of 5.3:

P'(A\) = —e1 A (m2 — Xea) A (m3 — Aeg) A (my — Ney)
—(my — Aey) Aeg A (mg — Xe3) A (my — Ney)
—(m; — Aep) A (mg — Aea) Aeg A (my — Aey)
—(m; — Aep) A (my — Aea) A (m3 — Xes) Aey

Following [3] we solve the system 5.2 using outer products. For a linear
system Ax = b the authors in [3] defines N linear equations of the form
AJTX = b; each of which corresponds to a dual hyper-plane of the form a; =
Aj — bjeq where the solution x must lie on. The eg is an homogeneous basis
vector needed for enabling projective geometry, enlarging the base space to
N + 1, which interpretation is to be the offset of the hyper-plane. So solution
of the linear system is the intersection of N dual hyper-planes, which is given
by its outer product.

afx+e))  =a; NagA...Nay (5.4)

Where the symbol * is the dual operator of the N + 1 space and «
is a weight factor. After taking the dual of a(x + ep)* and divide by the
coefficient of eg (which is ), the solution x can be read off the coefficients of
the 1-vector.

We know that the null space of (M — AI) is of rank one. Algebraically
this means that one of its column vectors is redundant i.e., it can be written
in term of the others. In linear algebra this means that the system has in-
finitely many solutions. The geometric interpretation is that all hyper-planes
intersect in a line passing through the origin. Since all solutions lie on the
same line they only differ by a scalar term, therefore a particular solution
can be found by fixing a scalar. The homogeneous component e of the hy-
perplane is such scalar (analog to the hyper-plane’s offset as in [3]) since it
affects only the scale of the solution not its attitude. In linear algebra lan-
guage it is equivalent to set one offset value at the right hand side of 5.2,
however that system can’t be solved in linear algebra because it requires to
invert a singular matrix.

We define the dual hyper-planes passing through the origin as:

a; =m; — \e; (5.5)

Although it is enough to fix the scale of a single hyper-plane to get a
solution it is inconvenient to do so, as will be explained in Section 7. It is
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more robust to fix the scale of all hyper-planes to some v # 0 which is a
scalar value. Intersection can then be found by taking the outer product as:

a(x+1)" = (a1 +7) A (a2 +7) A (as +7) A (as +7) (5.6)
Distributing the outer product and keeping the terms of grade-3 we get:
a(x+1)" =~(ag NagANag+a; Nag Aag+a; Aag Aag +as Aag Aay) (5.7)

Here the symbol * is the dual operator of the 4D space (not 5D as in
[3] which allow us to be more efficient) and « is a weight factor. After taking
the dual of a(x + 1)* the eigenvector x can be read off the coefficients of the
1-vector. Notice that solution needs to be normalized.

6. Optimal Computation of M

The symmetric matrix M ]T M; has a simple form in terms of p; and g;:

T T
P 4 (pj % q5) 2 2
MIM;=2| "9V T + (IIpjI* + llg; 1) Laxa(6.1
T IR P ([0 o 1 DLESVICAY
All terms of 6.1 can be derived from the covariance matrix D = quJT plus
the quantity ||p;||%+[|¢;]|*. Since matrix D is of 3 x 3 its computation is more
efficient than the whole 6.1. Details can be found in Section 8.

7. Robustness and Singularities

As stated before, setting the scale of a single hyperplane is enough to get
a valid eigenrotor. However, the choice of which hyperplane to constraint is
problematic. For instance, assuming input vectors without noise, constraining
the hyperplane corresponding to the w component of the rotor won’t work
because when the angle of rotation is 7 the w = cos(w/2) = 0 and so its
scale cannot be constrained. Similarly, constraining one of the hyper-planes
corresponding to By, Bs or Bz won’t work because when the angle of rotation
is 0 or 47 the sin(27r) = 0 and so on. Then, it is complex task to avoid
all problematic situations. By constraining all hyper-planes as in 5.6 our
geometric algebra method does not suffer from any of those singularities.
Some of the above mentioned singularities are present in classic meth-
ods such as QUEST [14] and FOMA [10] but also on methods derived from
those, including recent descendants based on analytic formulas [16-19,21]. All
those methods are based on finding the eigenvector corresponding to largest
eigenvalue of Davenport’s matrix [2]. Since that is an indefinite matrix, some
eigenvalues are positive and some negative, the Newton-Raphson can fail to
find the max eigenvalue (which can be negative). So significant effort has
been put on finding fast and robust analytic solutions to the quartic poly-
nomial but no advances has been made on improving robustness on finding
the associated eigenvector besides doing sequential rotations i.e., a m angle
rotation of input data accomplished by changing the signs of two columns
of the covariance matrix of [14]. The QUEST method performs sequential
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rotations one axis at a time, until an acceptable reference coordinate system
is found.

8. Algorithms
The pseudo-code of proposed method is shown in Algorithm 1.

Algorithm 1 Fast Rotor Estimation
Require: P = {p;}7_;,Q = {q;}]_1,C = {c;}]
:S=D=0,v=1
. for j =1tondo
S=5+¢(pj-pi+4;-4)
D=D+ cjqu]-T
end for
m; = (%S +Tr(D))ey + (D12 — Day)ea + (Dag — Doz)es + (Dor — Dio)es
my = (D12 — Da1)er + (2Dgo + 58 — Tr(D))e2 + (Do1 + Dig)es + (Do +
Do2)es
8 mg3 = (D20 — D02)€1 + (D()l + D10)62 + (2D11 + %S - T’I"(D))Eg + (D12 +
Dsi)ey
9: mg = (Dp1 — D1o)61 + (D20 + Doz2)es + (D12 + Day)es + (2D + %S —
T?“(D))€4
{Newton-Raphson}
10: )\0 =5
11: repeat
12: Ai+1 =\ — P()\Z)/Pl()\l)
13: until H)‘i+1 — )\z” <e€
14: a; = my — \ey
15: ap = my — Aeg
16: a3 = mg3 — \eg
17: a4 = my — \ey
18: X =v(ag ANagANag+a; AagAag+a; Aag Aag+as AagAay)
19: R = normalize({X*)1)
20: return  R(0) + R(1)e1s + R(2)e13 + R(3)eas

A i A

An optimized C++ code using the Eigen library [6] and GAALOP [7]
is publicly available on GitHub [9]

9. Comparisons

We selected several representative methods e.g. FLAE [19], SVD [1], QUEST
[14], FA3R [16], Symbolic [17], Q-Method [14] and FOMA [10] for comparison.
The Eigen library [6] was employed to implement all of them. The tests were
ran on a MacBook Pro laptop with Intel Core i7 CPU running at 2,5 GHz.
The Clang C++ compiler was used with -Ofast option enabled.
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We first show that some methods fails on producing meaningful rota-
tions when certain input data is provided. Table 1 shows four cases which
causes error. First two cases consist of having input vectors rotated 7/2 and
7 radians without noise. Other case is when the 3D vectors are projected to
the Y Z-plane and rotated around the X-axis without noise. The last case is
similar but projected to the X Z-plane. The root mean-squared error (RMSE)
is used to describe the difference of accuracy.

Algo /2 T Y ZPlane X ZPlane XYPlane
FLAE  4.41x10728 696 392 1328 3.25 x 10728
Symbolic  1.78 x 10726 1053 392 1321 4.70 x 10~27

FA3R  4.00 x 10728 541 x 10729 2.25 x 1079 2.76 x 1079% 4.98 x 10798
Proposed 7.32x107'% 1.79 x 107'® 4.05 x 1072% 3.43 x 1072% 2.22 x 10~
Q-Method 3.78 x 1072% 2,89 x 1072 7.10 x 1072% 1.45 x 1072 9.57 x 10~%°

QUEST 82.6 2,18 x 1072°  6.09 x 10726 9.93 x 10728 8.36 x 10%°

FOMA  6.08x1072% 295x1072® 3.93x 10726 213x10727 1.19x 1028

SVD 441 x 10728 751 x107% 335x 1072 983 x 1072 1.09 x 10~28

TABLE 1. RMSE of one million vector alignments of a thou-
sand input vectors without noise. Some methods failed when
3D vectors were rotated /2 and m and when vectors are pro-
jected to the coordinate planes

We also compared the robustness of the methods when input data has
extreme noise applied to the length of input vectors. Figure 1 shows that
some methods often fails to find meaningful rotations. We took SVD as ref-
erence. Notice that the amount of RMSE is almost the same on successes
and on failures, evidencing that almost all methods builds, in essence, the
Q-Method’s matrix.

300
200
100

0

FLAE Symbaolic FA3R Proposed  Q-Method QUEST FOMA

FIGURE 1. Sum of RMSE of one million vector alignments
of a thousand input vectors. We applied Gaussian random
noise to angles and random noise to lengths

Among the compared methods SVD, Q-Method and the ours are the
most robust. Performance is shown in Figure 2 compared to the other meth-
ods. Our experiments shows that when the number of input vectors is up
to 1000 our method is faster than Q-Method. Beyond that point the trend
shows that Q-Method is faster.
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10 =sss FLAE
Symbalic
FA3R
e Proposed
s (-Method
QUEST
FOMA
6 SVD

200 400 600 800 1000

FIGURE 2. Performance comparison: number of vectors v.s.
execution time (us)

10. Conclusion

We presented a novel method for estimating the best quaternion aligning
two sets of corresponding vectors and bivectors. Since we maximize a convex
energy functional we only deal with non-negative eigenvalues, which makes
Newton-Raphson iteration robust. We find the eigenvector corresponding to
the largest eigenvalue intersecting hyper-planes in the language of geometric
algebra. Results shows that our method is a good alternative in terms of
robustness and accuracy. Its speed is competitive when the number of input
vectors is relatively small.
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