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Abstract. Robust methods for finding the best rotation aligning two sets
of corresponding vectors are formulated in the linear algebra framework,
using tools like the SVD for polar decomposition or QR for finding
eigenvectors. Those are well established numerical algorithms which on
the other hand are iterative and computationally expensive. Recently,
closed form solutions has been proposed in the quaternion’s framework,
those methods are fast but they have singularities i.e., they completely
fail on certain input data. In this paper we propose a robust attitude
estimator based on a formulation of the problem in Geometric Algebra.
We find the optimal eigen-quaternion in closed form with high accuracy
and with competitive performance respect to the fastest methods reported
in literature.
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1. Introduction

The estimation of rotations has been studied for over half a century [15].
The problem consist on finding the optimal rotation aligning two sets of
corresponding vectors. Many effective methods have been developed [1, 8,
12,14, 20] using 3 X 3 matrices and quaternions. Formulations based on
quaternions solves a max-eigenvalue problem, while formulations based on
linear algebra relies on Singular Value Decomposition (SVD). In the last
decade formulations based on geometric algebra [4,13] were introduced but
they also rely on linear algebra numerical algorithms such as SVD due to
the lack of native numerical algorithms. Closed form solutions for finding
the optimal quaternion has been proposed [16,17,19,21] based on analytic
formulas for solving the roots of the quartic polynomial associated with
eigenvalue problem.
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Accuracy and speed of prominent methods have been compared in
[5,11, 19] evidencing a trade-off between performance and robustness. In
particular SVD based methods exhibit the best accuracy but low performance
and quaternion based methods are faster but less accurate. Regarding the
later methods, the closed form solutions exhibit the best performance so far
but they have singularities i.e., they completely fail on certain input data.

In this paper we propose a robust estimator of the best quaternion
aligning two sets of corresponding vectors. We maximize a convex quadratic
energy functional formulated in the G3 o geometric algebra which allow us
to find an optimal quaternion in a robust way without resorting to linear
algebra numerical algorithms. Geometric algebra rotors are isomorphic to
quaternions, we find geometric algebra to be a more natural choice for studying
this problem since rotations and subspaces of R? are treated in the same
manner, facilitating meaningful algebraic manipulations. We primarily work
with bivectos instead of vectors for the sake of mathematical convenience.
Due to mathematical (and geometric) duality of vectors and bivectors in G3
our formulation is also valid for vectors.

2. Geometric Algebra G3

A geometric algebra G3 is constructed over a real vector space R?, with basis
vectors {ej, e, e3}. The associative geometric product is defined on vectors
so that the square of any vector a is a scalar aa = a? € R and the geometric
product of two vectors ¢ and bis ab=a-b+aAband ba =b-a—aAb. From
the vector space R3, the geometric product generates the geometric algebra
G3 with elements {X, R, A...} called multivectors.

For a pair of vectors a and b, a symmetric inner product a-b=b-a and
antisymmetric outer product a A b = —b A a can be defined implicitly by the
geometric product. It is easy to prove that a-b = %(ab—i— ba) is a scalar, while
the quantity aAb = 3 (ab—ba), called a bivector or 2-vector, is a new algebraic
entity that can be visualized as the two-dimensional analogue of a direction
i.e., a planar direction. Similar to vectors, bivectors can be decomposed in a
bivector basis {eq2, €13, €23} where e;; = e; A e;.

The outer product of three vectors a A b A ¢ generates a 3-vector also
known as the pseudoscalar, because the trivector basis consist of single element
e123 = €1 A e A ez. Similarly, the scalars are regarded as 0-vectors whose
basis is the number 1. It follows that the outer product of k-vectors is the
completely antisymmetric part of their geometric product: a3 A as A ... A
ar, = {ajas...ar)r where the angle bracket means k-vector part, and k is
its grade. The term grade is used to refer to the number of vectors in any
exterior product. This product vanishes if and only if the vectors are linearly
dependent. Consequently, the maximal grade for nonzero k-vectors is 3. It
follows that every multivector X can be expanded into its k-vector parts and
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the entire algebra can be decomposed into k-vector subspaces:
n n
Gs=)» Gy={X=> (X)}
k=0 k=0

This is called a grading of the algebra.

Reversing the order of multiplication is called reversion, as expressed by
(arag...a;) = ag...a2a; and (a1 Aag A ... Nag) = ag A ... Aaz A aq, and the
reverse of an arbitrary multivector is defined by X = S"7_, (X).

2.1. Rotors

Rotations are even grade multivectors known as rotors. We denote the subalgebra
of rotors as G;f. A rotor R can be generated as the geometric product of an
even number of vectors. A reflection of any k-vector X in a plane with normal
n is expressed as the sandwitch product (—1)*nXn. The most basic rotor R
is defined as the product of two unit vectors a and b with angle of g. The

rotation plane is the bivector L = ﬁ.
0 . [0
ab=a-b+aANb=cos 3 + Lsin 7)) (2.1)

Rotors act on all k-vectors using the sandwitch product X’ = RX R, where
R is the reverse of R and can be obtained by reversing the order of all the
products of vectors.

2.2. Bivector products

We define the commutator product of two bivectors p; and g¢; as p; x ¢; =
%(quj —¢;p;). The commutator product of bivectors in Gz can be interpreted
as a cross-product of bivectors i.e., the resulting bivector B = p; x g¢; is
orthogonal to both p; and g;. The commutator product allow us to define
the geometric product of two bivectors as AB = A- B+ A x B. The inner
product of bivectors differs from the inner product of vectors on the sign,
since the square of bivectors is negative, the inner product of bivectors is a
negative scalar e.g., (ae1a +beig +ceas) - (dera +ee1s + feas) = —ad —be —cf .

2.3. Quaternions

A quaternion (Q = w + ¥ consists of two parts: a scalar part w and vector
part ¥ which denotes the axis of rotation. The vector part ¢ is defined in a
basis of complex vectors {, j, k} that squares to —1 and anticommute i.e.,

i? = j2 = k2 = —1 and ijk = —1. In geometric algebra they corresponds to
bivectors:
’i = €23 ] = €13 ]{3 = €12 (22)
Z]]{} — €923€13€12 — -1

Rotors can easily be transformed to quaternions and vice versa. A rotor R =
w+ L corresponds with a quaternion () = w+v, where L = aejo+ e13+veas
and ¥ =i + B + ak.
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3. Geometric Algebra Rotor Estimation

Given two sets of n corresponding bivectors P = {p; }?:1 and Q = {¢; };7':1,
we attempt to maximize the following energy function:

E(R) = max Y _¢;lp; + Ra:R| (3.1)
ReGT ;
st. RR=1
where {c;}7_; are scalar weights such that 3 7c; = 1. It is a quadratic

maximization problem with a non-linear constraint in R. Notice that the
term ||p; + Rg; R||? is dual to the traditional least squares error ||q; — Rp; R||>.
Duality in the sense that the optimal R is a critical point of both energies.
Notice also that p; + Rq;R is equivalent to Rp; + g;R by multiplying by R
on the left and using the fact that RR = 1. The equivalent problem is:

B(R) = max > ¢sl|Rp; + 4, (32)
J

st. RR=1

which exposes the that R is only quadratic in 3.2.

The constraint Rp; + ¢; R can be rewriten as (w + L)p; + ¢j(w + L).
For some a scalar w and bivector L. Expanding the geometric product of
bivectors in terms of the inner product and the communtator product we
get:

w(pj +a;) + L+ (pj + ;) + (a5 —pj) x L (3:3)
In matrix language we can define the following matrix system M; R = 0:
0 —sT w —sT'L
R = J — J
MJR |: S; [dj]x :| |: L :| [ wSs;j -‘rdj x L :| (34)

dj =q; —pj s;=pj+4j
where d; and s; are 3 x 1 column vectors holding bivector’s coefficients, M;
is a skew-symmetric 4 x 4 real matrix, so that M]T = —Mj;. The rotor R
is represented as 4 x 1 column vector made of the scalar w and the 3 x 1
column vector L holding the bivector’s components. The 3 x 3 matrix [d;],
is representing the skew-symmetric cross-product matrix as usually defined
for vectors in R3.
We can express F(R) as the following quadratic form:

E(R) = max RTMR (3.5)
st. RTR=1

where M = Z? c;j MJTM] Note that since M; is skew-symmetric, the product
M JT M; is symmetric and positive semi-definite. Consequently the matrix M
is also symmetric positive semi-definite. It follows that all eigenvalues of M
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are real and \; > 0.
IsslI* (55 x dj)"
Sj X dj sjs]T — [d]}i
dj =q; —pj sj=Dj+4
By the spectral theorem the maximizer of E(R) is the eigenvector of M
associated with the largest eigenvalue which is a positive number.

M]M; = (3.6)

4. Convexity

The convexity of the energy E(R) can be proof by showing that its Hessian
matrix of second partial derivatives is positive semi-definite. The Hessian
matrix of E(R) is % = 27 chjT M; which is symmetric, moreover
since M is skew-symmetric matrix, the product M jT M; is symmetric positive
semi-definite. Then follows that Z;l c]-M]T M; is positive semi-definite and
therefore convex, provided that the sum of weights is convex i.e., Z;I c; =1.

5. Optimal Quaternion using 4D Geometric Algebra

The most time consuming task of the estimation is to compute the eigenvector
of M associated with the greatest eigenvalue. In this section we show how to
find the largest eigenvalue and its corresponding eigenvector i.e., the required
quaternion, using the 4D Geometric Algebra G4 which is robust, efficient and
accurate.

Let us define four vectors m;, my, m3, my corresponding to the columns
of matrix M:

M = ZCJMJTM] = m; ImIms m3 Iy (51)
J

The matrix system that we want to solve is M R = AR for \ corresponding
to the largest eigenvalue of M. We can write the system in its homogeneous
form:

w

m; — )\61 ms — )\62 ms — )\63 my — )\64 L1

Ly
L

The matrix in equation 5.2, called characteristic matriz, is of rank 3
and thus singular i.e., the vectors (m; — Aep), (mg — Aez), (m3 — Aeg) and
()my — Aey) are linearly dependent. It follows that its outer product must be
zero:

(5.2)

\
cocoo

(m; — Aep) A (mg — Aeg) A (mg — Aez) A (my — Aeg) =0 (5.3)

Which is called the charactetistic outer porduct and is equivalent to the
characteristic polynomial P(\) = det(M — AI). A simple way to find the
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largest eigenvalue is using Newton-Raphson method \; 11 = A\, — P(A)/P’()).
This method is indeed robust given that all eigenvalues are non-negative real
numbers, it wasn’t however for methods based on Davenport’s matrix [2]
which eigenvalues can be negative. We found that Trace(M) is a robust
guess for Newton-Raphson iteration because it is larger than the largest
eigenvalue and is also close enough to converge in few iterations. For the
sake of completeness we show the first derivative of 5.3:

P'(\) = —e1 A (mg — Aea) A (m3 — Ae3) A (my — Aey)
—(my — Aep) Aeg A (mg — des) A (my — Aey)
—(my — Aep) A (mg — Aeg) Aes A (my — Aey)
—(m; — Aep) A (mg — Aeg) A (m3 — Aes) Aey

Following [3] we solve the system 5.2 using outer products. For a linear
system Ax = b the authors in [3] defines N linear equations of the form
A;*-Fx = b; each of which corresponds to a dual hyper-plane of the form a; =
Aj — bjeq where the solution x must lie on. The eg is an homogeneous basis
vector needed for enabling projective geometry, enlarging the base space to
N + 1, which interpretation is to be the offset of the hyper-plane. So solution
of the linear system is the intersection of NV dual hyper-planes, which is given
by its outer product.

a(X—|—€0)* =a; Nas A... \Nay (54)

Where the symbol * is the dual operator of the N + 1 space and «
is a weight factor. After taking the dual of a(x + ep)* and divide by the
coefficient of eg (which is «), the solution x can be read off the coefficients of
the 1-vector.

We know that the null space of (M — M) is of rank one. Algebraically
this means that one of its column vectors is redundant i.e., it can be written
in term of the others. In linear algebra this means that the system has in-
finitely many solutions. The geometric interpretation is that all hyper-planes
intersect in a line passing through the origin. Since all solutions lie on the
same line and they only differ by a scaling term, a particular solution can
be found by fixing the scale. Actually, it is enough to constrain the scale of
a single hyper-plane. The homogeneous component ey can be interpreted as
scale of solution (instead of hyper-plane’s offset as in [3]) since it affects only
that aspect of the solution. In linear algebra language it is equivalent to set
one value at the right hand side of 5.2, however that system can’t be solved
in linear algebra because it requires to invert a singular matrix.

We define the dual hyper-planes passing through the origin as:

a; =m; — Ne; (5.5)

Although in most cases it is enough to set the scale of a single hyper-
plane go get a solution it is inconvenient to do so, as will be explained in
Section 7. It is more robust to set the scale of all hyper-planes to some v # 0
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which is a scalar value. Intersection can then be found by taking the outer
product as:

ax+1)"=(a1+y)A(as+v) A(ag +v) A(ag +7) (5.6)
Distributing the outer product and keeping the terms of grade-3 we get:
a(x+1)*=~(a; NagAag+a; Aag Aag+a; Nas Aag+ag Aaz Aay) (5.7)

Here the symbol * is the dual operator of the 4D space (not 5D as in
[3] which allow us to be more efficient) and « is a weight factor. After taking
the dual of a(x + 1)* the eigenvector x can be read off the coefficients of the
1-vector. Notice that solution needs to be normalized.

6. Optimal Computation of M

The symmetric matrix M ]T Mj has a simple form:

ror _ | sl (sj x dj)*
Mj M] B [ 85 X dj SjS? — djdjT + ||dj||21
dj =q; —pj s;i=pj+4;
Writing it in terms of p; and g; we get:
T T
7 ;4 (pj * aj)
MIM; =2 [ 5 i R

+ (IIpj |1 + llg11*) Iaxca(6.1
ST o SN (10 (B I GTCRY

All terms of 6.1 can be derived from the covariance matrix B = quJT plus
the quantity ||p;||?+[/g;|*. Since matrix B is of 3 x 3 its computation is more
efficient than the whole 6.1. Details can be found in Section 8.

7. Robustness and Singularities

As stated before, setting the scale of a single hyperplane is enough to get a
valid eigenvector in most cases. However, the choice of which hyper-plane to
constraint is problematic. For instance, assuming input vectors without noise,
constraining the hyperplane corresponding to the w component of the rotor
won’t work because when the angle of rotation is 7 the w = cos(7/2) = 0 and
so its scale cannot be constrained. Similarly, constraining one of the hyper-
planes corresponding to L1, Lo or Lz won’t work because when the angle of
rotation is 0 or 47 the sin(27) = 0 and so on. Then, it is complex task to
avoid all problematic situations. By constraining all hyper-planes as in 5.6
our geometric algebra method does not suffer from any of those singularities.

Some of the above mentioned singularities are present in classic methods
such as QUEST [14] and FOMA [10] but also on methods derived from
those, including recent descendants based on analytic formulas [16-19,21]. All
those methods are based on finding the eigenvector corresponding to largest
eigenvalue of Davenport’s matrix [2]. Since that is an indefinite matrix, some
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eigenvalues are positive and some negative, the Newton-Raphson can fail to
find the max eigenvalue (which can be negative). So significant effort has been
put on finding fast and robust analytic solutions to the quartic polynomial but
no advances has been made on improving robustness on finding the associated
eigen-vector besides doing sequential rotations i.e., a w angle rotation of input
data accomplished by changing the signs of two columns of the covariance
matrix of [14]. The QUEST method performs sequential rotations one axis
at a time, until an acceptable reference coordinate system is found.

8. Algorithms
The pseudo-code of proposed method is shown in Algorithm 1.

Algorithm 1 Fast Rotor Estimation
Require: P = {p;}7_,,Q = {q;}}-1,C = {¢;}}—,
. S=B=0,y=1
: for j=1tondo
S=5+c¢ipi pi+4-4)
B=DB+ cjquJT
end for
m; = (%S +Tr(B))er + (Biz — Ba1)ea + (B2o — Boz)es + (Bo1 — Bio)ea
my = (Bi2—Ba1)e1+(2Boo+5S—Tr(B))ea+(Bo1+Bio)es+(Bao+Boz)es
m; = (Bag—DBo2)e1+(Boi+Bio)ea+(2B11+35—Tr(B))es+(Bia+Ba1 )es
mg3 = (B(n—310)61+(BQO+B()2)62+(B12+321)634‘(2322“1‘%S—T’I‘(B))&;
{Newton-Raphson}
10: A\g =75 — 3Tr(B)
11: repeat
12: >\i+1 =\ — P()\z)/P/()\z)
13: until H>‘i+1 — )\z” <€
14: a1 = my — Ae;
15: ag = my — \eg
16: a3 = mg3 — \eg
17: a4 = my — Aey
18: X =+y(a; NagANag+a; Aag Aag+a; Aaz Aag+as Aag Aay)
19: R = normalize({X*)1)
20: return R(O) + R(1)€12 + R(2)613 + R(3)823

An optimized C++ code using the Eigen library [6] and GAALOP [7]
is publicly available on GitHub [9]

9. Comparisons

We selected several representative methods e.g. FLAE [19], SVD [1], QUEST
[14], FA3R [16], Symbolic [17], Q-Method [14] and FOMA [10] for comparison.
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The Eigen library [6] was employed to implement all of them. The tests were
ran on a MacBook Pro laptop with Intel Core i7 CPU running at 2,5 GHz.
The Clang C++ compiler was used with -Ofast option enabled.

We first show that some methods fails on producing meaningful rotations
when certain input data is provided. Table 1 shows four cases which causes
error. First two cases consist of having input vectors rotated 7/2 and 7w
radians without noise. Other case is when the 3D vectors are projected to
the Y Z-plane and rotated around the X-axis without noise. The last case is
similar but projected to the X Z-plane. The root mean-squared error (RMSE)
is used to describe the difference of accuracy.

Algo /2 ™ Y ZPlane X ZPlane XYPlane
FLAE  4.41x 10728 696 392 1328 3.25 x 10728
Symbolic  1.78 x 1026 1053 392 1321 4.70 x 10727

FA3R  4.00 x 1072 541 x 10729 225 x 1079 2.76 x 10798  4.98 x 10798
Proposed 7.32x 107!® 1.79 x 107'® 4.05 x 1072% 3.43 x 1072% 2.22 x 10~
Q-Method 3.78 x 10728 2,89 x 10729 7.10 x 1072® 1.45 x 10728 9.57 x 10~%°

QUEST 82.6 2,18 x 1072%  6.09 x 10726 9.93 x 1072% 8.36 x 10~%°

FOMA  6.08x1072 295 x 1072 393 x 10720 213 x1072" 1.19x 1028

SVD 4.41 x 1072 751 x 10729 3.35 x 1072 9.83 x 10729 1.09 x 10~28

TABLE 1. RMSE of one million vector alignments of a
thousand input vectors without noise. Some methods failed
when 3D vectors were rotated /2 and 7w and when vectors
are projected to the coordinate planes

We also compared the robustness of the methods when input data has
extreme noise applied to the length of input vectors. Figure 1 shows that
some methods often fails to find meaningful rotations. We took SVD as
reference. Notice that the amount of RMSE is almost the same on successes
and on failures, evidencing that almost all methods builds, in essence, the
Q-Method’s matrix.

300
200
100

0

FLAE Symbalic FA3R Proposed  Q-Method QUEST FOMA

FI1GURE 1. Sum of RMSE of one million vector alignments
of a thousand input vectors. We applied Gaussian random
noise to angles and random noise to lengths

Among the compared methods SVD, Q-Method and the ours are the
most robust. Performance is shown in Figure 2 compared to the other methods.
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Our experiments shows that when the number of input vectors is up to 1000
our method is faster than Q-Method. Beyond that point the trend shows that
Q-Method is faster.

10 =sss FLAE
Symbalic
FA3R
— PTOpOSEM
s (-Method
QUEST
FOMA
6 SVD

200 400 600 800 1000

FIGURE 2. Performance comparison: number of vectors v.s.
execution time (us)

10. Conclusion

We presented a novel method for estimating the best quaternion aligning
two sets of corresponding vectors and bivectors. Since we maximize a convex
energy functional we only deal with non-negative eigenvalues, which makes
Newton-Raphson iteration robust. We find the eigenvector corresponding to
the largest eigenvalue intersecting hyper-planes in the language of geometric
algebra. Results shows that our method is a good alternative in terms of
robustness and accuracy. Its speed is competitive when the number of input
vectors is relatively small.
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