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Abstract 
Online Signature Verification (OSV) is an extensively 

used biometric trait aims to verify genuineness of a test 

signature by computing unique features of the signature. The 

advancements in mobile and communication technologies 

resulted in usage of computationally sparse mobile devices 

in critical applications like m-commerce etc., demands for 

OSV frameworks which are able to classify the dynamic test 

signature with fewer number of training signature samples 

and lesser number of features. The recent advancements in 

Deep Learning (DL) technologies, resulted in exponential 

improvements of accuracy in traditional tasks like Object 

Detection, Scene Text Detection etc. The main disrupt in 

usage of DL based frameworks for OSV is the requirement 

of extensive number of training samples and larger number 

of parameters to learn. To overcome the above pitfalls, we 

propose a novel dimensionality reduction technique which 

reduces the dimensionality of a feature set from 100 to 3 in 

case of MCYT-100 and 47 to 3 in case of SVC, SUSIG 

datasets respectively. In addition to it, we propose a depth 

wise separable (DWS) convolution based OSV framework 

which enables one/few shot learning for test signature 

verification. To inspect the robustness of our proposed 

dimensionality reduction technique and DWS OSV 

framework, exhaustive experiments are conducted with three 

widely used datasets i.e. MCYT-100, SUSIG and SVC. We 

have attained state of the art EER in majority of 

experimentation categories compared to many recent and 

state-of-the art OSV models.  

1.   Introduction 

    Biometrics is extensively used to verify user genuineness 
in a diverse of critical applications, e.g., banking, e-
commerce, m-payments, etc. [1,24,51]. Among the wide 
range of biometric traits, owing to its ease of acquisition, 
challenging to morph, hand written signatures have been 
considered as the most authenticated source of personal 
verification [3, 4, 9, 29]. Online signature is defined as a 
multivariate time series signal sampled with specialized 
online acquisition device like Smart Phones, Stylus Pens, 
Graphic Tablets, PCs etc. which enables reading both the 
structural information (x, y coordinates) and the dynamic 
properties (such as velocity, pressure, acceleration, azimuth, 
total signature time etc.,) [1,5,6,11,30,32,35].   
 
In literature, many techniques toward automatic online 
signature verification (OSV) have been put forward which 
can be commonly categorized into feature-based methods 
[1-8] that analyze signatures based on a collection of global 
or local features, function-based approaches which employ 
various techniques like Hidden Markov models [10], 
divergence based [14], stability based [16], feature fusion  

 
based [22], feature weighing based [25], feature fusion [26], 
DTW [18, 26, 27, 28, 29,47], matching based [30], neural 
network based [31], Gaussian Mixture Models [31, 35], 
random forest [35], sequence matching [14], stroke based 
[46], deep learning based [20, 26, 32,46,51,52,54], fuzzy-
similarity [49] etc.  
 
 Inline with the advancements in mobile and networking 
technologies, to facilitate the usage of OSV frameworks in 
computationally sparse mobile devices demands for light 
weight verification models i.e. models which are able to 
classify the dynamic test signature with fewer number of 
training signature samples and with lesser number of 
features extracted from the signature samples. To overcome 
these drawbacks, various researchers have proposed efficient 
dimensionality reduction techniques, [44,49,50,53].  
 
To address the above pitfalls, (i) in this work, we have 
proposed a novel feature dimensionality reduction 
technique, which performs feature selection and feature 
extraction simultaneously based on eigen values generated 
by Principal Component Analysis of feature set. In case of 
MCYT-100 dataset, the proposed technique drastically 
reduces the feature set size from 100 to 7 (maximum) and in 
a few cases 100 to 3 (minimum). In case of SVC and SUSIG 
datasets, the feature set size is reduced from 47 to 3. 
 
The recent advances in machine learning and deep learning 
technologies using convolutional models have proven to be 
resulted improved accuracies in challenging problems like 
Object Detection, Scene Text Detection etc. [54]. However, 
the major pitfall of such DL based models is their high 
computational complexity, large parameter count and 
extremely expensive to train complex data models. To 
address the above problem, in literature, very few works 
have been proposed on the fewshot learning based OSV i.e. 
learning the user specific features with few signature 
samples. Kaiser et al [37] proposed Depthwise separable 
(DWS) convolutions, which condenses the parameter count 
and computation overload involved in convolutional 
operation, while increasing the representational efficiency.  
The second contribution is by Diaz et al [11], in which OSV 
model proposed is based on one signature sample and 
duplicating the single samplings based on kinematic analysis 
of rapid human movements and its sigma-lognormal 
parameters. The model attained an Equal Error rate (EER) of 
13.56%.  
 
To address above pitfalls, in this work, (ii). We design a CNN 
based online signature verification framework using 
depthwise separable convolutions, which enables a 
substantial reduction of the parameter count and the amount 
of computation required. (iii). Few shot learning, i.e. ability 
to learn the feature patterns specific to each user, even from 



the smaller number of signature samples, i.e. one, two, three 
etc. and achieves a higher level of classification accuracy. 
The manuscript is systematized as follows. In section II, we 
discuss in brief about depthwise separable convolution 
operation. In section III, we discuss the different segments 
of our proposed OSV framework. In section IV, particulars 
of training and testing data, experimental investigation along 
with the results and comparison of the proposed framework 
with the recent models are discussed. Conclusions are drawn 
in section V. 

2.    Depthwise Separable Convolution  

The standard convolution (SC) operation forms the heart of 
CNN. SC is performed between each input channel and with 
specific kernel. The standard deep Convolution Neural 
Networks (CNN) are slow to learn the approximation 
functions due to the fact that, the number of parameters at 
each layer of the network increases drastically. This results 
in overfitting of CNN and requires huge computation power 
and [42, 48].  
 
To reduce the above downsides and to increase the learning 
efficiency, researchers [38,40] have proposed various 
techniques for faster computations and accurate metric 
learning. Depthwise separable (DWS) convolution is one 
among them which, the convolution operation is performed 
on each input image individually with a specific kernel. 
Later, 1×1 pointwise convolution is performed on the 
intermediate results.   
Mathematically, the standard convolution (SC) and 

depthwise separable convolutions are defined as follows:  

Conv(I, F)(𝑥,𝑦) =  ∑ 𝐼(𝑥 + 𝑝, 𝑦 + 𝑞, 𝑟)𝑃,𝑄,𝑅
𝑝,𝑞,𝑟 . 𝐹(𝑝,𝑞,𝑟)        (1)  

is an element wise multiplication of an input image ‘𝐼(𝑥,𝑦,𝑟)’ 

with the weights ‘𝐹(𝑝,𝑞,𝑟)’ of a filter 𝐹, considering all the 

input channels ‘𝑟’ simultaneously, where  (𝑝, 𝑞) and (𝑥, 𝑦) 

represents the height and width of a filter ‘𝐹’ and image ‘𝐹’ 
respectively.     

Depthwise separable convolution = Depthwise convolution 

+ Pointwise convolution  =   (2) + (3) 

DepthWiseConv(I, F)
(𝑥,𝑦)

=  ∑ 𝐼(𝑥 + 𝑝, 𝑦 + 𝑞)ʘ𝐹(𝑝,𝑞)
𝑃,𝑄
𝑝,𝑞   (2)   

In depth wise convolution (DWC), for each input channel ‘𝑟’, 
an input image 𝐼(𝑥,𝑦) is convolved with the filter locations 

𝐹(𝑝,𝑞) to produce an intermediate result. For each input 

channel, a point wise convolution is performed on the 

intermediate result as shown below:  

PointWiseConv(I, F)(𝑥,𝑦) =  ∑ 𝑊(𝑟). 𝑓(𝑥, 𝑦, 𝑟)𝑅
𝑟                (3)  

If we substitute x = 1, p=1and r =1, the above equations (1), 

(2) and (3) represent one-dimensional feature vectors. As 

shown in Fig 1, each user’s online signature is described as a 

feature vector of size 1× N (row vector). As shown in Fig. 2, 

considering the input signature of size 1 × W × IC (height ×
 width × input_channel) and kernel size 1 ×  K ×  IC ×
 OC = (height ×  width × input_ channel ×
output_channel), the amount of weights and operations 

need to execute in both the cases are specified table I.  

Figure 1. Overview of the proposed compound feature generation and separable Conv1D based OSV framework used in this work. 

TABLE I.   COMPARISION OF WEIGHTS AND OPERATIONS 

REQUIRED FOR CONV1D AND SEPARABLE CONV1D 

OPERATIONS 

Convolution layer type Number of 
weights 

Number of operations 

Convolution 1D 𝐾 × 𝐼𝐶 × 𝑂𝐶 𝑊× 𝐾 × 𝐼𝐶 × 𝑂𝐶 

Separable Convolution 
1D  

𝐾 × 𝐼𝐶 +𝐼𝐶 × 𝑂𝐶 𝑊× 𝐾 × 𝐼𝐶+ 𝑊 × 𝐼𝐶 
×𝑂𝐶 

Reduction factor 1/ 𝐼𝐶 + 1/𝐾 1/ 𝐼𝐶 + 1/𝐾 

Table 1 and Table II summarizes that standard convolutions 

are computationally intensive, whereas, depth wise 

separable convolutions are lightweight with reduced number 

of mathematical operations. The implementation of the 

proposed model with depth wise separable convolutions 

resulted in 12.31% decrease of parameter count compared to 

standard convolutions. The lesser number of operations and 

weights required for separable convolutions results in 

efficient learning of approximate functions by deep CNNs. 

The improved representational learning by the depth wise 

separable convolution gives a possibility for few shot 

learning, in which the framework must learn from very few 

training samples of signatures and achieve better signature 

classification accuracies.  



The main contributions of our work can be precised as 

follows: 

1. We have proposed a novel feature dimensionality 
reduction technique, which performs feature selection and 
feature extraction simultaneously based on Eigen values 
generated by Principal Component Analysis of feature set.  
In case of MCYT-100 dataset, the feature set is reduced from 
100 to 7. In case of SVC and SUSIG datasets, the feature set 
size is reduced from 47 to 3. 
 
2. A deep CNN framework for OSV based on depth wise 
separable convolution [37, 40] is proposed. This drastically 
reduces the number of parameters need to be trained by the 
framework.  
 
3. Extensive experimentation and comprehensive set of 
assessment with the sate-of-the-art models based on three 
most widely used datasets.  

3. Proposed online signature verification 

framework 

3.1 Proposed novel dimensionality reduction 

algorithm: 

  Our proposed dimensionality reduction algorithm supports 

simultaneous feature selection and feature extraction is 

based on Principal Component Analysis (PCA) that provides 

best ordered linear approximation to a given high-

dimensional data e.g. Feature set. PCA performs centering, 

rotating and scaling of input data and models the subspace 

with the maximum variance with descending order of 

eigenvalues, which outcomes the principal components in 

the order of significance. Top Eigen vectors (with larger 

eigen values) contain maximum variance and maximum 

discrimination information. PCA orders dimensionality by 

dropping insignificant (low-variance) dimensions. The 

dropping of low-variance dimensions can be considered as 

the amount of loss incurred while projecting the data to a 

reduced dimension space. If the loss incurred is not 

substantial, one can dispose of the Eigen vector with the 

smallest eigen value and preserve the top eigen vectors. This 

error, is termed as ‘Dropping Loss’.  

Let 𝐹  =  {𝑓1, 𝑓2, 𝑓3, … . . , 𝑓𝑑} be the set of features.  Let 

PCA be the spectral feature extraction method i.e. 𝑃𝐶𝐴(𝐹) 

= 𝜆 = { 𝜆1, 𝜆2, , 𝜆3, 𝜆4, … . . , 𝜆𝑑} be the set of resulting Eigen 

values, where 𝜆1 >  𝜆2 · · · >  𝜆𝑑,   𝜆𝑑 conveys the 

information along the nth component. It can be weigh up as 

the amount of loss incurred while reducing the data from 𝑘 

to 𝑘 –  1 dimension. Murthy et al [44] proposed a metric 

called ‘Normalized Dropping Loss’ (NDL) of the feature set 

𝐹  =  {𝑓1, 𝑓2, 𝑓3, … . . , 𝑓𝑑} when dimension is condensed 

from ‘d’ to ‘d – 1’ i.e.,  

𝑁𝐷𝐿𝑑,𝑑−1 =  
𝜆𝑑

∑ 𝜆𝑖𝑑
𝑖=1

   

Similarly, the loss incurred while reducing the dimension 

from ‘d’ to ‘p’ =  𝑁𝐷𝐿𝑑,𝑝 =  
∑ 𝜆𝑖𝑑

𝑖=𝑝+1

∑ 𝜆𝑖𝑑
𝑖=1

 

Based on NDL, we are defining three type of features. 

Definition 1: (Weak-feature):  A feature ‘𝑤’ is called a 

weak-feature, if it’s ‘Normalized dropping loss’ is zero i.e. 

𝑁𝐷𝑙𝑑,𝑤 = 0; 

Definition 2: (Moderate-feature): A feature ‘𝑚’ is called a 

moderate-feature, if it’s ‘Normalized dropping loss’ i.e. 

𝑁𝐷𝑙𝑑,𝑚 > 0 𝑎𝑛𝑑 ≤ 0.1.  

Definition 3: (Strong-feature): A feature ‘𝑠’ is called a 

strong-feature, if it’s ‘Normalized dropping loss’ i.e. 

𝑁𝐷𝑙𝑑,𝑠 > 0.1. 

Algorithm 1: Computing writer specific Compound features 

based on NDL and three types of features discussed above. 

Input: 𝑈: Set of Users, {𝑢1, 𝑢2,𝑢3 … , 𝑢𝑛} 

𝐹𝑖: Original Feature Set of 𝑢𝑖, 𝐹𝑖  =  {𝑓1, 𝑓2, . . . , 𝑓𝑑}. ′𝑓1′ 
represents a column vector. 

𝑇1: Predefined threshold values. We set T1 to 0.1. 

N: Number of signature samples for each user. 

Output: 𝐶 – Writer specific compound feature set. 

for each User 𝑢𝑖 ∈ 𝑈 do 

     Compute 𝜆 =  𝑃𝐶𝐴(𝐹𝑖) where 𝜆 = { 𝜆1, 𝜆2, … . . , 𝜆𝑑} be 

the set of resulting eigen values, where 𝜆1 >  𝜆2 · · · >  𝜆𝑑.  
// Computational complexity: 𝑂(𝑁). 

    for each feature 𝑓𝑝:  

         Compute: 𝑁𝐷𝐿𝑑,𝑝 =  
∑ 𝜆𝑖𝑑

𝑖=𝑝+1

∑ 𝜆𝑖𝑑
𝑖=1

 i.e. the normalized  

         reduction loss when the feature set is reduced from size  

         ′𝑑′ 𝑡𝑜 ′𝑝′. 
         Based on 𝑁𝐷𝐿𝑑,𝑝, classify each feature ′𝑓𝑝′ as either   

         weak (W), or moderate (M) or strong (S).  

     end  // Computational complexity:  𝑂(𝑑). 
       // Feature Extraction.  

      for all the weak features w ∈ W, compute: ∑ 𝜆𝑤𝑤 . 𝑓𝑤      

         resulting a single column feature vector. 

      end  // Computational complexity: 𝑂(1). 

         for all the moderate features 𝑚 ∈ 𝑀, compute:  

∑ 𝜆𝑚𝑚 . 𝑓𝑚, results into a single column feature 

vector. 

      end   // Computational complexity: 𝑂(1). 

compute: Writer specific Compound feature vector C = {S} 

∪ ∑ 𝜆𝑚𝑚 . 𝑓𝑚 ∪ ∑ 𝜆𝑤𝑤 . 𝑓𝑤 = {S}∪ {M}∪{W}. The set of 

strong features, moderate features and weak features are 

combined to form the final writer specific compound feature 

set C.  // Computational complexity: 𝑂(1). 

Return C.  

end  

In our proposed dimensionality reduction algorithm, we are 

applying PCA on feature set of size ‘𝑑’ corresponding to each 

user. PCA on the feature set results in an ordered set of Eigen 



values {𝜆1 >  𝜆2 · · · >  𝜆𝑑}. To select and extract best 

features, which results in higher classification accuracies, 

the features are categorized into three sets 1. Weak 2. 

Moderate 3. Strong features. The features which are having 

zero impact (loss) on the classification result when dropped 

from the feature set are classified as weak features and the 

features having negligible impact (loss) when dropped are 

classified as moderate features. The features having strong 

impact on the classification result are classified as strong 

features.  The loss is computed based on the ‘Normalized 

Dropping Loss’ (NDL) discussed above.  

 

   The strong features are considered with out performing 

any operations on them (feature selection) and in case of 

weak features, a scalar product is performed between the 

weak features and the corresponding Eigen values. The 

summation of the resulted columns outcomes a single 

column vector, which is considered as an extracted feature 

vector. Similar is the case with the set of moderate features. 

Finally, the aggregation of strong features and extracted 

column vectors from weak and moderate features are 

considered as writer specific feature set. 

 

Computational Complexity: For each user 𝑢𝑖, with ′𝑁′ 
number of signature samples, complete feature set 𝐹𝑖 is given 

as input to PCA, is of complexity 𝑂(𝑁). On computing PCA, 

′Normalized Dropping Loss′ for each feature 𝑓𝑗 ∈ 𝐹𝑖, 1 ≤
 𝑗 ≤ 𝑑 is computed, is of complexity 𝑂(𝑑). The feature 

extraction step for weak, moderate features and computation 

of compound feature set requires 𝑂(1) + 𝑂(1) + 𝑂(1) = 3 ⋆
 𝑂(1) = 𝑂(1). A constant computational complexity can be 

neglected. Therefore, the computational complexity for each 

user is (𝑂(𝑁) +  𝑂(𝑑)) ⋍  2 ⋆ 𝑂(𝑁) = 𝑂(𝑁). The total 

complexity of the proposed dimension reduction algorithm 

=  𝑛 ⋆ 𝑂(𝑁).  

3.2 Proposed separable Convolution Operation 

based OSV framework: 

   Encouraged by the recent contributions [37,42,48], in this 

present work, we examine and put forward an OSV 

framework based on depth wise separable convolution 

operation. We propose a CNN framework in which a depth 

wise separable one-dimensional convolution operation is 

executed as an alternative to a standard convolution operation 

on each input signature. As shown in Fig 1, the input 

signature is characterized as a feature vector of size 1× 𝑁 

(row vector). As shown in Table II and III, the depth wise 

separable 1D convolution requires 12.55% reduced 

parameters to train the framework compared to standard 

convolution operation. The set of separable convolution 

layers and framework optimization procedures outcomes an 

improved representational learning of input signature and 

rapid learning by the framework which leads to condensed 

overfitting and increased input signature classification 

accuracy.  

 

 

TABLE II.  COMPARISION OF PARAMETERS REQUIRED FOR CONV1D 

AND DWS CONV1D  OF PROPOSED FRAMEWORK. 

3.2.1 Separable convolution layer 

As depicted in Fig 3, our proposed framework consists 
of five layers. The first two layers consists of two sequential 
groupings of DWS convolutional layer and batch 
normalization layers which constitute the convolutional part 
of the DWS CNN. The input to the first DWS convolution 
layer is an online signature of size (1× N), where ‘N’ 
represents the size of writer specific feature set. In our 
proposed framework, minimum value of N = 3 and 
maximum is 7. A set of 36 filters, each of size 1×3 
accomplishes a depth wise separable convolution operation 
as represented in equation (2) to yield N feature maps, each 
of size 1 × 36. As presented in equation (3), a 1 × 1 pointwise 
convolution operation is performed on intermediate feature 
maps, which outcomes N feature maps, each of size 1 × 36. 
To regularize the inputs of each layer, and to make the model 
less sensitive to the initial set of weights, we performed batch 
normalization [13,32] operation on the output of the first 
DWS convolution layer, which results in the normalization 
of the output data from the activation layer. Similar to the 
first set of DWS convolutional and batch normalization 
layers, the second DWS convolution layer uses 36 filters, 
each of size 1×3 to produce N feature maps, each of size 1 × 
36. A 1 × 1 pointwise convolution operation is performed on 
these intermediate feature maps to result an output of a 
feature vector of size 1 × 36. A batch normalization is 
performed on these feature maps.  

     A part from batch normalization technique, to achieve 
better generalization and to resist overfitting, we have 
applied a dropout of 50% to both the DWS convolutional 
layers. In dropout, random set of nodes are dropped from the 
hidden layers of the framework [45]. The output from the 
DWS convolutional layers represents the deep features 
learnt by the framework and forms an input to the fully 
connected layers. We have set Padding = same, which results 
in the input signature feature vector from the convolution 
operation doesn’t differ in size as input vector. 

3.2.2 Fully connected layers 

In the proposed framework we have used a Multilayer 
Perceptron (MLP) with two hidden layers as classifier. The 
number of neurons in each dense layer are 64. The deep 
features resulted from the second DWS convolution layer of 
size (5 × 36) = 180 forms an input to the classifier. To reduce 
overfitting, we have adopted optimization techniques, as a 
part of it, we initialize the weights and bias of the proposed 
framework as‘𝑟𝑎𝑛𝑑𝑜𝑚_𝑢𝑛𝑖𝑓𝑜𝑟𝑚’. The final layer of the 
classifier is an output layer with sigmoid function. It uses the 
sigmoid activation function outputs a binary response, in 
order to produce a probability output in the range of 0 to 1 

Convolution layer 
type 

Trainable 
params: 

Non-trainable 
params: 

Total 

Conv1D 20,342 400 20,742 

SeparableConv1D 17,789 400 18,189 

% of reduction 12.55% - 12.31% 



that can easily map to crisp values corresponding to all the 
output classes. We have selected ‘𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦’ as 
the loss function that enumerates the discrepancy between 
the ground truth and the model output.  

In current OSV framework, the size of the output layer 
is two i.e. Genuine and Forgery. To achieve faster learning, 
sparsity and reduced likelihood of vanishing gradient, we 
have used ′𝑅𝑒𝐿𝑈′ as an activation function in all DWS 
convolution and hidden layers of the framework. A dropout 
of 40% is applied to both the hidden layers. We have used 
‘𝑎𝑑𝑎𝑚’ as an optimizer, 0.004 as learning rate, with batch 
size of 8 and 100 epochs for each user with hyper parameters 

set to beta_1=0.9, beta_2=0.999, epsilon=1e-08, 
decay=0.00. 

4. Experimentation and results 

We have extensively conducted verification experiments and 

validated the proposed OSV framework by conducting the 

experiments on three widely accepted datasets i.e. 

MCYT_100 signature sub corpus dataset (DB1) [9,11], SVC 

- Task 2 [14, 19], SUSIG [31, 32]. The results are illustrated 

in tables below.

TABLE III.  DETAILS OF THE TRAINING AND TESTING SIGNATURES OF THE PROPOSED FRAMEWORK WITH DB1 (ONE TIME ACTIVITY)  

for briefness, in the above table the user is named as U1. In common Ui, where i = {1,2,3,…100}. S_05: Skilled 05, S_10: Skilled 10, S_15: Skilled 15, 

S_20: Skilled 20, R_05: Random 05, R_10: Random 10, R_15 : Random 15, R_20: Random20. 

TABLE IV.               RELATIVE EXAMINATION OF THE PROPOSED FRAMEWORK AGAINST THE RECENT MODELS ON MCYT (DB1) DATABASE 

Method S_01 S_05 S_20 R_01 R_05 R_20 Number of  Features for 

each signature 

Proposed: Compound Feature Selection + Separable 

Convolution 

22.94 8.58 2.65 4.21 3.7 0.27 (Minimum: 3 features, 

Maximum: 7 features) 

Few shot learning[6] 13.42* 7.03 2.2 2.0* 0.05 0.00* 80 

LSTM+CNN[7] 15.57 1.88 0.00* 16.70 0.16 0.00* 80 

writer dependent features and classifiers[8] - 19.4 1.1 - 7.8 0 .8 100 

Writer dependent parameters (Interval Valued 
representation) [9]  

- 
2.51 0.03** 

- 
0.70 0.00* 

100 

Common feature dimension and threshold (Interval Valued 

representation) [9]  

- 

10.36 5.82 

- 

10.32 0.74 

100 

Writer dependent parameters (conventional) [9] - 6.79 0.00* - 1.73 0.00* 100 

Common feature dimension and threshold (conventional) [9] - 13.12 11.23 - 5.61 1.66 100 

Cancelable templates  - HMM Protected [10] - 10.29 - - - - 100 

Cancelable templates  - HMM[10] - 13.30 - - - - 100 

Stroke-Wise [11] 13.72** - - 5.04 - - 100 

Target-Wise [11] 13.56 - - 4.04** - - 100 

Writer dependent parameters (Symbolic)  [12] - 2.2 0.6 - 1.0 0.1** 100 

Information Divergence-Based Matching [13] - 3.16 - - - - 100 

WP+BL DTW[14] - 2.76 - - - - 100 

Histogram + Manhattan [15]   - 4.02 - - 1.15 - 100 

discriminative feature vector + several histograms [15] - 4.02 2.72 - 1.15 0.35 100 

VQ+DTW[16] - 1.55* - - - - 100 

GMM+DTW with Fusion [17]   - 3.05 - - - - 100 

Combinational Features and Secure KNN-Global features 

[18]  

- 5.15 - - 1.70 - 100 

Combinational Features and Secure KNN-Regional features 

[18]  

- 4.65 - - 1.33 - 100 

Stability Modulated Dynamic Time Warping (F13) [18] - 13.56 - - 4.31 - 100 

Dynamic Time Warping-Normalization(F13) [18] - 8.36 - - 6.25 - 100 

Probabilistic-DTW(case 1) [19] - -  - 0.0118* - 100 

Probabilistic-DTW(case 2) [19] - - - - 0.0187** - 100 

Curvature feature [20] - 10.22 - - 4.12 - 100 

Torsion Feature [20] - 9.22 - - 3.42 - 100 

Curvature feature  + Torsion Feature [20] - 6.05 - - 2.95 - 100 

Representation learning + DTW (Skilled forgery) [20]  1.62**   0.23  100 

Representation learning + DTW (Random forgery) [20]  1.81    0.24  100 

 S_05: Skilled 05 S_20 : Skilled 20 R_05: Random05 R_20: Random20 

No of Training 

Signatures 

U1’s Randomly selected 5 

genuine signatures. 

U1’s Randomly selected 

20 genuine signatures. 

U1’s Randomly selected 5 

genuine signatures. 

U1’s Randomly selected 20 

genuine signatures. 

No of Testing 

Signatures  

(Testing Phase) 

U1’s remaining 20 genuine + 

U1’s all the 25 skilled forgery 

signatures. 

U1’s remaining 5genuine 

+ U1’s all the 25 skilled 

forgery signatures. 

U1’s remaining 20 genuine + 

randomly selected 1 genuine 

from each writer i.e. U2-U99 

(other than the signature used in 

training) = 1 * 99. 

U1’s remaining 5 genuine + 

randomly selected 1 genuine 

from each writer i.e. U2-U99 

(other than the signature used in 

training) = 1 * 99. 



TABLE V.  RELATIVE EXAMINATION OF THE PROPOSED  FRAMEWORK AGAINST THE RECENT MODELS ON SVC DATASET 

Method S_01 S_05 S_10 S_15 R_01 R_05 R_10 R_15 Number of  Features 

for each signature 

Proposed: Compound Feature Selection + 

Separable Convolution 

1.67* 0.00* 0.00* 0.0* 9.77 0.82 0.59 0.44 Maximum : 3 

Few shot learning[6] 5.83** 0.87** 0.35** 0.2 9.08 1.4 0.15* 0.02* 40 

LSTM+CNN[7] 6.71 1.05 0.00* 0.10* 9.53 0.16 0.18** 0.16** 40 

Target-Wise [11] 18.63 - - - 0.50* - - - 47 

Stroke-Wise [11] 18.25 - - - 1.90** - - - 47 

DTW based (Common Threshold) [14]   - 7.80 - - - - - - 47 

Probabilistic-DTW(case 1) [19] -  - - - 0.0025* - - 47 

Probabilistic-DTW(case 2) [19] - - - - - 0.0175** - - 47 

Curvature feature  + Torsion Feature [20] - 9.83 6.61 3.10 - 3.54 1.24 1.81 47 

LCSS (User Threshold) [22]  - - 5.33 - - - - - 47 

Stroke Point Warping [24] - 1.00 - -  - - - 47 

SPW+mRMR+SVM(10-Samples) [24]   - 1.00  - - - - - - 47 

Variance selection [25] - - 13.75 - - - - - 47 

PCA [25] - - 7.05 - - - - - 47 

Relief-1 (using the combined features set) [25] - - 8.1 - - - - - 47 

Relief-2 [25] - - 5.31 - - - - - 47 

RNN+LNPS [26] - - - - - 2.37 - - 47 

TABLE VI.   RELATIVE EXAMINATION OF THE PROPOSED  FRAMEWORK AGAINST THE RECENT MODELS ON SUSIG DATASET 

Figure 2: a) The EERs of 94 users of SUSIG dataset obtained for Skilled_15 b) The EERs of 40 users of SVC dataset obtained for 

Random_1 category. 

Method S_01 S_05 S_10 S_15 R_01 R_05 R_10 R_15 Number of  Features 

for training 

Proposed: Compound Feature Selection + 

Separable Convolution 

0.98* 0.1* 0.0* 0.0* 14.86 10.82 7.03 3.74* Maximum : 3 

Few shot learning [6] 10.41 0.8** 0.63 - 8.7 2.5** 1.26* - 40 

LSTM+CNN [7] 13.09 1.95 0.47** - 12.40 2.86 1.28** - 40 

Target-Wise [11] 6.67** - - - 1.55** -  - 47 

Stroke-Wise [11] 7.74 - - - 2.23 - - - 47 

Information Divergence-Based Matching [13] - 1.6 2.13 - - - - - 47 

Association of curvature feature with Hausdorff 

distance [25] 

- 7.05 - - - 1.02* - - 47 

cosα, speed + enhanced DTW [27] - - 3.06 - - - - - 47 

pole-zero models [28] - 2.09 - - - - - - 47 

Kinematic Theory of rapid human movements 
[29] 

7.87 - - - 3.61 - - - 47 

with all domain [31] - - 3.88 - - - - - 47 

with stable domain [31] - - 2.13 - - - - - 47 

DCT and sparse representation [32] - - 0.51 - - - - - 47 

Length Normalization + Fractional Distance [33] - - 3.52 - - - - - 47 

writer dependent features and classifiers [33] - - 1.92 - - - - - 47 

Association of curvature feature with Hausdorff 

distance [25] 

- 7.05 - - - 1.02* - - 47 



 

Figure. 3. The average EER with three different datasets for Skilled Forgeries (a) and for Random Forgeries (b). 

Figure. 4. The EER resulted by the OSV framework for MCYT-Dataset with varying training signature samples (a) Separable Conv1D b) 

Normal Conv1D 

Figure 5. The ROC curves in the test on MCYT-100 (DB1) database. (a) The TAR and FAR for 100 users with 20 training samples for 

each user under Skilled 20 category. (b) The TAR and FAR for 94 users for each user with 1 training samples under Random 1 category. 

 

The complete details about the number of signatures 

available in each dataset and the number of signatures used 

for training and testing are available in [6, 22]. Table III, 

illustrates the training and testing procedures followed in 

various experimentation categories. Tables IV-VII depicts 

the comparison of Equal Error Rate (EER) with the latest and 

the state-of-the art proposed OSV frameworks. In case of 

MCYT-100, all the existing models considered higher 

number of features, 100 in many cases, where as we have 

used only 3 to 7 features per user and are still able to attain 

the best state of the art results. The first best EER values are 

marked with (*) and the second best are marked with (**). In 

case of MCYT-100 (DB1) our framework achieved very 

good results in S_01, S_20, R_01, R_05 and R_20 

categories. In case of SVC, the framework achieved the 

state-of-the-art results in all skilled categories and very 

descent results in R_05, R_10 and R_15 categories with just 

three features per signature. In case of SUSIG, the 

framework achieved the best EER in all skilled categories 

and R_15 category with three features per signature. As 

illustrated in table IV-VII, even though the frameworks 

proposed in [11,19,20] are resulting in better EER values 

compared to the proposed framework, the models [11,19,20] 

are not extensively evaluated with all categories of training, 

like skilled_1, random_1 etc., whereas we have evaluated 

the model with all the possible training samples and the 



performance is assessed. As depicted in 2D-Histogram of 

Figure 4.a), the proposed framework results in zero EER for 

all the users with five training signature samples and as 

illustrated in Fig 4.b) with slight deviation, the EER 

increases in seven cases as represented in blue square boxes. 

As depicted in Fig 5.a) in case of all datasets and for both 

skilled and random categories, the framework achieves 

decreasing EER, with the increase of training signature 

samples. The SVC and SUSIG datasets demonstrate a steep 

decrease in the EER values, where as MCYT-100 displays a 

stable drop. As illustrated in table VI, the Depth wise 

separable convolution resulting in lesser EER values 

compared to normal convolution operation for both skilled 

and random categories. In case of random categories, the 

sudden raise in the EER with the increased training samples 

is possibly due to the initial set of weights set for the model. 

Fig 7 depicts the True Acceptance Rate (TAR) and False 

Acceptance Rate (FAR) for each user for MCYT-Skilled 20 

and SUSIG Random 1 categories. Fig 7. b) reveals that with 

one genuine signature sample, the framework achieves zero 

FAR and a decent TAR.   

To conclude this section, we see that our proposed OSV 

framework based on a novel dimensionality reduction 

technique and depth wise separable convolution operation 

achieves state of the art EER values with as minimum as one 

trained signature samples and maximum seven features per 

signature sample. This confirms the accurate learning of the 

inter and intrapersonal variability of the samples. Although 

the proposed framework achieved efficient results, the tables 

summarizes that there is a room for enhancement in the case 

of random categories. Hence, we confirm that the framework 

reflects the realistic scenario.   

5.  Conclusion and future work 

   In this manuscript, our contribution is two-fold. We 

presented a novel light weight dimensionality reduction 

technique, which categorizes the feature set into weak, 

moderate and strong features. We selected maximum seven 

features per user in case of MCYT-100 and three features in 

case of SVC and SUSIG datasets. In addition to this, we have 

proposed an OSV frame work based on depth wise separable 

convolutions which enables a substantial reduction of the 

parameter count and amount of computation required and still 

achieves higher level of classification accuracies by learning 

the inter and intrapersonal variability specific to each user, 

even from one signature sample and achieves higher level of 

classification accuracy. The proposed model achieves better 

accuracies compared to state of the art models. The proposed 

framework is having an opportunity for progress of the in the 

case of random categories.  
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