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Abstract 

The correct specification of the concept of physical fields requires a platform in which 

these physical fields can be defined. This platform represents a base model that emerges 

from a Hilbert lattice, a vector space, and a number system. The number system must be 

an associative division ring. Dynamic fields require the selection of the quaternionic 

number system. Quaternionic fields are constructed eigenspaces of normal operators in a 

quaternionic Hilbert space. The base model supports symmetry-related fields and a field 

that always and everywhere exists. It acts as a repository for dynamic geometric data. 

1 The Base Model 
The base model is part of the Hilbert Book Model [1] [2] [3] [4] [5]. 

The base model delivers the platform for modeling quaternionic 

field theory. Thus, we stop treating the Hilbert Book model after 

introducing its base model. 

First, we derive a standard base model from a set of separable 

Hilbert spaces that emerge from a Hilbert lattice and share the 

underlying vector space. Only a subtle difference exists between a 

vector space and a separable Hilbert space exists. We exploit this 

fact to let a single vector space support a huge set of separable 

Hilbert spaces. In the Hilbert Book Model each elementary particle 

resides on a private separable Hilbert space. One of the separable 

Hilbert spaces acts as a background platform. It has an infinite 

dimension and owns a unique non-separable Hilbert space that 

embeds its separable companion. The standard base model 

applies the quaternionic number system. Quaternionic 

eigenvalues suit as storage bins of a scalar timestamp and a three-

dimensional location vector. Together with the standard base 

model this non-separable Hilbert space constitutes the base 
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model that supports quaternionic fields in the eigenspaces of 

normal operators. Sequencing the scalar parts of the eigenvalues 

turns the base model into a dynamic model in which a scanning 

subspace divides the model into a historic part, a static status quo 

and a future part. The base model acts as a repository for dynamic 

geometric data of point-like objects and for dynamic quaternionic 

fields. 

The quaternionic fields are the mathematical equivalents of 

physical fields. Quaternionic fields are described by quaternionic 

functions. The dynamic behavior of the quaternionic field is 

described by quaternionic differential and integral calculus. This 

paper applies the quaternionic nabla to define the first-order 

change of a quaternionic field. The quaternionic nabla separates 

the change of a quaternionic field into five terms. 

1.1 The Hilbert lattice 

A Hilbert lattice [7] is the lattice of closed linear subspaces of 

a Hilbert space (with preorder given by the inclusion) over real, 

complex or quaternion numbers. This is an orthocomplemented 

lattice and in fact an orthomodular lattice. 

The logic it embodies is Birkhoff-von Neumann quantum logic.  

1.2 Vector space 

A vector space over a mathematical field F  is a set V  together 

with two operations that satisfy the eight axioms listed below. In 

the following, V V denotes the Cartesian product of V with itself, 

and → denotes a mapping from one set to another. 

• The first operation, called vector addition or 
simply addition  :         V V V+  → , takes any two 
vectors v  and w  and assigns to them a third vector which is 
commonly written as v w+  , and called the sum of these two 
vectors. (The resultant vector is also an element of the set V .) 

https://ncatlab.org/nlab/show/linear+subspaces
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• The second operation, called scalar multiplication :         F V V  → ， 
takes any scalar a  and any vector v  and gives another 
vector a v . (Similarly, the vector a v  is an element of the 
set V . Scalar multiplication is not to be confused with 
the scalar product, also called inner product or dot product, 
which is an additional structure present on some specific, but 
not all vector spaces. Scalar multiplication is a multiplication of 
a vector by a scalar; the other is a multiplication of two 
vectors producing a scalar.) 

Elements of V  are commonly called vectors. Elements of F are 
commonly called scalars. 

1.2.1 Axioms 

• Associativity of addition          )  ( ( )u v w u v w+ + = + +  

• Commutativity of addition            u v v u+ = +  

• Identity element of addition There exists an element 0   V , called the zero 

vector, such that 0 v v+ =  for all  v V . 

• Inverse elements of addition For every  v V , there exists an 

element  v V−  , called the additive inverse of v , such that 0v v− + =  

• Compatibility of scalar multiplication with field multiplication 
( ( )  )a b v ab v  =   

• Identity element of scalar multiplication1    v v = , where 1 denotes 

the multiplicative identity in F 

• Distributivity of scalar multiplication with respect to vector addition 
      (  )a u v a u a v + =  +   

• Distributivity of scalar multiplication with respect to field 

multiplication  (        )  a b v a v b v+ =  +   

1.3 Quaternions 

Quaternions were discovered by Rowan Hamilton in 1843. Later, 

in the twentieth century, quaternions fell in oblivion.  

Hilbert spaces can only cope with number systems whose 

members form a division ring. Quaternionic number systems 

represent the most versatile division ring. Quaternionic number 

systems exist in many versions that differ in the way that 
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coordinate systems can sequence them. Quaternions can store a 

combination of a scalar timestamp and a three-dimensional 

spatial location. Thus, they are ideally suited as storage bins for 

dynamic geometric data.  

In this paper, we represent quaternion q  by a real one-

dimensional part 
rq  and a three-dimensional imaginary part q  . 

The summation is commutative and associative 

The following quaternionic multiplication rule describes most of 

the arithmetic properties of the quaternions. 

 
( )( )
,

r r r

r r r r

c c c ab a a b b

a b a b a b ab a b

= + = = + +

= − + +  
  (1.2.1) 

The   sign indicates the freedom of choice of the handedness of 

the product rule that exists when selecting a version of the 

quaternionic number system. 

A quaternionic conjugation exists 

 

 * *( )r rq q q q q= + = −   (1.2.2) 

 ( )
* * *ab b a=   (1.2.3) 

The norm q  equals 

 2 ,rq q q q= +   (1.2.4) 

 

 1

2

1 q
q

q q

− = =   (1.2.5) 

 exp
q

q q q
q



 
=   

 
  (1.2.6) 
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q

q
 is the spatial direction of q . 

A quaternion and its inverse can rotate a part of a third 

quaternion. The imaginary part of the rotated quaternion that is 

perpendicular to the imaginary part of the first quaternion is 

rotated over an angle that is twice the angle of the argument   

between the real part and the imaginary part of the first 

quaternion. This makes it possible to shift the imaginary part of 

the third quaternion to a different dimension. For that reason, 

must / 4 = . 

Each quaternion c can be written as a product of two 

complex numbers a and b of which the imaginary base 

vectors are perpendicular 

 

( )( )

( ) ( )

2

1 2

1 2 1 2

1 3

r r

r r r r

r

c a a i b b j

a b a b i a b j a b k

c c i c j c k

= + +

= + + + + +

= + + +

  (1.2.7) 

Where k i j=    
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1.3.1 Quaternionic storage bins 

Quaternions are ideally suited as storage bins of a scalar 

timestamp and a three-dimensional location. 

1.4 Bra's and ket's 

Paul Dirac introduced a handy formulation for the inner 
product that applies a bra and a ket. 

The bra f   is a covariant vector, and the ket g   is a 

contravariant vector. The inner product |f g  acts as a 

metric. It has a quaternionic value. Since the product of 
quaternions is not commutative, care must be taken with the 
format of the formulas. 

For bra vectors hold 

 f g g f f g+ = + = +   (1.2.8) 

 ( ) ( )f g h f g h f g h+ + = + + = + +   (1.2.9) 
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For ket vectors hold  

 f g g f f g+ = + = +   (1.2.10) 

 ( ) ( )f g h f g h f g h+ + = + + = + +   (1.2.11) 

For the inner product holds 

 *
| |f g g f=   (1.2.12) 

For quaternionic numbers  and    hold 

 ( )
* *| | | |f g g f g f f g   = = =   (1.2.13) 

 

 | |f g f g =   (1.2.14) 

 
( )

( )

* *

*

| | |

|

f g f g f g

f g

   

 

+ = +

= +
  (1.2.15) 

Thus 

 f   (1.2.16) 

 *f f =   (1.2.17) 

 g g =   (1.2.18) 

We made a choice. Another possibility would be f f =  and 
*g g =   

In mathematics a topological space is called separable if it 
contains a countable dense subset; that is, there exists 

a sequence  
0i

i i
f

=

=
  of elements of the space such that every 

nonempty open subset of the space contains at least one 
element of the sequence. 

Its values on this countable dense subset determine 
every continuous function on the separable space ℌ. 

https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Separable_space
https://en.wikipedia.org/wiki/Continuous_function
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The Hilbert space ℌ is separable. That means that a 

countable row of elements  nf exists that spans the whole 

space. 

If ( )| ,m nf f m n=  [1 if n=m; otherwise 0], then   nf is an 

orthonormal base of Hilbert space ℌ. 

A ket base  k  of ℌ is a minimal set of ket vectors k  that 

span the full Hilbert space ℌ. 

Any ket vector f  in ℌ can be written as a linear combination 

of elements of  k . 

 |
k

f k k f=   (1.2.19) 

A bra base  b  of ℌ† is a minimal set of bra vectors b  that 

span the full Hilbert space ℌ†. 

Any bra vector f  in  ℌ† can be written as a linear 

combination of elements of  b . 

 |
b

f f b b=   (1.2.20) 

Usually, a base selects vectors such that their norm equals 
1. Such a base is called an orthonormal base 
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1.5 Hilbert space 

A Hilbert space H is a real, complex or quaternionic vector 
space that provides an inner product and that is also 
a complete metric space with respect to the distance function 
induced by the inner product. 

To say that H is a quaternionic inner product space means 
that H is a quaternionic vector space on which there is an 
inner product |u v  associating a quaternion to each pair of 

elements ,u v  of H that satisfies the following properties: 

1. The inner product is conjugate symmetric; that is, the 
inner product of a pair of elements is equal to 
the quaternionic conjugate of the inner product of the 

swapped elements: 
*

| |u v v u=  

2. The inner product is linear in its first argument. For all 
quaternions * *| | | | |au bv w au w bv w u w a v w b+ = + = +  

3. The inner product of an element with itself is positive 

definite: 
| 0 0

| 0 0

u u u

u u u

  


= =

  

   
 

It follows from properties 1 and 2 that a quaternionic inner 
product is conjugate linear in its second argument, meaning 
that 

 | | | | |u av bw u av v bw u v a v w b+ = + = +   (1.3.1) 

A real inner product space is defined in the same way, 
except that H is a real vector space and the inner product 
takes real values. Such an inner product will be bilinear: that 
is, linear in each argument. 

The norm is the real-valued function 

 |u u u=   (1.3.2) 

and the distance d between two points ,u v in H is defined in 

terms of the norm by 

 ( ),d u v u v= −   (1.3.3) 
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 ( ) ( ) ( ), , ,d u w d u v d v w +   (1.3.4) 

With a distance function defined in this way, any inner 
product space is a metric space. Sometimes is known as a 
pre-Hilbert space. Any pre-Hilbert space that is additionally 
also a complete space is a Hilbert space. 

In mathematical analysis, a metric space M is called 
complete (or a Cauchy space) if every Cauchy sequence of 
points in M has a limit that is also in M or, alternatively, if 
every Cauchy sequence in M converges in M. 

An orthonormal base is defined as 

   : |k i j iju u u =   (1.3.5) 

The Hilbert space H is separable if every orthonormal base is 
countable. 

An orthonormal basis for an inner product space V  with finite 

dimension is a basis forV whose vectors are orthonormal, 
that is, they are all unit vectors and orthogonal to each other. 
A separable Hilbert space has a countable orthonormal basis 
that spans H. 

1.5.1 Operators 

Operators act on a subset of the elements of the Hilbert 
space. 

An operator L is linear when for all vectors f  and g  for 

which L  is defined and for all quaternionic numbers   and   

 
( ) ( )

L f L g L f L g

L f g L f g

   

   

+ = +

= + = +
  (1.3.6) 

The operator B  is colinear when for all vectors f  for which 

Bs defined and for all quaternionic numbers there exists a 
quaternionic number such that 

 1 1B f B f B f  − −=    (1.3.7) 

https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Dimension_(linear_algebra)
https://en.wikipedia.org/wiki/Basis_(linear_algebra)
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If a  is an eigenvector of the operator A  with quaternionic 

eigenvalue ,  

 A a a =   (1.3.8) 

then a  is an eigenvector of A with quaternionic eigenvalue 
1 − . 

 1A a A a a a     −= = =   (1.3.9) 

†A  is the adjoint of the normal operator A 

 
*

† †| | |f Ag fA g g A f= =   (1.3.10) 

 ††A A=   (1.3.11) 

 ( )
† † †A B A B+ = +   (1.3.12) 

 ( )
† † †AB B A=   (1.3.13) 

If †A A=  then A  is a self-adjoint operator. 

A linear operator L is normal if †LL exists, and † †LL L L=   

For the normal operator N holds 

 † †| | |Nf Ng NN f g f NN g= =   (1.3.14) 

Thus 

 rN N N= +   (1.3.15) 

 †

rN N N= −   (1.3.16) 

 
†

2
r

N N
N

+
=   (1.3.17) 

 
†

2

N N
N

−
=   (1.3.18) 

 
2† † ,r rNN N N N N N N N= = + =   (1.3.19) 

rN  is the Hermitian part of N . 
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N  is the anti-Hermitian part of N . 

For two normal operators A and B  holds 

 ,r r r rAB A B A B A B AB A B= − + +     (1.3.20) 

For a unitary transformationU holds 

 | |Uf Ug f g=   (1.3.21) 

The closure of separable Hilbert space ℌ means that 

converging rows of vectors of ℌ converge to a vector in ℌ. 

1.5.1.1 Operator construction 

f g  is a constructed operator.  

 ( )
†

g f f g=   (1.3.22) 

For the orthonormal base  iq consisting of eigenvectors of the 

reference operator, holds 

 |n m nmq q =   (1.3.23) 

The reverse bra-ket method enables the definition of new 

operators that are defined by quaternionic functions. 

  
1

(| )|
N

i

i i iqg F h g hq F q
=

=   (1.3.24) 

The symbol F is used both for the operator F and the quaternionic 

function ( )F q .  This enables the shorthand 

 ( )i i iF q F q q   (1.3.25) 

It is evident that 

 ( )† *

i i iF q F q q   (1.3.26) 

For reference operatorR holds 

 i i iq q q=R   (1.3.27) 
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If  iq  consists of all rational values of the version of the 

quaternionic number system thatHapplies then the 

eigenspace of R represents the private parameter space of 

the separable Hilbert spaceH. It is also the parameter space 

of the function ( )F q that defines the operator F in the formula 

(1.3.25). 

1.6 Non-separable Hilbert space 

Every infinite-dimensional separable Hilbert spaceH owns a 

unique non-separable companion Hilbert space . This is 
achieved by the closure of the eigenspaces of the reference 
operator and the defined operators. In this procedure, on 
many occasions, the notion of the dimension of subspaces 
loses its sense. 

Gelfand triple and Rigged Hilbert space are other names 
for the general non-separable Hilbert spaces. 

In the non-separable Hilbert space, for operators with 

continuum eigenspaces, the reverse bra-ket method turns 

from a summation into an integration. 

 ( ) | | qg dF q F qh g h Vd     (1.4.1) 

Here we omitted the enumerating subscripts that were used in 

the countable base of the separable Hilbert space. 

The shorthand for the operator F is now  

 ( )F q F q q   (1.4.2) 

For eigenvectors q , the function ( )F q defines as 

 ( )  | | ' ( ') ' | ' 'F q q Fq q q F q q q dV d= =     (1.4.3) 

The reference operator that provides the continuum 

background parameter space as its eigenspace follows from 

  |g h g h dq q q Vd     (1.4.4) 



14 
 

The corresponding shorthand is  

 q q q   (1.4.5) 

The reference operator is a special kind of defined operator. Via 

the quaternionic functions that specify defined operators, it 

becomes clear that every infinite-dimensional separable Hilbert 

space owns a unique non-separable companion Hilbert space that 

can be considered to embed its separable companion. 

The reverse bracket method combines Hilbert space operator 

technology with quaternionic function theory and indirectly with 

quaternionic differential and integral technology. 

1.7 Private parameter space 

Each Hilbert space manages a private parameter space in the 

eigenspace of the reference operator. This parameter space 

applies the members of the version of the number system that the 

Hilbert space selects for specifying its inner product.  

The parameter space is applied for the quaternionic functions that 

define the eigenspaces of the category of normal operators that 

share the eigenvectors of the reference operator and use the 

target values of the quaternionic functions as their eigenvalues. 

The parameter space determines the symmetry of the Hilbert 

space via the Cartesian and polar coordinate systems that arrange 

the elements of the selected number system.  

1.7.1 Floating platforms 

Apart from the background Hilbert space, all separable Hilbert 

spaces float with the geometric center of their private parameter 

space over the background parameter space. The axes of the 

floating Cartesian coordinate systems are parallel to the 

background Cartesian coordinate axes.   

In physical reality, the floating platforms move with the image of 

their geometric center of their private parameter space over the 
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background parameter space. No straightforward reason can be 

found for this movement of the floating platforms relative to the 

background platform. From observations, we know that in free 

space conglomerates of objects move at a uniform speed. 

Theoretically, it is not clear why the floating platforms move 

uniformly relative to the background platform when they do not 

interact with other objects. 

 

1.8 Quaternionic Fields 

Quaternionic fields are represented by eigenspaces of constructed 

operators. In separable Hilbert spaces, the constructed fields are 

sampled versions of continuum fields. The private parameter 

space is a flat field. It is also possible that some enclosed regions a 

continuum field are sampled fields, which are eigenspaces of 

constructed operators in an embedded separable Hilbert space 

that is embedded in a non-separable Hilbert space. 

1.9 Symmetry versions 

Between versions of the quaternionic number system, the 

sequencing of the numbers along the Cartesian axes can change 

direction. The polar coordinates can start with the azimuth or with 

the polar angle. The azimuth has a range of π radians. The polar 

angle has a range of 2π radians. Both can run up or down. Only 

the symmetry difference between the floating platforms and the 

background platform is important. That difference results in a 

symmetry-related charge that locates at the geometric center of 

the private parameter space of the floating platform. This 

symmetry-related charge results in a symmetry-related field. It is 

represented by a source or a sink at the location of the charge. 

1.9.1 Restrictions to coordinate axes 

No clear reason is found for the fact that the selection of 

Cartesian coordinate axes is restricted to axes that are parallel to 
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the Cartesian axes of the background platform. A reason might be 

that in this way the sources and sinks of symmetry-related fields 

can be related to the symmetry differences between platforms. 

2 Quaternionic differential calculus 

The quaternionic analysis is not so well accepted as complex 

function analysis 

2.1 Field equations 

Maxwell equations apply the three-dimensional nabla 
operator in combination with a time derivative that applies 
coordinate time. The Maxwell equations derive from the 
results of experiments. For that reason, those equations 
contain physical units. 

In this treatment, the quaternionic partial differential 
equations apply the quaternionic nabla. The equations do not 
derive from the results of experiments. Instead, the formulas 
apply the fact that the quaternionic nabla behaves as a 
quaternionic multiplying operator. The corresponding 
formulas do not contain physical units. This approach 
generates essential differences between Maxwell field 
equations and quaternionic partial differential equations. 

The quaternionic partial differential equations form a 
complete and self-consistent set. They use the properties of 
the three-dimensional spatial nabla.  

The corresponding formulas are taken from Bo Thidé's 
EMTF book., section Appendix F4.  

Another online resource is Vector calculus identities. 

The quaternionic differential equations play in a Euclidean setting 

that is formed by a continuum quaternionic parameter space and 

a quaternionic target space. The parameter space is the 

eigenspace of the reference operator of a quaternionic non-

separable Hilbert space. The target space is eigenspace of a 

defined operator that resides in that same Hilbert space. The 

https://en.wikipedia.org/wiki/Vector_calculus_identities
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defined operator is specified by a quaternionic function that 

completely defines the field. Each basic field owns a private 

defining quaternionic function. All basic fields that are treated in 

this chapter are defined in this way. 

Physical field theories tend to use a non-Euclidean setting, which 

is known as spacetime setting. This is because observers can only 

perceive in spacetime format. Thus, Maxwell equations use 

coordinate time, where the quaternionic differential equations 

use proper time. In both settings, the observed event is presented 

in Euclidean format. The hyperbolic Lorentz transform converts 

the Euclidean format to the perceived spacetime format. Chapter 

3 treats the Lorentz transform. The Lorentz transform introduces 

time dilation and length contraction. Quaternionic differential 

calculus describes the interaction between discrete objects 

and the continuum at the location where events occur. 

Converting the results of this calculus by the Lorentz 

transform will describe the information that the observers 

perceive. Observers perceive in spacetime format. This 

format features a Minkowski signature. The Lorentz 

transform converts from the Euclidean storage format at the 

situation of the observed event to the perceived spacetime 

format. Apart from this coordinate transformation, the perceived 

scene is influenced by the fact that the retrieved information 

travels through a field that can be deformed and acts as the living 

space for both the observed event and the observer. 

Consequently, the information path deforms with its carrier field, 

and this affects the transferred information. In this chapter, we 

only treat what happens at the observed event. So, we ignore the 

Lorentz coordinate transform, and we are not affected by the 

deformations of the information path.  

The Hilbert Book Model archives all dynamic geometric data of all 

discrete creatures that exist in the model in eigenspaces of 
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separable Hilbert spaces whose private parameter spaces float 

over the background parameter space, which is the private 

parameter space of the non-separable Hilbert space. For example, 

elementary particles reside on a private floating platform that is 

implemented by a private separable Hilbert space. 

Quantum physicists use Hilbert spaces for the modeling of 
their theory. However, most quantum physicists apply 
complex-number based Hilbert spaces. Quaternionic 
quantum mechanics appears to represent a natural choice. 
Quaternionic Hilbert spaces store the dynamic geometric 
data in the Euclidean format in quaternionic eigenvalues that 
consist of a real scalar-valued timestamp and a spatial, 
three-dimensional location. 

In the Hilbert Book Model, the instant of storage of the event 
data is irrelevant if it coincides with or precedes the stored 
timestamp. Thus, the model can store all data at an instant, 
which precedes all stored timestamp values. This 
impersonates the Hilbert Book Model as a creator of the 
universe in which the observable events and the observers 
exist. On the other hand, it is possible to place the instant of 
archival of the event at the instant of the event itself. It will 
then coincide with the archived timestamp. In both 
interpretations, after sequencing the timestamps, the 
repository tells the life story of the discrete objects that are 
archived in the model. This story describes the ongoing 
embedding of the separable Hilbert spaces into the non-
separable Hilbert space. For each floating separable Hilbert 
space this embedding occurs step by step and is controlled 
by a private stochastic process, which owns a characteristic 
function. The result is a stochastic hopping path that walks 
through the private parameter space of the platform. A 
coherent recurrently regenerated hop landing location swarm 
characterizes the corresponding elementary object. 

Elementary particles are elementary modules. Together they 
constitute all other modules that occur in the model. Some 
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modules constitute modular systems. A dedicated stochastic 
process controls the binding of the components of the 
module. This process owns a characteristic function that 
equals a dynamic superposition of the characteristic 
functions of the stochastic processes that control the 
components. Thus, superposition occurs in Fourier space. 
The superposition coefficients act as gauge factors that 
implement displacement generators, which control the 
internal locations of the components. In other words, the 
superposition coefficients may install internal oscillations of 
the components. These oscillations are described by 
differential equations. 

2.2 Fields 

In the Hilbert Book Model fields are eigenspaces of operators 

that reside in the non-separable Hilbert space. Continuous or 

mostly continuous functions define these operators, and 

apart from some discrepant regions, their eigenspaces are 

continuums. These regions might reduce to single discrepant 

point-like artifacts. The parameter space of these functions is 

constituted by a version of the quaternionic number system. 

Consequently, the real number valued coefficients of these 

parameters are mutually independent, and the differential 

change can be expressed in terms of a linear combination of 

partial differentials. Now the total differential change df of 

field f equals 

 
f f f f

df d idx jdy kdz
x y z




   
= + + +
   

  (2.2.1) 

In this equation, the partial differentials , , ,
f f f f

x y y

   

   
 are 

quaternions. 

The quaternionic nabla   assumes the special 

condition that partial differentials direct along the axes of 

the Cartesian coordinate system. Thus 
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4

0

i

i i

e i j k
x x y z=

    
 = = + + +

    
   (2.2.2) 

The Hilbert Book Model assumes that the quaternionic fields 

are moderately changing, such that only first and second-

order partial differential equations describe the model. These 

equations can describe fields of which the continuity gets 

disrupted by point-like artifacts. Spherical pulse responses, 

one-dimensional pulse responses, and Green's functions 

describe the reaction of the field on such disruptions. 

2.3 Field equations 

Generalized field equations hold for all basic fields. 
Generalized field equations fit best in a quaternionic setting. 

Quaternions consist of a real number valued scalar part and 
a three-dimensional spatial vector that represents the 
imaginary part. 

The multiplication rule of quaternions indicates that several 
independent parts constitute the product. 

 
( )( )
,

r r r

r r r r

c c c ab a a b b

a b a b a b ab a b

= + = = + +

= − + + 
  (2.3.1) 

The   indicates that quaternions exist in right-handed and 

left-handed versions. 

The formula can be used to check the completeness of a set 
of equations that follow from the application of the product 
rule. 

We define the quaternionic nabla as 

 , , , r
x y z

    
  = + 

    
  (2.3.2) 

 , ,
x y z

   
   

   
  (2.3.3) 
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 r



 


  (2.3.4) 

 
( )

,

r r

r r r r

     


    

 
= + = = + + 

 

=  −  + + 

  (2.3.5) 

 ,r r r  = −    (2.3.6) 

 
r r E B   = +  = −    (2.3.7) 

Further, 

r  is the gradient of 
r   

,  is the divergence of    

  is the curl of   

The change   divides into five terms that each has a separate 

meaning. That is why these terms in Maxwell equations get 

different names and symbols. Every basic field offers these terms! 

 r rE  = − −   (2.3.8) 

 B =   (2.3.9) 

It is also possible to construct higher-order equations. For 

example 

 rJ B E= −   (2.3.10) 

The equation (2.3.6) has no equivalent in Maxwell's 

equations. Instead, its right part is used as a gauge. 

Two special second-order partial differential equations use 

the terms 
2

2








 and ,     

 
2

2
, 



 
= −   

 
  (2.3.11) 
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2

2
, 



 
= +   

 
  (2.3.12) 

The equation (2.3.11) is the quaternionic equivalent of the wave 

equation. 

The equation (2.3.12) can be divided into two first-order partial 

differential equations. 

 
( )( )( )

( )

* * *

,

r r r

r r

     



= =  = =  +  − +

=   +  
 

 (2.3.13) 

This composes from * =  and  =  

The prove of (2.3.13) applies the equality 

 ( ) , ,a a a  =  −     (2.3.14) 

Such that 

 

( ) ( ) ,

, ,

, , , ,

,

r

r

r

a a a a

a a a

a a a a

a

  =  −  +

= −  −  

=  −   −  −  

= −  

  (2.3.15) 

 

2

2
,




−  


 is the quaternionic equivalent of d’Alembert’s 

operator . 

The operator 
2

2
,




+  


 does not yet have an accepted name. 

The Poisson equation equals 

 , =     (2.3.16) 
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A very special solution of this equation is the Green’s function

( )
1

4 'q q −
  of the affected field  

 
( )

3

'1

' '

q q

q q q q

−
 = −

− −
  (2.3.17) 

 

( )

( )

3

'1 1
, , ,

' ' '

4 '

q q

q q q q q q

q q

−
     = −  

− − −

= −

  (2.3.18) 

The spatial integral over Green’s function is a volume. 

(2.3.11) offers a dynamic equivalent of the Green’s function, 

which is a spherical shock front. It can be written as 

 
( )( )' '

'

f q q c

q q

 


− − −
=

−
  (2.3.19) 

A one-dimensional type of shock front solution is  

 ( )( )' 'f q q c  = − − −   (2.3.20) 

The equation (2.3.11) is famous for its wave type solutions 

 2,r r     =   = −   (2.3.21) 

Periodic harmonic actuators cause the appearance of waves, 

Planar and spherical waves are the simpler wave solutions of 

this equation. 

 ( ) ( ) 0, exp ,q n k q q   = − − +   (2.3.22) 

 ( )
( ) 0

0

exp ,
,

n k q q
q

q q

 
 

− − +
=

−
  (2.3.23) 
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The Helmholtz equation considers the quaternionic function 

that defines the field separable. 

 ( ) ( ) ( ),r rq q A q T q =   (2.3.24) 

 2
,

r r
A T

k
A T

   
= = −   (2.3.25) 

 2, A k A  = −   (2.3.26) 

 2

r rT k T  = −   (2.3.27) 

For three-dimensional isotropic spherical conditions, the 

solutions have the form 

 ( ) ( )( ) ( ) 
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Y   


= =−

= +   (2.3.28) 

Here 
lj  and 

ly  are the spherical Bessel functions, and m

lY  are 

the spherical harmonics. These solutions play a role in the 

spectra of atomic modules. 

A more general solution is a superposition of these basic types. 

(2.3.11) offers a dynamic equivalent of the Green’s function, 

which is a spherical shock front. It can be written as 

 

 
( )( )' '

'

f q q c

q q

 


− + −
=

−
  (2.3.29) 

A one-dimensional type of shock front solution is  

 ( )( )' 'f q q c  = − + −   (2.3.30) 

Equation (2.3.12) offers no waves as part of its solutions. 

https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
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During travel, the amplitude and the lateral direction 
f

f
 of the 

one-dimensional shock fronts are fixed. The longitudinal direction 

is along 
'

'

q q

q q

−

−
.  

The shock fronts that are triggered by point-like actuators are the 

tiniest field excitations that exist. The actuator must fulfill 

significant restricting requirements. For example, a perfectly 

isotropic actuator must trigger the spherical shock front. The 

actuator can be a quaternion that belongs to another version of 

the quaternionic number system than the version, which the 

background platform applies. The symmetry break must be 

isotropic. Electrons fulfill this requirement. Neutrinos do not break 

the symmetry but have other reasons why they cause a valid 

trigger. Quarks break symmetry, but not in an isotropic way. 

2.4 Energy operators 

In contemporary quantum physics, the del operator stands for the 

momentum operator p h=  . In the quaternionic function theory, 

this is automatically an imaginary operator. 

In contemporary quantum physics T  is the kinetic energy 

operator.  

 
2 2

,
2 2

p h
T

m m
= = −    (2.4.1) 

The gravitation potential of an elementary particle is a 

superposition E of solutions L of the equation  

 ( ) ( ) ( ), 4 ' 'r r L q q      +   = −    (2.4.2) 

that are integrated over the regeneration cycle of the location 

density distribution of the footprint of the particle. Here the Dirac 
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delta function and the step function represent the location and 

the timestamps of the hop landings. 

The fact that the stochastic process, which controls the 

elementary particle owns a characteristic function makes that the 

superposition E  of the solutions L  is a wave package. The 

superposition is defined in Fourier space. E  is a solution of 

 ( ), 0r r E  −   =   (2.4.3) 

Thus, the gravitation potential E  of an elementary particle is also 

a superposition of wave-like solutions  of the equation 

 2,r r        =   =   (2.4.4) 

The composition of composite objects that are constituted by 

elementary particles is also controlled by a stochastic process that 

owns a characteristic function. That characteristic function is a 

dynamic superposition of the characteristic functions of the 

components of the composite. So, its gravitational potential   is a 

dynamic wave package and it is a dynamic superposition of 

functions of type E . Again, the superposition is defined in Fourier 

space.  

According to the Klein Gordon equation, which presents the vision 

of current physics,  is a solution of  

 ( )
2

,r r

m
 

 
  −   = − 

 
  (2.4.5) 

Here we have taken 2 1c = . This shows a significant difference 

between conventional physics and the Hilbert Book Model in how 

these theories handle the concept of mass. The HBM applies 

Newton’s gravitation potential to relate mass to the gravitation 

potential of massive objects.  
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 ( )
MG

r
r

 =  (2.4.6) 

 

3 Lorentz transform 

3.1 The transform 

The shock fronts move with speed c . In the quaternionic 
setting, this speed is unity.  

 2 2 2 2 2x y z c + + =   (3.1.1) 

Swarms of spherical pulse response triggers move with 
lower speed v. 

For the geometric centers of these swarms still holds: 

 2 2 2 2 2 2 2 2 2 2' ' ' 'x y z c x y z c + + − = + + −   (3.1.2) 

  

If the locations  , ,x y z and  ', ', 'x y z  move with uniform relative 

speed v, then 

 ( ) ( )' cosh sinhct ct x = −   (3.1.3) 

 ( ) ( )' cosh sinhx x ct = −   (3.1.4) 

 ( )
( ) ( )

2 2

exp exp
cosh

2

c

c v

 


+ −
= =

−
  (3.1.5) 

 ( )
( ) ( )

2 2

exp exp
sinh

2

v

c v

 


− −
= =

−
  (3.1.6) 

 ( ) ( )
2 2

cosh sinh 1 − =   (3.1.7) 

This is a hyperbolic transformation that relates two 
coordinate systems. 

This transformation can concern two platforms P  and 'P  on 
which swarms reside and that move with uniform relative 
speed . 



28 
 

However, it can also concern the storage location P that 
contains a timestamp t and spatial location  , ,x y z and 

platform 'P  that has coordinate time t and location  ', ', 'x y z  . 

In this way, the hyperbolic transform relates two individual 
platforms on which the private swarms of individual 
elementary particles reside. 

It also relates the stored data of an elementary particle and 
the observed format of these data for the elementary particle 
that moves with speed  relative to the background parameter 
space. 

The Lorentz transform converts a Euclidean coordinate 
system consisting of a location  , ,x y z and proper timestamps 

 into the perceived coordinate system that consists of the 
spacetime coordinates  ', ', ', 'x y z ct in which 't plays the role of 

proper time. The uniform velocity v  causes time dilation 

2

2

'

1

t
v

c


 =

−

 and length contraction 
2

2
' 1

v
L L

c
 =  −   

3.2 Minkowski metric 

Spacetime is ruled by the Minkowski metric. 

In flat field conditions, proper time τ is defined by 

 
2 2 2 2 2c t x y z

c


− − −
=    (3.2.1) 

And in deformed fields, still 

 2 2 2 2 2 2 2 2ds c d c dt dx dy dz= = − − −   (3.2.2) 

 

Here ds  is the spacetime interval and d is the proper time 

interval. dt  is the coordinate time interval 
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3.3 Schwarzschild metric 

 Polar coordinates convert the Minkowski metric to the 

Schwarzschild metric. The proper time interval d obeys [ 89] [90] 

 ( )
1

2 2 2 2 2 2 2 2 21 1 sins sr r
c d c dt dr r d d

r r
  

−

   
= − − − − +   
   

 

 (3.3.1) 

Under pure isotropic conditions, the last term on the right side 

vanishes.  

According to mainstream physics, in the environment of a black 

hole, the symbol sr  stands for the Schwarzschild radius. 

 
2

2
s

GM
r

c
=  (3.3.2) 

 

The variable r equals the distance to the center of mass of the 

massive object with mass M . 

The Hilbert Book model finds a different value for the boundary of 

a spherical black hole. That radius is a factor of two smaller. 
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4 Line, surface and volume integrals 

4.1 Line integrals 

The curl can be presented as a line integral 

 
0

1
, lim ,

A
C

n dr
A

 
→

 
   

 
   (4.1.1) 

4.2 Surface integrals 

With respect to a local part of a closed boundary that is 

oriented perpendicular to vector n  the partial differentials 

relate as 

 
,

,

r

r

n

n n n

    

  

 = −  +  

= − +  
  (4.2.1) 

This is exploited in the surface-volume integral equations that are 

known as Stokes and Gauss theorems.  

 dV n dS  =    (4.2.2) 

 , ,dV n dS  =    (4.2.3) 

 dV n dS  =     (4.2.4) 

 r rdV n dS  =    (4.2.5) 

This result turns terms in the differential continuity equation 

into a set of corresponding integral balance equations. 

The method also applies to other partial differential equations. 

For example 

 
( ) ( ), ,

, ,n n n n

   

 

  =  −    

= −
  (4.2.6) 
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 ( )     , ,
V S S

dV dS dS    =   −      

 (4.2.7) 

One dimension less, a similar relation exists. 

 ( ), ,
S C

a n dS a dl =    (4.2.8) 

4.3 Using volume integrals to determine the symmetry-related 

charges 

In its simplest form in which no discontinuities occur in the 

integration domain  , the generalized Stokes theorem runs 

as 

 d  
  

= =     (4.3.1) 

We separate all point-like discontinuities from the domain 
by encapsulating them in an extra boundary. Symmetry 
centers represent spherically shaped or cube-shaped closed 

parameter space regions x

nH  that float on a background 

parameter spaceR . The boundaries x

nH  separate the 

regions  from the domain x

nH . The regions x

nH are platforms for 

local discontinuities in basic fields. These fields are 

continuous in the domain H−  .  

 
1

N
x

n

n

H H
=

=   (4.3.2) 

The symmetry centers x

nS  are encapsulated in regions x

nH , 

and the encapsulating boundary x

nH is not part of the 

disconnected boundary, which encapsulates all continuous 

parts of the quaternionic manifold   that exists in the 

quaternionic model. 

 
1 x

n

N

kH H H

d   
=−   

= = −      (4.3.3) 
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In fact, it is sufficient that x

nH surrounds the current location 

of the elementary module. We will select a boundary, which 
has the shape of a small cube of which the sides run through 
a region of the parameter spaces where the manifolds are 
continuous. 

If we take everywhere on the boundary the unit normal to 
point outward, then this reverses the direction of the normal 

on x

nH which negates the integral. Thus, in this formula, the 

contributions of boundaries  xnH  are subtracted from the 

contributions of the boundary  . This means that   also 

surrounds the regions  xnH  

 This fact renders the integration sensitive to the 
ordering of the participating domains. 

Domain corresponds to part of the background parameter 
spaceR . As mentioned before the symmetry centers 

x

nS  represent encapsulated regions  xnH that float on the 

background parameter spaceR . The Cartesian axes of 
x

nS  are parallel to the Cartesian axes of background 

parameter spaceR . Only the orderings along these axes 
may differ. 

Further, the geometric center of the symmetry center x

nS is 

represented by a floating location on parameter spaceR . 

The symmetry center x

nS is characterized by a private 

symmetry flavor. That symmetry flavor relates to the 
Cartesian ordering of this parameter space. With the 
orientation of the coordinate axes fixed, eight independent 
Cartesian orderings are possible. 

The consequence of the differences in the symmetry flavor 
on the subtraction can best be comprehended when the 

encapsulation x

nH is performed by a cubic space form that 

is aligned along the Cartesian axes that act in the 
background parameter space. Now the six sides of the cube 
contribute differently to the effects of the encapsulation when 
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the ordering of x

nH  differs from the Cartesian ordering of the 

reference parameter spaceR . Each discrepant axis ordering 
corresponds to one-third of the surface of the cube. This 
effect is represented by the symmetry-related charge, 
which includes the color charge of the symmetry center. It is 
easily comprehensible related to the algorithm which below 
is introduced for the computation of the symmetry-related 
charge. Also, the relation to the color charge will be 
clear. Thus, this effect couples the ordering of the local 
parameter spaces to the symmetry-related charge of the 
encapsulated elementary module. The differences with the 
ordering of the surrounding parameter space determine the 
value of the symmetry-related charge of the object that 
resides inside the encapsulation! 
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4.4 Symmetry flavor 

The Cartesian ordering of its private parameter space determines 

the symmetry flavor of the platform. For that reason, this 

symmetry is compared with the reference symmetry, which is the 

symmetry of the background parameter space. Four arrows 

indicate the symmetry of the platform. The background is 

represented by: 

 

Now the symmetry-related charge follows in three steps. 

1. Count the difference of the spatial part of the symmetry of 

the platform with the spatial part of the symmetry of the 

background parameter space. 

2. Switch the sign of the result for anti-particles. 

Symmetrieversie 
Ordering 

x   y   z    τ 

Sequence Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry type. 

 ⓪ R N +0 neutrino 

 ① L R − 1 down quark 

 ② L G − 1 down quark 

 ③ R B +2 up quark 

 ④ L B −1 down quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N − 3 electron 

 ⑧ R N +3 positron 

 ⑨ L R − 2 anti-up quark 

 ⑩ L G − 2 anti-up quark 

 ⑪ R B +1 anti-down quark 

 ⑫ L B − 2 anti-up quark 

 ⑬ R G +1 anti-down quark 

 ⑭ R R +1 anti-down quark 

 ⑮ L N − 0 anti-neutrino 

 

Probably, the neutrino and the antineutrino own an abnormal 

handedness.  

 
 

  
 

  
  

   
 

  
  

   
  

   
   

    

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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The suggested particle names that indicate the symmetry type are 

borrowed from the Standard Model. In the table, compared to the 

standard model, some differences exist with the selection of the 

anti-predicate. All considered particles are elementary fermions. 

The freedom of choice in the polar coordinate system might 

determine the spin. The azimuth range is 2π radians, and the 

polar angle range is π radians. Symmetry breaking means a 

difference between the platform symmetry and the symmetry of 

the background. Neutrinos do not break the symmetry. Instead, 

they probably may cause conflicts with the handedness of the 

multiplication rule. 

4.5 Derivation of physical laws 

The quaternionic equivalents of Ampère's law are 

 r rJ B E J n B E =    =   (4.5.1) 

 , , ,r

S C S

B n dS B dl J E n dS = = +     (4.5.2) 

The quaternionic equivalents of Faraday's law are: 

 ( ) ( )r r r rB E B n E  =  = −  =   = −   (4.5.3) 

 , , ,r

c S S

E dl E n dS B n dS=  = −      (4.5.4) 

 ( ) rJ B E v  = − = − =   (4.5.5) 

 ( ), , ,r

S C S

n dS dl v n dS    = = +     (4.5.6) 

The equations (4.5.4) and (4.5.6) enable the derivation of the 

Lorentz force. 

 rE B = −   (4.5.7) 

 ( )
( )

( )
( )0

0 0, , ,
S S S

d d
B n dS B n ds B n ds

d d
 

 
 

= +     (4.5.8) 

https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
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The Leibniz integral equation states 

 
( )

( )

( ) ( ) ( ) ( ) ( )
( )( )0 0

0

0 0 0 0 0

,

, , ,

S

S C

d
X n dS

dt

X X v n dS v X dl



 



    = +  − 



 
  (4.5.9) 

With X B=   and , 0B =   follows 

 ( )
( )

( ) ( ) ( )
( )( )

( )
( )

( ) ( )
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 (4.5.10) 

The electromotive force (EMF)    equals 
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 F qE qv B= +    (4.5.12) 

  

https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
https://en.wikipedia.org/wiki/Electromotive_force
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