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Time dilation in classical physics 
Abstract 

 
'Time dilation' appears to be an experimental fact2,4.  We show that if Einstein had 
not invented the multiple time dimensions and multiple ethers of relativity, time 
dilation could have been derived from absolute time (defined as universal simul-
taneity) and the constant speed of light in absolute space. 

 
Prior to 1905 physics was formulated with absolute time, defined as universal simultaneity; 
essentially it is NOW throughout the universe, independently of position, or velocity.  If the 
speed of light is constant, then ctx =  where x  is the distance traveled by light during time t .  
Obviously tcx ′=′  where t′  is a time measurement differing from time t .  Time and space are 
independent of each other; it is the same time everywhere in space and locations in space do not 
depend on time.  Therefore we choose Hestenes’ geometric algebra 1 in which the geometric 
product of two vectors a  and b


 is defined bababa


∧+⋅= .  The bivector ba


∧  is dual to the 

cross product bai


× , where i  is the duality operator.  We represent the two basic entities, time 
and space, as the four-vector (multi-vector) 
 

xctX 
+=                (1)   

 
where tc  is a scalar distance and x  is a three-position vector.  The 
location of either origin )0,0( == xt   is irrelevant.  In the figure at right 
we invert the ctx =  ray in the origin to obtain ctx =−

  which we can 
represent as the conjugate four-vector xctX 

−=~ .  These entities support 
the relations: 
 

 
2

~XXx −
=


, c

XXt
2

~+
= , 0~ 222 =−= xtcXX  ,     (2) 

 

The product XX ~  is invariant and holds for all rays: XXXX ′′== ~0~ .  Invariants are key physics 
and engineering entities: without some unchanging relation it is generally impossible to form-
ulate a theory of anything.  The invariant relations are such that the origin of the coordinate 
system )0( =r  is irrelevant.  We generalize to the case in which one coordinate system is in uni-
form motion with respect to the other, with velocity v .  For constant v  we can replace tcx =  
with tvx 

=  in invariance (2) which we can rewrite 
 

XXvcttvcttvct ~)())(( 222 =−=−+


  ⇒    0)(2)~( 22 ≠−→ vct
dt

XXd
,  

but this is not invariant.  Can we find a relevant invariant?   If 0)~( ≠XX
dt
d  can we show that  

 [ ] 0~~ =′′− XXXX
dt
d ?           (3) 

 

Xctx

Xctx
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Unlike the constant speed of light, velocities are not necessarily equal; vv ′≠ , therefore we set 
0=′v  and perform the derivation: 

 

[ ] ⇒=′′−−− 0)()( 222222 tvctvc
dt
d ])[(])[( 22222 τc

dt
dtvc

dt
d

=−    (4)  
 
when t′≡τ .  If the derivatives are equal, then we expect the relation between t  and τ  to be a 
function of velocity, )(vγ , such that τγ )(vt = .  Performing the calculation we obtain: 
 

 22

2
222 1112)()(2

γ
τ

γ
ττττ ⇒⇒=








−⇒=−

dt
d

dt
d

tc
v

dt
dcvct   (5) 

Thus 

221
1)(

cv
v

−
=γ

 
 for constant  )(tvv ≠ .     (6) 

 
The above focuses on math, so let us examine the relevant physics.  The obvious interpretation of 

τγ )(vt =   is that  τ≠t , which might seem to violate our key assumption of absolute time.  Yet 
physics is not mathematics; physics relates the universe to mathematics based on measurements, 
so we ask if  t  and τ  can represent measurements of systems in uniform motion with respect 
each other.  If so, we must examine the measuring devices, the clocks that measure time in the 
two systems in motion with respect to each other.  The key question is,  
 

does a clock in motion measure exactly the same as the identical clock at rest? 
 
In the following we consider the unprimed system to be at rest in the absolute framework while 
the prime system is moving with velocity xv 


=  in the rest frame.  From (2) and (3) we obtain 

222 )()()~()( xtcXX 
∆−∆=∆∆  and 222 )()()~()( xcXX ′∆−∆=′∆′∆

τ .   We then let tvx ∆=∆
  and 

τ∆′=′∆ vx  .  If invariance is preserved, and we set 0=′v  we obtain 
 

)~)(()()~()( 22 XXcXX ∆∆=∆=′∆′∆ τ .        (7) 
 
Divide both sides of the equation by τ∆  twice, yielding 
 

2
~

cXX
=








∆
∆








∆
∆

ττ
          (8) 

 

If ττ d→∆  then four-velocity V  is the entity )( τddX  with conjugate τdXdV ~~ = , hence 
 

 2
~~ c

d
Xd

d
dXVV =














=

ττ        
 (9) 

 
As Hestenes observes 1 ,  "Unlike three-velocities, the four-velocity has a constant magnitude 
independent of the particle history."  This is a key invariance. 
 

Recall that )()( txcttX 
+= , )()(~ txcttX 

−= , so 
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vc
dt
xdc

dt
dX 



+=+= .         (10) 
 
If clock time τ  is used and )()()( τττ xctX 

+=  then 
 

)( vc
dt
xdc

d
dt

d
dX 



+=





 += γ

ττ        
 (11) 

 

Since τγ=t  then ⇒= τγ ddt τγ ddt= .  Let us consider the right-hand term of (11), )( vc +γ  
and let us multiply these by the rest mass 0m  of a particle, )(0 vcm +γ .  The four-vector has the 
form (scalar plus vector), with 
 

scalarcm =0γ        and   vectorvm =


0γ . 
 

Since γ  is dimensionless, the vector vm 
0γ  has units of momentum: 

 
vmp 

= .          (12) 
 
If this is to make sense, we define the inertial mass m  to be 
 

0mm γ≡           (13)   
 
which implies that the inertial mass increases with velocity, yielding the rest mass at 0=v .  This 
relation has been confirmed countless times in twentieth century particle physics.  Thus 
 

VmP 0= .   
 

The scalar, cm0γ  has units of momentum, but no obvious interpretation.  If we multiply and 
divide by c  we obtain ccm /2

0γ .  Since 2
0 cmγ  has units of energy, we define 2

0 cmE γ=  as 

particle energy.  Four-momentum 





 +== p

c
EVmP 

0  implies a conjugate 





 −== p

c
EVmP ~~

0  

thus 2
2

2~ p
c
EPP 

−=
 
while eqn (9) shows that 

 
22

0
2

000
~~~ cmVVmVVmmPP === ,          (14) 

 
Hence 

22
0

2
2

2

cmp
c
E

=−
 .         (15) 

 
This dynamical energy-momentum relation is the essence of particle physics.  The rest mass is 
found by setting 0=p 2

0)0( cmE =⇒ .  The energy expression 2/12242
0 )()( pccmpE 

+=  implies 
the classical Hamiltonian 5 
 

2/12242
0 )()()( pccmpEpH 

+== .       (16) 

3 
 



Time Dilation in Classical Physics © Edwin Eugene Klingman 31 October 2019 

We now have a four-momentum vector consisting of scalar E  plus vector momentum p , where 
 

vmvmp  )( 0γ== ,  and energy 21 2
0

2
0

2/1

2

2
2

0
2

0 vmcm
c
vcmcmE +≅








−==

−

γ .   

 
Total energy E  is equal to rest mass plus kinetic energy to a first approximation 2.  
 

Analysis of moving inertial clocks 
 

We begin with Newton's law dtpdF 
=  for the clock at rest where the restoring force on the 

sprung mass is xkF 
∆−= .  We assign an equivalent relation xktdpdF ′′−=′′=′


 to the clock in 

motion, where xx ∆=′  is the stretch of the spring and we assume kk =′ .  Velocity 0v  of the rest 
clock is zero in absolute space while the velocity of sprung mass 0m  of the rest clock is 

xdtdxu == .  Since the moving clock is assumed to be initially at rest, and then to have been 
accelerated to velocity v , the velocity of the sprung mass m′  of the moving clock is uv ′+  in 
absolute space with dtxdv 

=  and xdtxdu ′=′=′  .  In these terms the momentum of the sprung 
mass of the rest clock is given by )( 00 uvmp +=  while the momentum of the sprung mass of the 
moving clock is )( uvmp ′+′=′ .   
 
Write equations of motion of sprung mass in both unprimed (rest) and primed (moving) frames: 
 

 xkxm
dt
dum

dt
dp

−=== 00   xkuv
td

dm
td
pd ′−=′+

′
′=

′
′

)( ,   (17)  

so 

 
dt
d

dt
d

td
d γ

γ
==

′ )/(
      xk

dt
udmuv

td
dm

td
pd ′−=

′
′=′+

′
′=

′
′

⇒ γ)( .  (18)   

 

Since 
dt
xdu
′

=′  and  0mm γ=′   we have xkxmxk
dt

xdm
td
pd ′−=′⇒′−=

′
′=

′
′

0
2

2

2

γγ .  Summarizing:  

  

 0
2

0
2

2

=′







+
′

⇒
′
′

x
dt

xd
td
pd

γ
ω  ⇒ 02 =′′+′ xx ω     (19)   

 

02
02

2

=+⇒ x
dt

xd
dt
dp ω   ⇒ 02

0 =+ xx ω     (20)   

 

In terms of universal time t , the equation of motion of the rest clock yields frequency 0ω , while 

the frequency of the moving clock yields γωω 0=′ .   This establishes time dilation for inertial 
clocks in relative motion in universal time and space. 
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If one becomes confused over x  and x′  in the above — the equations of motion for the sprung-
mass(es) treat x  and x′  as the position variables for m  and m′  respectively — x  can be 
replaced by mx  and  x′  be replaced by mx ′′  such that the relevant velocities are denoted by: 
 

 
dt

dx
dt
dxu m≡=    and  

dt
xd

dt
xdu m′′≡
′

=′ ,    (21) 

 

and every step can be carried out using these explicit mass-based position coordinates.  Of course 
one obtains the same final results.   Note that equations (19) and (20) are formulated in terms of 
universal time, t ,  as should be expected in a theory of absolute time and space. 
 

From the above we observe that the frequency of the moving oscillator, ω′  is less than the rest 
frequency 0ω  since 1>γ .  The frequency 0ω   is inversely related to the rest clock period: 
 

t∆
1~0ω           (22)  

 
and frequency ω′  of the moving oscillator is inversely related to the period of the moving clock  
 

t′∆
′ 1~ω            (23) 

From the above we obtain  
t
t

∆
′∆

==
′

γ
ω
ω0 . 

 
Since clocks tell time by counting periods let us assume an absolute time period T∆  that is 
measured by each clock.  If the rest clock counts n  periods )( t∆  during T∆  and the moving 
clock counts n′  periods )( τ∆=′∆t  then we obtain 
 

tntnT ′∆′=∆=∆          (24)   
 
where n  and n′  are the respective readings of the clocks.  From this last equation we derive 
 

γ=
∆
′∆

=
′ t

t
n
n           (25)  

 
hence nn ′= γ .  Thus the clock moving with velocity v  goes more slowly by a factor equal to the 
inertial factor γ .  This agrees with relativistic time dilation but is based on absolute time and 
Galilean transformation! 
 

Discussion 
 
Conventionally 3, times tt ′,  and positions xx ′,  are respectively identified with rest frame S  and 
moving frame S ′ .  For instance, the derivative tdd ′  refers to the change in something with 
respect to the time measured in the moving system.  Thus td ′  represents time measured in S ′  
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and dt  represents time measured in the rest frame S .  But these times are clock readings n  and 
n′ , hence dtn ~  and tdn ′′ ~ .  Thus we obtain 
 

γ=
′

=
′ td

td
n
n .          (26) 

 

These readings are multiples of the clock tick or oscillation periods, denoted by t∆  and t′∆  
respectively for rest and moving frames.  These terms are inverse to the respective frequencies:  

t∆1~0ω , t′∆′ 1~ω .  In terms of clock periods the relations appear reversed:  γ=
∆
′∆
t
t .  So do 

not confuse clock reading dt  with rest clock period t∆ , or td ′  with t′∆ . 
 

Einstein’s clocks are assumed massless and able to measure time perfectly; he made absolutely 
no effort to work out the physics of inertial clocks, nor did he ever mention the clock’s mass.  He 
assumed that each frame possesses a universal time dimension and that the clocks are 
‘constructed identically’ and tell time identically; thus actual differences in time are reflected in 
the clock readings and hence time ‘dilates’ in a moving frame. 
 

We began by deriving an invariance relation based on tcx =  for the constant speed of light in 
absolute space.  We then attempted to generalize the invariance to handle arbitrary velocities and 
derived an inertial factor 2/12 ))(1()( −−= cvvγ  such that 0mm γ=  and γτ =ddt .  If dt  and τd  
represent time measurements using two clocks in uniform relative motion then inertial factor γ  
represents a calibration relation.  Since all clocks count oscillations to 'tell time' and the fact that 
all oscillators involve a linear restoring force xkf −=  acting on mass displaced from equili-
brium condition by distance x .  Based on dtdpamf ==  the acceleration for a given force f  
is mf , that is, increased inertial mass m  reduces the acceleration, slowing the system down.  
When we analyze a spring-based clock, xkf 

−= , we derive the frequency of oscillation of the 
moving clock, γωω 0=′ ; thus the moving clock 'runs slower' than the clock at rest.  The 
increase in inertial mass is essentially the equivalent mass of the kinetic energy of the moving 
clock gained when the moving clock was accelerated from rest to velocity v  in the absolute 
frame.  The key fact is that the analysis of inertial clocks leads to exactly the relationship 

γτγωω =⇒=′ ddt0  that was experimentally determined in the twentieth century. 
 

Summary of 'classical time dilation' 
 
Although 'time dilation' has been considered 'proof' of special relativity, and particularly of 
'multiple time dimensions' and 'relativity of simultaneity' – excluding absolute time and space – 
we find that the classical physics analysis of clocks in relative motion in absolute space and time 
yields "clock dilation" that perfectly matches the experimental evidence.  We thus provide an 
alternative interpretation of time dilation that contrasts with the century-old interpretation of 
special relativity. 
 
I am grateful to Monty Frost, Stan Robertson, and Dick Zacher for helpful conversations 
concerning the above topics. 
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