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Abstract

In this paper, we will point out an important inconsistency in modern physics. When relativistic momentum
and relativistic energy are combined with key concepts around Planck momentum and Planck energy, we find an
inconsistency that has not been shown before. The inconsistency seems to be rooted in the fact that momentum,
as defined today, is linked to the de Broglie wavelength. By rewriting the momentum equation in the form of
the Compton wavelength instead, we get a consistent theory. This has a series of implications for physics and
cosmology.
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1 Introduction

In 1899, Max Planck [1, 2] assumed there were three essential and universal constants: the Planck constant,
the speed of light, and the gravitational constant. By using dimensional analysis, he then derived what he
considered to be some very fundamental units, namely, length, time, mass, and energy. Today these are known
as the Planck units.

The Planck mass is given by

mp =

r
h̄c
G

(1)

The Planck mass can also be found independent of any knowledge of Newton’s gravitational constant, as
shown in other work [3, 4]. Max Planck himself was not completely clear about the nature of the Planck
mass. This mass is very large compared to the rest-mass of any observed elementary particle and has generated
consideration speculation over the years. Lloyd Motz was likely the first to suggest there could be a Planck mass
particle, see [5–7]. He thought that the Planck mass particle was truly essential, but he was also well aware that
the Planck mass (about 10�8 kg) was substantially larger than any observed fundamental particle. Therefore,
he suggested the Planck mass particle had existed just after the Big Bang and then disintegrated into all of
the much smaller particles observed today. Others, like Hawking, have suggested that the Planck mass particle
is linked to micro black holes, see [8–10]. We will return to this later and show that there is a much simpler
solution for the missing Planck mass particle, but first we will evaluate Planck energy and Planck momentum.

The Planck energy is given by

Ep = mpc
2 (2)

and the Planck momentum [11] is given by

pp = mpc (3)

Einstein’s theory of special relativity plays a role here, and the relativistic momentum in modern physics is
given by

p =
mvq
1� v2

c2

(4)

and, finally, the relativistic total energy is given by

E =
mc2q
1� v2

c2

(5)
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2 The Inconsistency

Assume we have an elementary mass, m, that after acceleration has a total relativistic energy equal to the Planck
energy

mpc
2 =

mc2q
1� v2

c2

(6)

Next we solve this with respect to v and we get

v = c

s

1� m2

m2
p
< c (7)

This velocity is always smaller than the speed of light in a vacuum and this is the same velocity that we have
described in a series of papers as an exact upper maximum velocity for elementary particles, see [3, 12, 13].

However, whether this is a new maximum velocity or not is worth further study, although that is not the
main point here. However, a very interesting feature of this velocity formula is that if m = mp, then in order
to have Planck mass energy, the velocity of the Planck mass particle must be zero. This is no surprise, as mpc

2

can indeed be seen as the rest-mass energy. Moving to the Planck momentum, we find that pp = mpc, and we
can set up the following relation

mpc =
mvq
1� v2

c2

(8)

solved with respect to v, this gives

v =
cq

1 + m2

m2
p

(9)

We naturally see this is di↵erent than the velocity formula 7. Assume that the mass m is a Planck mass
particle with mass mp. It must move at the following velocity to have Planck mass momentum

v =
cr

1 +
m2

p

m2
p

=
cp
2

(10)

Now this is beginning to sound a bit strange, or we could say inconsistent. On one hand, the Planck mass
particle must be standing still in order to have the Planck energy. This seems logical enough as mpc

2 does
look like a rest-mass in terms of special relativity. But this also means that a Planck mass particle that has
Planck energy cannot have Planck momentum at the same time. Further, why would an almost magical speed
of cp

2
be required for the Planck mass particle to reach Planck momentum? This indicates that the Planck mass

momentum is not a special momentum for the Planck mass particle, because what strange mechanism would
limit such a particle to staying below cp

2
⇡ 0.7c ? We have not heard of any such mechanism, but it could be

an open question.
If we shift the analysis from Planck mass particles and look only at observed particles, then there still cannot

be a single type of particle that, when accelerated to any velocity v < c, will have Planck energy at the same
time at which it has Planck momentum. We can see this by trying to solve the following relation with respect
to v

E
c

= p (11)

mc2

c
q

1� v2

c2

=
mvq
1� v2

c2

(12)

The only solution to this is when v = c, but then we would have infinite relativistic mass, which is impossible.
One could naturally argue that Planck mass particles do not exist at all, and in fact, we have never observed
any elementary particles with a mass anywhere close to the Planck mass.

This would also mean that if a Planck mass particle existed, then there cannot be a limit on momentum for
elementary particles equal to the Planck mass momentum. Some physicists agree with this, as special relativity
technically allows the relativistic momentum of even the smallest elementary particle to approach but never
reach infinity. This is because the only restriction is v < c for anything with mass within SR. However, this is
absurd, as it would lead theoretically to electrons that have a relativistic mass larger than the rest-mass of the
Sun or even the entire Milky Way, see [14].

Again, we revisit the question posed earlier: Why should a Planck mass particle (if it exists) have a magical
velocity equal to cp

2
in order to have Planck mass momentum? If this prediction on the need for such a velocity
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is correct (in theory) then it is very likely that the Planck mass particle does not actually exist. However, there
is a much simpler solution to this puzzle.

3 The de Broglie Wave Length versus the Compton Wave

Around 1923, Louis de Broglie [15, 16] suggested that matter had wave-like properties. It has also been shown
that the wavelength of a photon could be found using the following formula

� =
h
p

(13)

where p is the photon’s momentum. A photon’s momentum is therefore given by

p =
h̄
�

(14)

Further, the energy of a photon is given by

E =
h̄
�
c (15)

Even if modern physics cannot agree on whether a photon has mass or not, at least we can calculate its
equivalent mass simply by dividing the energy by c2. Thus the momentum of a photon can be written as

p = E/c2 ⇥ c = mc =
h̄
�

(16)

However, for non-photons the momentum is given by the formula

p =
mvq
1� v2

c2

(17)

When v << c, this can be approximated by the first term of a Taylor series expansion as the well-known
p ⇡ mv.

There are several interesting things to notice here. The momentum formula for something with rest-mass
is di↵erent than the momentum formula for photons. In other words, we appear to have di↵erent theories for
photons and for matter. The fact that we use separate formulas for photons and matter indicates, in our view,
that modern physics has not been completely successful at unifying matter and energy. Although we do have
Einstein’s E = mc2, which gives a relation between rest-mass and energy.

In about the same year as de Broglie suggested his matter wave, Arthur Compton measured a wavelength
from electron scattering; this was later known as the Compton wave, see [17]. While the previously mentioned
de Broglie wave has never been measured, the Compton wavelength has been measured in a long series of
experiments. The de Broglie wavelength is given by

�b =
h
mvr
1� v2

c2

(18)

and from the formula we can see that the de Broglie wavelength is infinite if the particle stands still. Naturally,
one could argue the particle cannot stand still. However, there are many interpretations in the modern physics
literature with regard to the electron being everywhere in the universe until observed, based on this property of
the de Broglie wavelength. Such interpretations do not seem to make much sense though and may actually be
based on a failure to understand what the de Broglie length truly represents.

Next the Compton wavelength of a rest-mass particle is given by

�c ⇡ h̄
mc

(19)

notice that this would be identical to how one finds the wavelength of a photon, because the momentum of a
photon is given by mc = h

� . The relativistic version of the Compton wavelength must be

�c =
h̄
mcr
1� v2

c2

(20)

This means the de Broglie wavelength is always directly linked to the Compton wavelength through the
following relation

�b = �c
c
v

(21)

That is to say, the unobserved de Broglie wavelength is always a derivative of the observed Compton wave-
length. One can also ask why we need two matter waves. Photons only have one photon wavelength, not one
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that is very long while the other is short. We think the de Broglie wavelength is simply a mathematical artifact
that is not necessary and has actually caused a series of very strange and illogical interpretations. As a promising
alternative, a full theory of quantum mechanics can be developed from the Compton wave rather than the de
Broglie wave, see [18, 19].

4 Compton Momentum

The rest-mass of any mass can be found by the following formula

m =
h
�c

1
c

(22)

It has been shown experimentally that one can find the rest-mass of electrons by finding the Compton
wavelength of the electron first. The same cannot be done from the de Broglie wavelength; the rest-mass
formula from the de Broglie wavelength would be

m =
h
�c

1
c
=

h
�b

v
c

1
c
=

h
�b

1
v

(23)

but again this leads to an inconsistency when v = 0, because we cannot divide by zero. For v > 0 and at the
same time v << c, the formula above gives correct answers for masses of particles. However, formula 22 always
gives the correct answer when v << c, and we can easily extend it to a relativistic mass as well.

mq
1� v2

c2

=
h
�c

1
cq

1� v2

c2

=
h

�c

q
1� v2

c2

1
c
=

h

�c

p
c2 � v2

(24)

The interpretation should be that when a mass is moving, the only thing that can undergo length contraction
is the Compton wavelength. Similarly, if written in terms of the de Broglie wavelength, this would be

mq
1� v2

c2

=
h
�b

1
vq

1� v2

c2

=
h

�b

q
1� v2

c2

1
v
=

h

�b

q
v2 � v4

c2

(25)

This formula works well as long as v not is equal to zero. However, when v = 0 the formula is not valid.

5 The Compton Momentum versus de Broglie Momentum

We have shown in the section above that the de Broglie wavelength (which has never been observed) is simply
the observed Compton wavelength multiplied by c

v . We have also introduced a new momentum, namely what
we will call the Compton momentum. The total Compton momentum is given by

pc =
mcq
1� v2

c2

(26)

while the de Broglie momentum, which is the standard momentum, is given by

pb =
mvq
1� v2

c2

(27)

We see that the relation between these two momentums is identical to the relation between the de Broglie
wavelength and the Compton wavelength. We have that

pb = pc
c
v
, and �b = �c

c
v

(28)

Notice that when v = 0, we have no standard momentum (de Broglie momentum), while we still have
Compton momentum. The Compton momentum is mathematically identical to a photon’s momentum when
v = 0. That is to say, we suddenly have a rest-mass momentum in addition to moving momentum. We will claim
that there are three types of momentum: rest-mass momentum, kinetic momentum, and total momentum, just
as there are three types of energy (rest mass energy, kinetic energy and total energy). The rest-mass momentum
is given by

pc,r =
mcq
1� 02

c2

= mc (29)

The kinetic momentum is given by
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pc,k =
mcq
1� v2

c2

�mc (30)

which, when v << c, is approximately equal to pc,k ⇡ 1
2m

v2

c . And the total momentum is given by

pc,t = pc,r + pc,k =
mcq
1� v2

c2

(31)

Recall that our maximum velocity formula v = c
q

1� l2p
�̄2 is equal to zero when �̄ = lp. This means the

Planck mass particle always has a rest-mass momentum equal to

pc,r =
mcq
1� 02

c2

= mpc (32)

So, the rest-mass momentum of a Planck mass particle seems to be linked to the properties of photons.
However, the Planck mass particle must always stand still. The interpretation should be that the Planck mass
particle is, in fact, the collision point between photons.

In our view, the interpretation is that there only exists one mass, it is the Planck mass, and it is directly
linked to photons. In previous work, we have described the case where a Planck mass particle only exists for
one Planck second before it dissolves into energy again. An electron, for example, is a Planck mass particle at
its Compton frequency, so it is a Planck mass c

�̄
times per second, and each of these Planck mass events only

lasts for one Planck second. This gives the correct electron mass. This is covered in much more detail in [19].

6 The velocity Inconsistency Discussed and Generalized to a

Discrete Wavelength

The velocity v = cp
2
is where the standard relativistic momentum of a Planck mass particle predicts a Planck

momentum. This is the velocity where the length contracted de Broglie wavelength is identical to the rest-mass
Compton wavelength. So, basically

�c ⇥
c
v

p
1� v2/c2 = �c,r

�b

p
1� v2/c2 = �c,r (33)

Since �b = �c
c
v , this gives v = cp

2
. However, in our view this only shows that the standard momentum can

be “fudged” to fit a Planck momentum even for a Planck mass particle, but at the cost of having a velocity
di↵erent than where we will get the Planck energy for a Planck mass particle (v = 0). We can see this more
clearly by completing the following derivation:

mpvp
1� v2/c2

= mpc

mp
cp
2q

1
2

= mpc (34)

Also, we must have

mpvq
1� v2

c2

=

h̄
lp

1
c vq

1� v2

c2

=
h̄

lp c
v

q
1� v2

c2

1
v
=

h̄

�b

q
1� v2

c2

1
v

(35)

This means that the length contracted de Broglie length for a Planck mass particle will be below the Planck
length when the Planck mass particle is moving at a velocity greater than cp

2
. The relativistic length contracted

reduced Compton wavelength length is naturally shorter than the Planck length for any velocity if the rest
Compton length is the Planck length (a Planck mass particle). However, even if the de Broglie wavelength is
infinite for a particle at rest, its contracted length is shorter than the Planck length for a Planck mass particle
when the particle passes a velocity of cp

2
. Again, it seems not to make sense from a logical perspective. The

de Broglie wave is a mathematical derivative of the real matter wave, which is the Compton wavelength. The
Planck mass particle can, in our view, only exist when it stand still relative to the observer. It only exists in one
Planck second and the observer must be the Planck mass particle itself in order to observe it. It is the collision
point of two light particles. A photon-photon collision is, even by standard physics, theoretically considered to
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be “The simplest mechanism by which pure light can be transformed into matter?” [20], see also [21]. However,
even if the speed of light is considered to be c, we have not seen any discussion of what the photon speed is just
at the moment of collision with another photon. In our Compton momentum model, it is zero because something
cannot still be moving at speed c when it is in a collision point.

Interestingly, there cannot exist a de Broglie wave with length equal to the Planck length that does not have
a Compton wave shorter than the Planck length. This because a de Broglie wave shorter than infinity means the
particle must be moving, and since the Compton wave always is the de Broglie wave times v

c , it must be shorter
than the de Broglie wave. And if the de Broglie wave is now the Planck length, then the Compton wave must
be shorter than the Planck length. Actually the Compton wavelength and the de Broglie wave are the same in
the special case when v = c, which again is not possible for any particle that has rest-mass, as it would mean
infinite relativistic mass. Current standard theory would indicate that if one assumes a minimum length, there
must be two minimum length limits at the same time, one for the Compton wave, which must be di↵erent than
the de Broglie wave. This is absurd, and not necessary. All we need to do is to understand that de Broglie is a
pure derivative of the Compton wave. So, the minimum length applies to the Compton wave, not the de Broglie
wave.

Discrete waves

Next we can extend this to the assumption that the Compton wave can only come in discrete length units of
�̄ = Nlp. The shortest possible reduced Compton wave is then �̄ = 1 ⇥ lp = lp, that is the Planck length. If
we also assume the shortest relativistic length contracted Compton length is the Planck length, then a particle
with reduced Compton wavelength N ⇥ lp have a maximum velocity given by

lp = Nlp

r
1� v2

c2
(36)

solved with respect to v gives

v = c

r
1� 1

N2
(37)

For a very large N , this speed limit is very close to that of light. However, for N = 1 we see the maximum

velocity is zero. This is what we found before in our formula v = c
q

1� l2p
�̄2 , when �̄ = lp. There is a close

connection between these formulas. If we assume, for example, the Compton wavelength of an electron �̄e = Nlp,

then N = �̄e
lp

and we see the two formulas are essentially the same, based on the assumption that the reduced

Compton wavelength of the electron is exactly N number of Planck length.

v = c

r
1� 1

N2
= c

vuut1� 1
⇣

�̄
lp

⌘2 = c

r
1�

l2p
�̄2

(38)

The reduced Compton wavelength of an electron is enormous compared to the Planck length, and the Planck
length is very short, so it is not possible to detect directly whether or not the Compton length comes in discrete
units from electrons. The main point here is that it is compatible with a discrete version and this is inconsistent
with the de Broglie approach if we also assume the Planck length is the minimum length.

Next assume a rest-mass particle with reduced Compton wavelength �̄ = Nlp. How fast can the particle
move for the length contracted de Broglie wavelength to be greater than the Planck length? We need to solve
the following equation

Nlp
c
v

p
1� v2/c2 > lp (39)

solved with respect to v, this gives

v < c
Np

N2 + 1

v < c
1q

1 + 1
N2

(40)

Now, let us compare the two maximum velocity formulas that prevent the relativistic Compton wavelength
and the relativistic de Broglie wavelength to go below the minimum length.

c
1q

1 + 1
N2

> c

r
1� 1

N2
(41)
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as we see, the maximum velocity is larger for the de Broglie wavelength. This means in standard physics, there
cannot be a Planck length (or any length) limit that applies to both the Compton wave and the de Broglie wave;
we can only have a limit on one of them, or else we must have two di↵erent limits. Let us look at the Taylor
series expansion for these two maximum velocity predictions

r
1� 1

N2
⇡ 1� 1

2
1
N2

� 1
8

1
N4

� 1
16

1
N6

(42)

and

1q
1 + 1

N2

⇡ 1� 1
2

1
N2

+
3
8

1
N4

� 5
16

1
N6

(43)

Next we will take the di↵erence between them

1q
1 + 1

N2

�
r

1� 1
N2

⇡ 1
2

1
N4

(44)

We can easily see that when N is very large, then they are almost the same. The di↵erence using the first
three terms in the Taylor series expansion is only 1

2
1

N4 . For an electron, this would mean a speed di↵erence of

c 1
2

1
N4 = c 1

2
1✓
�̄
lp

◆4 = c 1
2

l4p
�̄4
e
⇡ 4.62⇥10�82 m/s. This would be impossible to observe. Yet, the main point is that

the de Broglie wave (and the standard momentum ) seems consistent with Compton (and Compton momentum)
derivations from an experimental point of view, as long as we are working with particles much lighter than the
Planck mass.

For a Planck mass particle, we have N = 1, and then we get a maximum velocity for the particle (for

its Compton wavelength) to not fall below the Planck length to be v = c
q

1� 1
12

= 0, while the de Broglie

maximum velocity tells us the particle cannot move faster than v = c 1q
1+ 1

12

= c 1p
2
. Here the di↵erence in speed

is massive and should be easy to detect. Clearly, we have not observed a particle with maximum velocity c 1p
2
,

and also there is no known mechanism around this velocity. On the other hand, for our maximum velocity of
v = 0 there is a very simple and logical mechanism and explanation why this likely exists, but is hard to observe.
This is the point of a photon-photon collision, also internally in all matter. This collision is a Planck mass that
lasts for one Planck second, as it stands still. Still, as we actually need to be the particle itself to observe it, as
it only lasts for one Planck second and has a Compton length equal to the Planck length. This view can even
provide a unification between quantum mechanics and gravity, see [19].

7 A Short History of Momentum

It is useful to see this topic in a historic perspective. Momentum, close to the sense in which the term is
used in modern physics, was possibly first described mathematically by John Jennings in 1721. Jennings says
that momentum is the quantity of matter multiplied by the velocity, which is the standard: p = mv that
we know today. However, we should keep in mind that momentum was defined before relativity theory had
been developed and the scientists of the era also knew very little about the quantum world. Taking a fresh
approach and redefining the momentum the way we have done above, e.g., the so-called Compton momentum,
simplifies calculations and interpretations. The standard momentum is, as we have shown, rooted in the de
Broglie wavelength, and we can also see the standard momentum as a derivative of the Compton momentum,
where we have the standard momentum as the Compton momentum times v/c.

8 Summary of Key Findings

• The unobserved de Broglie wavelength is simply a mathematical derivative of the observable Compton
wavelength. We always have the relation �b = �c

c
v .

• It is impossible to have a Planck length (or any length) as a minimum length for both the Compton and the
de Broglie wave at the same time. One must choose one of them, and as we have shown it is the Compton
wave that is the true matter wave, not the de Broglie wave.

• The de Broglie wavelength is infinite for rest-mass particles. This is absurd and has been misinterpreted
by modern physics. The solution is to switch to the Compton wavelength, which is the true matter wave.

• The momentum derived from the de Broglie wavelength, which is the standard momentum, will be zero for
a rest-mass particle. On the other hand, the rest-mass momentum derived from the Compton wavelength



8

is p = mc, which is the same as for photons. This indicates a relation between mass and photons, just like
the rest-mass energy relation of Einstein: E = mc2.

• In standard physics, one operates with di↵erent formulas for momentum for photons and matter. This is
not necessary if one switches to Compton momentum.

• The de Broglie wavelength has, contrary to what many physicists assume, never been observed. On the
other hand, the Compton wavelength has been observed very accurately many times. The misunderstanding
that the de Broglie wavelength has been confirmed stems from observations showing matter has wave-like
properties, but this is not because matter has a de Broglie wave, it is because matter has a Compton wave.

• The rest-mass formula derived from the de Broglie wavelength blows up for a rest-mass particle, because
we have division with zero. The rest-mass formula derived from the Compton wavelength gets the correct
rest-mass.

• Many of quantum mechanics absurd predictions are rooted in the fact that one has derived the theory from
the unobservable de Broglie wavelength rather than the Compton wavelength.

• Only by deriving a theory from the Compton wavelength are we able to get a consistent theory, including
a unified quantum gravity theory.

Summary in relation to relation to standard theory and the Planck scale

• If a Planck mass particle exists, then according to standard theory it must stand still to have Planck energy,
and it must move at velocity cp

2
to have Planck momentum. It is strange that we should have a special

velocity of cp
2
. Under our modified theory, we find that the Planck mass energy and the Planck momentum

only exist for Planck mass particles (two colliding light particles) when at rest; the collision point is at rest
and only lasts for one Planck second.

• The Planck mass is, according to standard theory, massive compared to any observed elementary particle
and even compared to protons. To explain its features, some have theorized that Planck mass particles
only existed at the beginning of the Big Bang, or that such particles are hiding in micro black holes or in
black holes. We think that this is attributable to problems with the model. In our theory, the Planck mass
particle is a observational time window-dependent mass. It is only the Planck mass when observed over
one Planck second. If observed over a second, it is about 10�51 kg.

9 Conclusion

In this paper, we have explained how there are inconsistencies in modern physics in relation to the Planck scale.
Further, we have shown that several inconsistencies and strange interpretations disappear if we use a momentum
rooted in the Compton wavelength rather than the de Broglie wavelength.
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