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Abstract

We give a sequence of easy inferences from typical topics in high school

algebra that relate to the fundamental theorem of algebra (FTA). The se-

quence builds to an easy proof of FTA. In passing we mention two proofs

typically given in complex analysis courses. These proofs, although short,

require developing differential and integral calculus for complex variables.

The proof given here is leisurely and easy – enough for good high school

and typical calculus students.

Introduction

How close can a typical high school algebra student come to understanding

the fundamental theorem of algebra? Currently some of the ingredients for

a good understanding are present after a typical algebra 1, algebra 2, and

pre-calc (or trigonometry) sequence, but the dots aren’t connected. Thus

students are familiar with quadratics and cubics and general polynomials, as

well as Euler’s and DeMoivre’s formula and theorem; they also are told the

fundamental theorem of algebra; but, in no course are they encouraged to

see how polynomials might always have roots in the complex numbers, the

fundamental theorem of algebra. There are inferences that can be made that

suggest that this is a plausible conclusion. Indeed, it is possible to give a

proof of this result using high school math, albeit with a couple of unproven

but intuitively easy assumptions. That’s the main trajectory of this article.

We use proofs and results from Rudin’s Principles of Mathematical Anal-

ysis [4] and Spiegel’s Complex Variables [5]. For references to high school

mathematics, we reference Blitzer’s Algebra and Trigonometry [1].
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Review

We know using the quadratic formula [1] that all quadratics can be solved in

the complex numbers. So z2 C 1 D 0 is solved by ˙i . We also know that

some quadratics have graphs that don’t show any x-intercepts. z2 touches

the origin and has a double root at .0; 0/. It is concave up, meaning it opens

up or holds water. When transformed vertically up by 1, its vertex moves

away from the origin; it has no real roots. The fundamental theorem of

algebra states that all polynomials of degree n with rational coefficients have

roots – all n of them in the complex plane. But given that a quadratic formula

like formula for the general degree n polynomial’s roots is not given in a high

school text book, can we explore the situation enough to suspect the truth of

the theorem?

There is hope via a simple observation from a chapter on trigonometry,

Blitzer’s Chapter 7, Section 5: you can solve any nth degree polynomial of

the form

zn C a D 0: (1)

The n solutions are the nth roots of

z D n

p
a D n

p

jaj.cos
� C 2�k

n
C sin

� C 2�k

n
/;

where 0 � k � n � 1 and a D cos � C i sin � .

Of course polynomials like (1) are not the rule, but we can discern why

polynomials might always be solved by complex numbers. There’s at least

one example of every degree that can so be solved.

Let’s dig deeper into complex numbers and functions. A mind exper-

iment is to imagine the x C iy of one complex plane mapping to u C iv

of another. Imagine two computer windows and as you drag your mouse

around on the far left plane the point your mouse pointer is on is given a

corresponding cross-hair on the right window. You would hope you could

adjust the mouse pointer so as to find the origin on the right window. A

kind of sophisticated cat and mouse game. The connection between the two

windows is the function in question. For x2 C 1 D 0, i and �i map to the

right window’s origin. For zn C a D 0 tracing a circle on the left generates

periodic bulls-eyes at the origin on the right.

From another angle, notice that a quadratic like ax2 C bx C c D 0

has the standard form a.x � h/2 C k. This is really another z2 C k, only

its transformed a little – moved to the right or left and the shape of the

parabola legs are squeezed together or spread apart; neither deformation

changes that it has x-intercepts, root; see Blitzer’s Chapter 2, Section 5 on
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transformations. Note that higher powers of the form .z � a/3 C b D 0

will just be up and over transformation of z3. Using the binomial theorem

(Blitzer’s Chapter 11, Section 5), we know the .z � a/3 part will generate

all terms in a cubic:

.z � a/3 D z3 � 3az2 C 3a2z � a3:

Are all polynomials just transformations of the base type zn? and so just as

zn D 0 has z D 0 a root of multiplicity of n so do all polynomials. Rouche’s

theorem (see Spiegel, page 128, problem 19 [5]) will get something close to

this result.

What is an example of a function that doesn’t for sure move some point

to any given point in the entire complex plane. The constant function. Say

the constant is not zero. If a polynomial doesn’t have a root, then 1=p.z/

is defined for all z and its range excludes the origin; it is a good function

– there is no division by zero. Using Liouville’s theorem (Spiegel, page

125, problem 10), this forces our polynomial to be a constant, something we

know that it is not. The theorems of Rouche and Liouville are covered in

courses in complex variables and require evolving complex differentiation

and integration. We seek an easier approach that is almost within the range

of high school algebra – no calculus.

Problems

Here are a few problems which will help you become familiar with the ideas

of a proof of the fundamental theorem of algebra, FTA. Do the following for

linear, quadratic, and cubic polynomials p.z/. Assume coefficients can be

complex numbers.

1. Show that jp.z/j values go to infinity.

2. Show that jp.z/j values can be made less than the absolute value of

p.z/’s constant term.

Lemma 1.

jA C Bj � jAj � jBj (2)

Proof. By the triangle inequality,

jA C B C .�B/j � jA C Bj C jBj

and this gives (2).
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Lemma 2.

jA C B C C j � jAj � jBj � jC j (3)

Proof. By Lemma 1,

jA C .B C C /j � jAj � jB C C j

and

� jAj � .jBj � jC j/ D jAj � jBj C jC j
and this is

� jAj � jBj � jC j
and this gives (3).

Clearly, an induction proof (Blitzer’s Chapter 11, Section 4) will yield

the general result. One can, of course, simply say that if you start with A

and subtract rather than add potentially positive numbers you will decrease

its value. I.e. it’s kind of obvious.

Theorem 1. jp.z/j can be made as large as we please.

Proof. Quadratic case: Let jzj D R and suppose

p.z/ D a2z2 C a1z C a0:

Then

jp.R/j D ja2R2 C a1R C a0j � (4)

ja2jR2 � ja1jR � ja0j D R2Œja2j � ja1jR�1 � ja0jR�2�:

We’ve used our lemma. The factor in brackets shrinks to ja2j with growing

R and this implies jp.z/j can be made as large as we please.

Of course one could use the end-behavior of real polynomials to make

the same conclusion: the left and right tails of all absolute values of real

polynomials will go to infinity; see Blitzer, Chapter 3, Section 2. Positive

headed to the x-axis bounce off of it and head north, for example. But in this

theorem we allow for complex coefficients, so this image can’t necessarily

be relied upon. The complication of allowing complex coefficients forces

the constant reliance on conversion to statements with absolute values. We

see this in the next theorem.

First, we need that the function rei� has as its range all of C. This is not

hard to imagine. Using

rei� D r.cos � C i sin �/; (5)
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we see that any point in the complex plane can be expressed in polar coor-

dinates – that’s it. Blitzer states, page 717, but doesn’t prove (5), but see

[2].

As a side note, notice that i� in the right hand side of (5) is like a linear

function going up and down the imaginary i-axis; this generates a circle in

the u-v plane. That is a line in the x-y plane goes to a circle in the u-v. This

type of transformation broadens modeling opportunities. It might just prove

Fermat’s last theorem [3]. Back to our main thread.

Lemma 3. For every real non-zero number a there exists a real � such that

aei� D �jaj. This is also true for complex a.

Proof. If a < 0 then let � D 0 and ae0i D �jaj. If a > 0 then let � D �

and ae�i D �a D �jaj.
For complex a, we just note aei� D �jaj implies

ei� D �jaj
a

:

Not that it is necessary to note, we note j � jaj=aj D 1, so r in the polar

coordinate representation of this number is 1.

Theorem 2. jp.z/j can be made less than the absolute value of its constant.

Proof. Cubic case: Let p.z/ D a0 C a1z C a2z2 C a3z3. We always

will have a non-zero constant and here we assume a1 is the first non-zero

coefficient. It could be a2 or a3. The argument won’t change. Then

p.rei� / D a0 C a1rei� C a2r2e2i� C a3r3e3i� :

Using Lemma 3, there exists � such that a1ei� D �ja1j. So now we have

jp.rei� /j D ja0 � ja1jr C a2r2e2i� C a3r3e3i� j

and taking the absolute value of the first constant term and the terms after

�ja1jr increases the value of the right hand side. So

jp.rei� /j � ja0j � ja1jr C ja2jr2 C ja3jr3: (6)

We’ve used r > 0 and jeik� j D 1. Rearranging (6),

jp.rei� /j � ja0j � rfja1j � ja2jr1 � ja3jr2g:

Now for small enough r the value in the braces is positive, so the right hand

side drops below ja0j, as needed.
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We are now in a position to prove, with a couple of assumptions from

advanced mathematics, the FTA. The assumptions are intuitively easy to

understand. First, polynomials are continuous on any disc (think Rei� is a

disk of radius R) in the complex plane; second, continuous functions will

reach their maximum and minimum in a closed domain. These assumptions

are certainly suggested by graphing continuous functions with a graphing

calculator. Try absolute values of polynomials. You never have to lift up

your pencil to draw them. They are continuous.

We can also give the idea by way of contrast. Polynomials are not ra-

tional functions. Rational functions, like r.z/ D 1=x, does not reach its

maximum on Œ0; 1/, for example. It isn’t defined at x D 0; r.z/ D �1=z

doesn’t reach its minimum. These functions asymptotically approach values,

see Blitzer Chapter 3, Section 5; but there is no z0 such that r.z0/ D 0. In

contrast, jp.z/j will have a value z0 such that jp.z0/j is its minimum value;

its a continuous function on any disc. Lemma 1 says that any polynomial

will exceed any value on a disk, so we know jp.z0/j will hit its minimum.

That’s the hardest thing to prove, the biggest assumption we make.

One more time. The quadratic a.x �h/2 Ck with k > 0 and a > 0 has a

minimum at k, see Blitzer on this the standard form of a quadratic, Chapter

3, Section 1. Apart from the horizontal shift, this function is x2Ck. We have

shown that using complex numbers the absolute value of this polynomial can

fall below k, its constant. How far below k can it go? It reaches zero when

evaluated at ˙i
p

k. We need a way to build on the assumption that it doesn’t

reach zero. For a proof by contradiction assume there is a polynomial such

that the minimum of its absolute value is not 0. The following proof of the

FTA is based on that given in Rudin [4]. We are ready.

Theorem 3. If p.z/ is a polynomial, then there exists z0 2 C such that

p.z0/ D 0.

Proof. We assume jp.z/j is a continuous function and that its minimum

occurs at z D z0. To derive a contradiction, we will assume jp.z0/j D � ¤
0. Consider the polynomial defined by

Q.z/ D p.z C z0/

p.z0/
:

Then the constant of Q.z/ is, as it is with all polynomials, given by an

evaluation at 0, given by Q.0/; Q.0/ D 1. As jp.z0/j is the minimum

value, all other z values make jQ.z/j > 1. But this contradicts Theorem 2.

We can’t get below this polynomial’s constant.
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Conclusion

The fastest avenue to believing and proving the FTA is to notice that p.z/ D
zn C 1 D 0 can be solved in C and this means that C values drop this func-

tion’s absolute value below its constant. Show that for all absolute values

of polynomials, p.z/, there are values, z, in C such that jp.z/j is less than

the absolute value of the polynomial’s constant. Note: if a polynomial has

no constant, then its terms have a common z factor; z D 0 is a root; done.

Next, show that with the assumption that the minimum value of jp.z/j > 0,

there is a polynomial that never goes below its constant, a contradiction.

Does the FTA satisfy all curiosity about polynomial roots? Well not

really. We know that roots are in the complex field, but we still don’t have

a general formula for the solutions to a polynomial of degree n. To really

be satisfied, we’d like a formula like the quadratic for such polynomials. In

order to achieve this we’d have to limit the complex field. The quadratic

formula suggests an avenue. Consider QŒ
p

b2 � 4ac� is this a field? Could

extending the rationals to include certain roots give us a smaller field than C

to look in? These are some of the puzzles abstract algebra addresses.
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