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Abstract 

It is well established that the cubic Duffing equation exhibits each of the Jacobi 

elliptic functions as solution. However, in this paper it is shown for the first time 

that the general solutions of such an equation may be computed as a trigonometric 

function and also as a hyperbolic function in a direct and straightforward manner 

by first integral and Lagrangian analysis following the sign of parameters. 
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Introduction 

The cubic Duffing differential equation 

03  xxx                                                                                                      (1) 

where overdot stands for a differentiation with respect to t , is widely used to 

account for many phenomena in physics and applied mathematics. For instance 

equation (1) is applied to model the frequency dependent amplitude response of 

nonlinear dynamical systems. The forced response of (1) is used to describe sub 

and superharmonic resonances, and jumps in nonlinear oscillators [1-3]. Equation 

(1) arises also in traveling wave solution method for nonlinear partial differential 

equations. The exact solution of (1) is well known and established so that each of 

the Jacobi elliptic functions satisfies (1) [1, 4]. Such a knowledge on the cubic 

Duffing equation is very precise so that it would be almost unnatural to suspect 

the existence of other types of general periodic solutions. However, the objective 

of this work is to show the existence of trigonometric function as general solution 

computed directly and straightforward fashion to the cubic Duffing equation for 
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the first time. Also hyperbolic function may be obtained as a general solution 

following the sign of parameters. To this end the Lagrangian analysis introduced 

recently by our group is reviewed (section 2) and used to compute easily the 

expected exact and explicit general solutions (section 3). Finally a conclusion of 

this work is carried out.  

2-Review of the Lagrangian analysis 

Let [5] 

)()(),( xfxxgxxxa                                                                                            (2) 

be a time independent first integral. The Lagrangian may then be computed as [5] 

 xKxfxxxgxxxL    )()ln()(),(                                                                          (3) 

where  and K  are arbitrary parameters, and )(xf  and )(xg  are arbitrary functions 

of x . From (3) the Euler-Lagrange equation becomes 
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where prime means differentiation with respect to x . 

Now the purpose is to show that for appropriate choice of functions )(xf , )(xg and 

parameter  , equation (4) may be reduced to the cubic Duffing equation (1), 

which secures its integrability. 

3-Exact and explicit general solution of (1) 

In this part the criteria of integrability of (1) as a trigonometric function is 

established (subsection 3.1) such that the exact and explicit general solution may 

be computed in a straightforward manner and discussed (subsection 3.2). 

3.1 Conditions of integrability 

Substituting  
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where 0)( xg , into (4), yields the general equation 
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Applying the functional choice 1)( xg , reduces (6) to 

0)()()(')()(' 21212   xfxxfxaxfxfxxfxax                                            (7) 

such that for 2

1)( xaxf  , (7) becomes 
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Making 0 , leads to obtain as cubic Duffing equation 
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In this context a first integral of equation (9) may, using (2), read 

2

1 xaxa                                                                                                            (10) 

 So that the integrability condition of equation (1) becomes 

12 aa                                                                                                             (11) 

and 

2
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 Now one may use (10) to find the exact and explicit general solution of (1). 

3.2 General solution of (1) 

3.2.1 Case 01 aa  

From (10) one may write 

dt
xaa
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Letting ,2

1 ca   and 2ba   into (13), yields 
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The integration of (14) is immediate and gives [6] 
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From which one may obtain, as a result, the general solution of the cubic Duffing 

differential equation in the form 
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where 2a is a constant of integration. Using the previous definition of  ,0b  and 

,0c  the solution (16) takes the definitive form 

 )(tan)( 21

1

ataa
a

a
tx                                                                              (17)                                            

where .01 a  It is worth to note that the solution (17) may be obtained by a direct 

integration of (9). Hence, multiliplying (9) by ,x  and integrating once, yields 
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where 1K  is an integration constant. Choosing ,2 2

1 aK   one may arrive at the 

equation 
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from which the solution (17) may be obtained by a simple integration. The 

equation (13) or (19) allows also one to get non periodic solution for the cubic 

Duffing equation (1). 

3.2.2 Case 01 aa  

In this case, the general solution (17) may be written as  
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which may definitively read as [6]  
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Such a result may also be directly obtained from equation (19). In view the above, 

a conclusion can be drawn for the work. 
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Conclusion 

It is well known from the literature that the cubic Duffing differential equation 

has as general solution each of the Jacobi elliptic functions. This work shows 

however, for the first time, that the cubic Duffing may exhibit trigonometric and 

hyperbolic functions as general solutions. This has been obtained within the 

framework of first integral and Lagrangian analysis.   
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