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We introduce a unimodular Determinant=1 8 × 8 rotation matrix to produce four 4 dimensional
copies of H4 600-cells from the 240 vertices of the Split Real Even E8 Lie group. Unimodularity in
the rotation matrix provides for the preservation of the 8 dimensional volume after rotation, which
is useful in the application of the matrix in various fields, from theoretical particle physics to 3D
visualization algorithm optimization.
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I. INTRODUCTION

Fig. 1 is the Petrie projection of the largest of the ex-
ceptional simple Lie algebras, groups and lattices called
E8. The Split Real Even (SRE) form has 240 vertices

and 6720 edges of 8 dimensional (8D) length
√

2. Inter-
estingly, E8 has been shown to fold to the 4D polychora
of H4 (aka. the 120 vertex 720 edge 600-cell) and a scaled

copy H4Φ[1][2], where Φ = 1
2

(
1 +
√

5
)

= 1.618... is the

big golden ratio and ϕ = 1
2

(√
5− 1

)
= 1/Φ = Φ − 1 =

0.618... is the small golden ratio.

FIG. 1: E8 Petrie projection

In my previous papers on the topic [3][4], a specific
matrix for performing the rotation of the SRE E8 group
of root vertices to the vertices of H4 (a.k.a. the 600-cell)
was shown to be that of (1).
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H4fold =



ϕ2 0 0 0 Φ 0 0 0
0 −ϕ 1 0 0 ϕ 1 0
0 1 0 −ϕ 0 1 0 ϕ
0 0 −ϕ 1 0 0 ϕ 1
Φ 0 0 0 ϕ2 0 0 0
0 ϕ 1 0 0 −ϕ 1 0
0 1 0 ϕ 0 1 0 −ϕ
0 0 ϕ 1 0 0 −ϕ 1


(1)

The convex hull of two opposite edges of a regular
icosahedron forms a golden rectangle (as shown in Fig.
2). The twelve vertices of the icosahedron can be de-
composed in this way into three mutually-perpendicular
golden rectangles, whose boundaries are linked in the pat-
tern of the Borromean rings. Columns 2-4 of H4fold con-
tains 6 of the 12 vertices of this icosahedron, including 2
at the origin (with the other 6 of 12 icosahedron vertices
being the reflection of these through the origin).

FIG. 2: The Icosahedron formed from 3 mutually-
perpendicular golden rectangles

The trace of this matrix is 2(φ2 − φ + 1) = 1.527 and

its determinant Det = (2
√
φ)

8
= 37.349.
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Notice that H4fold = H4Tfold such that it is symmet-
ric with a quaternion-octonion Cayley-Dickson-like struc-
ture.

Only the first 4 rows are needed for folding E8 to H4

by dot product with each vertex. This results in two
copies of H4 scaled by Φ. Using the full matrix to ro-
tate E8 results in not two, but four copies of H4 600-cell
with the left (L) 4 dimensions associated with the two
scaled copies (H4 and H4Φ) and the right (R) 4 dimen-
sions associated with another two copies (H4 and H4Φ).
Rotation back to E8 is achieved with a rotation matrix
of H4−1fold.

II. THE UNIMODULARITY FACTOR

The Platonic solid icosahedral symmetry establishes
some valuable utility in this particular construction of
H4fold. Yet, the non-unimodularity of the determinant
causes the resulting 8D volume of the objects involved in
a rotation (or projection) between E8 ↔ H4 to vary. In
order to correct this, while keeping the general structure
of the matrix the same, we simply divide the matrix by
a factor of 2

√
φ, giving a Det = 1. This gives:

H4uni =

√
ϕ3 0 0 0 1√

ϕ3
0 0 0

0 −√ϕ 1√
ϕ 0 0

√
ϕ 1√

ϕ 0

0 1√
ϕ 0 −√ϕ 0 1√

ϕ 0
√
ϕ

0 0 −√ϕ 1√
ϕ 0 0

√
ϕ 1√

ϕ
1√
ϕ3

0 0 0
√
ϕ3 0 0 0

0
√
ϕ 1√

ϕ 0 0 −√ϕ 1√
ϕ 0

0 1√
ϕ 0

√
ϕ 0 1√

ϕ 0 −√ϕ
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ϕ 1√
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
/2

(2)

III. H4fold FROM 2 QUBIT QUANTUM
COMPUTING CNOT AND SWAP GATES

Looking at the four quadrants of H4fold and H4uni, we
see that they resemble a combination of the unitary Her-
mitian matrices commonly used for Quantum Comput-
ing (QC) qubit logic, namely those of the 2 qubit CNOT
(3) and SWAP (4) gates. Taking these patterns, com-
bined with the recursive functions that build Φ from the
Fibonacci sequence, it is straightforward to derive both
H4fold and H4uni from scaled QC logic gates.

CNOT=

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3)

SWAP=

 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (4)

The code to establish CNOT and SWAP implementa-
tions of H4fold is naively done (in MathematicaTM code)
as shown in Fig. 3.

FIG. 3: Producing H4fold from 2 Qubit CNOT and SWAP
QC Gates

More interestingly, we can produce a similar result us-
ing a recursive function for Φ using the Fibonacci se-
quence. This is shown in Figs. 5-6 in Appendix A, where
we iterate the MathematicaTM Fibonacci function n = 10
times. As n→∞, the matrix resolves to H4fold or H4uni.
The numerical result for the first 4 rows of H4fold is shown
in Fig. 4 at n = 10.

FIG. 4: Numerical result for the first 4 rows of H4fold from the
2 Qubit CNOT and SWAP QC gates and an integer Fibonacci
series function output after n = 10 iterations

IV. CONCLUSION

Instead of simply folding the 8D E8 vertices into 4D
pairs of H4 and H4Φ vertices, we rotate them using an
8× 8 matrix. This transforms E8 into a fourfold H4 600-
cell structure. We show that bringing unimodularity to
the folding matrix with a Det = 1 is a simple modifi-
cation. We also show that the folding matrix can easily
be generated using 2 qubit QC matrices and recursive
functions related to the Fibonacci sequence.
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Appendix A: MathematicaTM code

Producing the first 4 rows of H4fold from 2 Qubit
CNOT and SWAP QC gates and an integer Fibonacci
series function

FIG. 5: Mathematica Code
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FIG. 6: Integer Fibonacci series function output for each of
n = 10 iterations


