http://www.Theory0fEverything.org

JGM/Unimodular-Rotation-of-E8-to-H4

Unimodular rotation of Eg to H, 600-cells

J Gregory Moxness*
TheoryOfEverything.org
(Dated: October 19, 2019)

We introduce a unimodular Determinant=1 8 x 8 rotation matrix to produce four 4 dimensional
copies of Hy 600-cells from the 240 vertices of the Split Real Even Eg Lie group. Unimodularity in
the rotation matrix provides for the preservation of the 8 dimensional volume after rotation, which
is useful in the application of the matrix in various fields, from theoretical particle physics to 3D

visualization algorithm optimization.

PACS numbers: 02.20.-a, 02.10.Yn
Keywords: Coxeter groups, root systems, E8

I. INTRODUCTION

Fig. 1 is the Petrie projection of the largest of the ex-
ceptional simple Lie algebras, groups and lattices called
Es. The Split Real Even (SRE) form has 240 vertices
and 6720 edges of 8 dimensional (8D) length v/2. Inter-
estingly, Fg has been shown to fold to the 4D polychora
of Hy (aka. the 120 vertex 720 edge 600-cell) and a scaled
copy Hy®[1][2], where ® = 1 (1+/5) = 1.618... is the
big golden ratio and ¢ = 1 (\/5— H=1/o=0-1=
0.618... is the small golden ratio.

FIG. 1: Es Petrie projection

In my previous papers on the topic [3][4], a specific
matrix for performing the rotation of the SRE FEg group
of root vertices to the vertices of Hy (a.k.a. the 600-cell)
was shown to be that of (1).

*URL: http://www.TheoryOfEverything.org/TOE/JGM;
mailto:jgmoxness@QTheoryOfEverything.org

W20 0 0 ® 0 0 0

0 ¢ 1 0 0 ¢ 1 0

01 0 -0 1 0 ¢
I N

0 ¢ 1 0 0 —p 1 0

01 0 ¢ 0 1 0 —p

00 ¢ 1 0 0 —p 1

The convex hull of two opposite edges of a regular
icosahedron forms a golden rectangle (as shown in Fig.
2). The twelve vertices of the icosahedron can be de-
composed in this way into three mutually-perpendicular
golden rectangles, whose boundaries are linked in the pat-
tern of the Borromean rings. Columns 2-4 of H4¢,4q con-
tains 6 of the 12 vertices of this icosahedron, including 2
at the origin (with the other 6 of 12 icosahedron vertices
being the reflection of these through the origin).

FIG. 2: The Icosahedron formed from 3 mutually-
perpendicular golden rectangles

The trace of this matrix is 2(¢? — ¢ + 1) = 1.527 and
its determinant Det = (2¢/¢)° = 37.349.

Notice that H4gq = H4g;1d such that it is symmet-
ric with a quaternion-octonion Cayley-Dickson-like struc-
ture.

Only the first 4 rows are needed for folding Fg to Hy
by dot product with each vertex. This results in two
copies of Hy scaled by ®. Using the full matrix to ro-
tate Eg results in not two, but four copies of H4 600-cell
with the left (L) 4 dimensions associated with the two
scaled copies (Hy and H4®) and the right (R) 4 dimen-
sions associated with another two copies (Hy and Hy®).
Rotation back to Eg is achieved with a rotation matrix
of Hdj,.

II. THE UNIMODULARITY FACTOR

The Platonic solid icosahedral symmetry establishes
some valuable utility in this particular construction of
H4¢oq- Yet, the non-unimodularity of the determinant
causes the resulting 8D volume of the objects involved in
a rotation (or projection) between Eg <+ Hy to vary. In
order to correct this, while keeping the general structure
of the matrix the same, we simply divide the matrix by
a factor of 21/¢, giving a Det = 1. This gives:

H4uni
3.0 0 0 L 0 0 0
7 1 \/; 1
0 —Ya 7 0 0 %a 7 0
0 = 0 - 0 = 0 Vo
1 1
? 0 - = 0 0 VB = P
T 0 0 0 V3 0 0 0
1 1
0 v? 7= 0 0 —Ya 7= 0
0 = 0 %a 0 = 0 _YE
0 0 V& = 0 =

—~
\}
-

III. H4:a FROM 2 QUBIT QUANTUM
COMPUTING CNOT AND SWAP GATES

Looking at the four quadrants of Hd¢yq and H4 i, we
see that they resemble a combination of the unitary Her-
mitian matrices commonly used for Quantum Comput-
ing (QC) qubit logic, namely those of the 2 qubit CNOT
(3) and SWAP (4) gates. Taking these patterns, com-
bined with the recursive functions that build ® from the
Fibonacci sequence, it is straightforward to derive both
H4¢oq and H4,y; from scaled QC logic gates.

1000
0100

CNOT=| 4 4 0 1 (3)
0010

1000

0010
SWAP=| 01 0o (4)
0001

The code to establish CNOT and SWAP implementa-
tions of H4goq is naively done (in Mathematica™ code)
as shown in Fig. 3.

SWAP + 7 CNOT & /@ {-¢, ¢ };

Flatten /@ Transpose@Join|
{Flatten[%, 1]},
{Flatten[Reverse@%, 1]}]

l-¢g 0 0 0 g+1 0 0 0
0 -¢1 0 0 ¢ 1 0
0 1 0 -¢ 0 1 0 ¢
0 0 -1 0 0 ¢ 1

¢+1 0 0 0 1-¢ 0 0 0
0 ¢ 1 0 0 —¢ 1 0
0 1 0 ¢ 0 1 0 —p
0 0 ¢ 1 0 0 -¢ 1

FIG. 3: Producing H4¢g from 2 Qubit CNOT and SWAP
QC Gates

More interestingly, we can produce a similar result us-
ing a recursive function for ® using the Fibonacci se-
quence. This is shown in Figs. 5-6 in Appendix A, where
we iterate the Mathematica™ Fibonacci function n = 10
times. As n — oo, the matrix resolves to H4gq or Hdyp;.
The numerical result for the first 4 rows of H4¢,14 is shown
in Fig. 4 at n = 10.

rndMat@mat
0.382 0. 0. 0. 1.618 0. 0 0.
0. -0.618 1. 0. 0. 0.618 1 0.
0. 1. 0. -0.618 0. 1. 0. 0.618
0. 0. -0.618 1. 0. 0. 00618 1

FIG. 4: Numerical result for the first 4 rows of H4,1q from the
2 Qubit CNOT and SWAP QC gates and an integer Fibonacci
series function output after n = 10 iterations

IV. CONCLUSION

Instead of simply folding the 8D FEg vertices into 4D
pairs of Hy and H,® vertices, we rotate them using an
8 x 8 matrix. This transforms FEg into a fourfold H4 600-
cell structure. We show that bringing unimodularity to
the folding matrix with a Det = 1 is a simple modifi-
cation. We also show that the folding matrix can easily
be generated using 2 qubit QC matrices and recursive
functions related to the Fibonacci sequence.

Acknowledgments

I would like to thank my wife for her love and patience
and those in academia who have taken the time to
review this work.

oxness, www.vixra.org/abs/1411.0130 (2014).

[1] M. Koca and N. Koca, Turkish Journal of Physics 22, 421 .M
Moxness, www.vixra.org/abs/1804.0065 (2018).

Bl J. G
(1998). [4] J. G.
[2] D. A. Richter, ArXiv e-prints math.GM/0704.3091 (2007),
0704.3091.

Appendix A: Mathematica™ code FIG. 5: Mathematica Code

Producing the first 4 rows of Hd¢yq from 2 Qubit
CNOT and SWAP QC gates and an integer Fibonacci
series function

fb = Fibonacci;

im = IdentityMatrix;

nC@0 := CNOT.SWAP;

ncel :=nC[@] ;

nC@i_ :=nC[i-2] +nC[i-1];
nCInv := Inver‘se@nC[#]T &;

{mat = Join[
fb[# +1] . .
—————= (2nC[# -1] .nCInve# - ime@4) [{1, 4, 3, 2}1,
fb[#]
oz - 1] (2nC[# + 1] .nCInve# + nc@l) [{1, 3, 2 4}]]]T
_— + . + 3 3 3
fb[# +1]

} & /@ Range@10@

10000000
00010000
00100000
01000000
00 0 02000
0-22 00120
2 2
02 0 -20201
2 2
00 -220013:
2 2
Lo 0 0 Bo oo
2 9
o-1 2 1 o621
3 3 6 27 27 27
0 2 L _1 g2 Ll
3 6 3 27 27 27
o L 1 2 g L 162
6 3 3 27 27 27
o 0o o 2 o 0 0
3 25
6 8 _ 1 108 188 _ 2
0 21 7 21 0 175 175 175
8 1 16 188 2 108
o & L _16 o 18 2 108
7 21 21 175 175 175
1 16 8 2 108 188
0 -1 -1 8 o _2 108 18
21 21 7 175 175 175
2.0 0 0o 2L o o0 o
5 32
0 _M4 B 2 0 75 91 3
95 19 95 608 0608 0608
0 18 2 _ ¥4 0 91 3 375
19 95 95 608 608 608
0 2 _ 54 18 0 2 375 391
95 95 19 608 608 608
=0 0 0 2 0 0 0
8 169
0 _125 0 3 3120 8370 _ 15
196 49 392 8281 8281 8281
0 % _3 _WBs 8370 _ 15 3120
49 392 196 8281 8281 8281
0 -3 _ls s 15 3120 8370
392 196 49 8281 8281 8281
i 0 0 0o L2 9 0 0
13 441
0 _ 1024 128 5 35152 56656 40
1677 129 1677 56889 56889 56889
0 128 5 _ 1024 0 56 656 40 35152
129 1677 1677 56889 56889 56889
0 5 _ 1024 128 0 40 35152 56656
1677 1677 129 56889 56889 56889
2 0 0 0 0 0
21 289
0 _ 4394 338 8 0 120393 195091 _ _26
7077 337 7077 194786 194786 97393
0 338 __8 _ 4394 0 195091 _26 120393
337 7077 7077 194786 97393 194786
0 — 8 4394 338 0 - 26 120393 195091
7077 7077 337 97393 194786 194 786
Loy 0 0 858 0 0
34 3025
0 - 9261 882 13 0 1650768 2669478 273
15011 883 30022 2671075 2671075 2671075
0 882 13 9261 2669478 273 1650768
883 30022 15011 2671075 2671075 2671075
0 13 _ 9261 882 0 273 1650768 2669478
30022 15011 883 2671075 2671075 2671075
2 0 o 12818 0 0 0
55 7921
0 _ 78608 2312 2 0 11313500 18309612 _ 714
127105 2311 127105 18305431 18305431 18305431
0 2312 21 _ 78608 18309612 714 11313500
2311 127105 127105 18305431 18305431 18305431
0 — 21 _ 18608 2312 _ 714 11313500 18309612
127105 127105 2311 18305431 18305431 18305431
FIG. 6: Integer Fibonacci series function output for each of

n = 10 iterations

