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Our objective is to demistify prime gaps in the integers.  We will show that the explicit range of 

prime gaps in the integers is bounded from below by two and above by the expression  2𝑝𝑛−1 , valid for 

gaps beginning (𝑝𝑛
2 − 1) − 𝑝𝑛−1.   This upper bound theoretically becomes necessarily greater than 

empirical observation within empirically verified range, enabling explicit closure on prime gap issues. 

These results confirm the prime pattens conjecture and the Prime Inter-Square Conjecture (PISC) 

Legendre’s conjecture. 

Table 1.  Evaluating 2𝑝𝑛−1 establishes the third column, “Theoretical Max Gap.” Evaluating (𝑝𝑛
2 − 1) − 𝑝𝑛−1.  is equivalent to 

(“Column two”  minus one (“- 1”))  minus (-) “the preceeding row’s Column one,” and is computed in the last column.  Wikipedia 
has a nice chart that provides further data.  It is remarkable that going forward, the formula necessarily over-limits the prime 
gaps, that is, the empirical results will not approach the the maximum as they do for these early cases, but nevertheless using 
this formula easily proves the PISC in all cases by the mere fact that 2n + 1 > 2n.  This because, Proof: the difference between 

perfect squares is 2n+1, and the prime gap upper bound is 2p where n ≥ p; ∴ a prime appears between all perfect squares. ∎.     

Prime 
Number 

Prime 
Squared 

Theoretical 
Max gap 

Related empirical 
Gap?  Which? 

Empirical 
Maximal Gap 

Preceeding 
Prime 

Theoretical 
Range Start 

2 4 2 Yes 2 2 3 2 
3 9 4 Yes 3 4 7 6 
5 25 6 Yes 4 6 23 21 
7 49 10 No 8 89 43 
11 121 14 Yes 6 14 113 113 

   

 First we report the source of prime numbers.  Primes are the prequel to the story of integers 

closing natural numbers under subtraction and rationals closing integers under division.  Prime 

numbers close the union of circular modules to infinite linear addition.  Finite modular arrithmetic is 

axiomatically closed under binary addition and multiplication.  This does not automatically extend to 

linear settings.  For example, consider the natural numbers raised to the one half or second power.  To 

the half power (square root), while maintaining closure under multiplication, only the subsets defined by 

the fibbonacci sequence and natural squares show additive closure.  By the pythagorean theorem the 

fibbonacci sequence holds infinitely, but outside of this sequence and perfect square summands, binary 

addition is not a closed operation.  𝑒. 𝑔.  √3 + √5 = √8.  𝐵𝑢𝑡 √3 + √6 ≠ √9.   

  Similarly, to the second power, only the pythagorean tripples are closed under 

binary addition, but binary multiplication persists.  Prime numbers were 

axiomatically invented to close a linear space under both addition and 

multiplication.  Any set of numbers 1 to n requires new primes greater than n in 

addition to granting existing primes their composite extensions up to 2n to keep 

additive closure.      

Viewed in vitro,  each prime introduces a factor progression that is coprime by definition to all 

other progressions.  Viewing them incrementally combining succsessive primes generates a palindromic 

cycle of prime gaps of primorial length each iterartion.  We calculate theoretical and asymptotic 

seasonal statistics based on in vitro analysis. 

Prime Seasons.  Although all prime factor progressions are ubiquitous from the origin, most 

positions are redundant with a factor’s progression.  The combined progression of two and three we call 

the tonic progression ¢(2,3).  This accounts for all composite numbers other than, atonal composites  of the 

form 6k ± 1.  Interested only in atonal composite numbers for the purposes of addressing the variability 

observed in prime gaps, we consider only composite numbers of this form.  By this approach, a seasonal 

topology emerges in the numberline, such that after a prime’s emergence, the next unique value is its’ 
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square.  Thereafter, two paralell progressions (1 and 5 mod 6) containing all elements with p as least 

factor appear for all factor progressions greater than 3. 

𝐺𝑒𝑛𝑒𝑟𝑖𝑐 𝑜𝑑𝑑 𝑜𝑟𝑏𝑖𝑡 𝑚𝑜𝑑 6.  (𝑝2,  𝑝2 + 2𝑝𝑘,   𝑝2 + 4𝑝𝑘 ) {
(1, 5, 3), 𝑖𝑓 6𝑘 + 1}
(1, 3, 5), 𝑖𝑓 6𝑘 − 1}

. 

 

Definition: (Well ordered) seasons, intervals between prime squares, remarkable for their constant 

asymptotic composite density as a result of a known finite set of prime factors serving as least factor in 

all composites. 

Organizing Principles 

The elemental, tonic progression that grounds the natural numbers is the combined orbits of 

two and three, [¢(2,3)] = 4/6.  Which leave only 6k ± 1 as prime emergence sites thereafter.  We are 

certain that prime pairs will forever appear no matter how big natural numbers get because we know 

how composite number orbits work.  For atonal orbits, i.e. of primes five or greater, there are two types 

of orbits, one for primes  born 6k + 1 and the other for 6k – 1 primes.  The first composite number with 

p as least factor is always p² since no smaller number can multiply with p to obtain anything greater.  

We call the period after the prime’s emergence but without contributing composites as the least factor 

the launching period.   The launching period has length p²-p.  After the square, the orbit has period 6p in 

natural positions 6k ±1.   

𝐺𝑒𝑛𝑒𝑟𝑖𝑐 𝑝𝑟𝑖𝑚𝑒 𝑜𝑟𝑏𝑖𝑡 𝑚𝑜𝑑 6.  (𝑝, 2𝑝, 3𝑝, 4𝑝, 5𝑝, 6𝑝 ) {
(1, 2, 3, 5, 0)  𝑖𝑓 6𝑘 + 1}

(5,4,3,2,1,0) 𝑖𝑓 6𝑘 − 1}
. 

 This means, from a composite orbit point of view, there are only four unique prime 

numbers, ℙ = {2,3, 6k-1, 6k+1}.  Any prime a multiple of ten different from another prime, has 

an identical orbit mod ten.  In order to manifest the larger given the smaller, we add the 

appropriate number of tens between each orbit entry. For example, {7, 14, 21, 28, 35, 42, 49, 

56, 63, 77} add 10x→ {17, 34, 51, 68, 85, 102, 119, 136, 153, 177…},  or 30x → {37, 74…}.  

Viewing it this way is helpful because the orbits, being orbits, repeat ad infinitum, therefore bigger 

numbers are composed of recycled old numbers.  For instance, from nine to twenty four, no new orbits 

enter, and the basic element of six simply repeats three times without causing any problems.  At the end 

of their launching period, the twin prime alumni composite orbits enter.  But these orbits have 

progressively lower frequency with resepct to the basic element.  So the highest frequency atonal orbit, 

five, occupies one of each twin prime position every 6p, that is 30 numbers.  We might consider 30 the 

fundamental unit as equally as six.  We would have 30 ± {1, 7, 11, 13} as the template for prime 

emergence in place of 6k ±1, itself in place of 2k +1. 

Now, each prime that emerges from a candidate position begins an orbiting cycle of its own 

centered around a multiple of six.  At first, 30 the product of five and six, is greater than five squared.  

So five’s composite orbit begins before a full cycle has finished in its’ mod 6 orbit.  For five, the 

launching period (1) p(p-1) = 20, is less than the orbiting period.(2) 6p = 30.  For seven, the two periods 

are equal, both 42.  For primes with k greater than one, the launching period grows increasingly in 

excess of the orbiting period, causing an increasing number of cycles with existing orbits persisting as 

they are before new composite orbits enter the number line.   

Using transparent combination over the reciporical natural numbers or reciporical primes 

converge asymptotically to one.  With increasing seasons the ratio of new composite prime orbits 

density, i.e., orbit of the greatest prime such that our observation range is greater than ps², to the 
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number of prime numbers appearing over the same inverval approaches zero.  So at exotic parts of the 

natural number domain, the ratio of novel orbit entries to prime numbers goes to zero.  Viewed in this 

light, the Landau problems become obvious conclusions. 

The premise here considers the numberline as the concatenation of independent prime cycles, 

with new primes emerging when needed to maintain linearity as governed by the axioms of addition and 

multiplication.  This is explicitly depicted by representing natural numbers in a residue number system 

format using all the primes and in the orbit graph.  This means that integer infinitude is an illusion 

simmilar to infinite space on a stage, formed by differently arranging finite entities to simulate lower 

and lower frequency objects related to previous objects in a scale free form.   

Atonal composite regularities .  

 ∀ 𝑝 ∈ 6𝑘 ± 1.  

  1. 𝒑(𝒙′): 𝑥′ =  6𝑝𝑛𝑥 ± 𝑝𝑛 [𝑥
′ ≥ 𝑝𝑛

2]        

 

 𝟐.  𝐻 =  [0, 3𝑘 +  3𝑁], (𝑥 − 2𝑝𝐻)² + 𝑦² =  𝑝² ∶ 

 

 

Figure 1  Partial graph of equation 2 above depicting atonal composite numbers.  These numbers appear only at the 
intersections of the relatively sparse non-green circles.  All circles keep a rigid periodic appearance forcing precession of their 

gaps.  Technically each circle kisses an adjacent circle identical to itself all throughout, representing the prime factor 
progression.  Here most redundancies are removed for clarity.  It is clear that the green circles are safe to continue ad infinitum. 

Nevertheless, a simple proof is this:  Arithmetic progressions (1) p+np have at most one prime number, (2) p + np’ have 
unlimited prime numbers.  This is true because gaps sized p, despite occasional interference, are never the part of an orbit 

because they run paralell to the only progression matching their size (1). Hence, if in (2) we set n = 1 and p’ = 2, we have p an 

arbitrary prime greater than 2 confirmed to have infinite appearances such that p + 2  is prime. ∎.     
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Season, 𝑝𝑠 Range [¢] Composite 
Density 

Δ [¢] New 
composite 

rate 

Gap Cap    
(1) 𝑝𝑠+2 − 1/ 

 (2)  2𝑝𝑠 

Completed 
Periods / 
Season 

A, 2 4-8 ½ 1/2 4 2 (2.000) 
B, 3 9-24 2/3 1/6 6 15/6 (2.500) 
C,.5 25-48 11/15 2/30 10 23/30 (0.767) 
D, 7 49-120 27/35 4/105 12 / 14 71/210 (0.338)  
E, 11 121-168 61/77 8/385 16 / 22 47/2310 (0.020) 
F, 13 169-288 809/1001 16/1001 18 / 26 119/30030 (.004) 

 

   With the tonic progression, primorial 6, the symmetry around a prime gap of three consecutive 

composites, presents as 𝑔𝑛 = 4.  With primorial 30, the 30 ±5 positions are removed from prime 

candidacy.  This is low frequency modification of the tonic progression.  Therefore every cycle, of 30 

integers, primes do not emerge because of five’s orbit in two out of ten opportunities, two of thirty 

integers.. All factor orbits of greater cardinality independently reduce prime emergence by 

pregoessively less (2/14 opportunities, in 42 integers for seven, and then 2/11 opportunities, 2/66 

integers,  for eleven etc.).   This appears like an unpredictable when each factor orbit is indistinguishable 

from the others, as if it were a unified centrally dictated production.  But it is impossible to miss the 

mechanical rigidity when they are viewed independently.  This conceptualization is justified because its’ 

predictions match observations and permit meaningful deductive conclusions with zero uncettainty.  

The computations become precise when statistical principles, or equivalently, the principle of inclusion-

exclusion is applied.  

𝐓𝐫𝐚𝐧𝐬𝐩𝐚𝐫𝐞𝐧𝐭 𝐂𝐨𝐦𝐛𝐢𝐧𝐚𝐭𝐢𝐨𝐧 

Conceptual Equation 1a.  ¢(p, p′) =  {¢(𝑝) ∪ ¢(𝑝′)}\ {¢(𝑝) ∩ ¢(𝑝′)} 

Numerical Equation 1b: [¢] = ([¢](𝑝) + [¢](𝑝′)) − ([¢](𝑝) ∗ [¢](𝑝′))    

Prime Reciporical Partial sum Partial 
product 

Composite 
Density  ¢, (¢ 
equidense 
period) 

Δ¢ New 
Composite 
Density 

1/Δ¢ 
Entries 
per new 
composite 

2 1/2 - - 1/2 1/2 2 

3 1/3 5/6 1/6 2/3 1/6 6 

5 1/5 13/15 2/15 11/15 1/15 15 

7 1/7 92/105 11/105 27/35 4/105 26   1/4 

11 1/11 332/385 27/385 61/77 8/385 48   1/8 

13 1/13 870/1001* 61/1001* 809/1001* 16/1001* 62 9/16* 
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Prime Season 
Range 

Cycles in 
season 

Configurati
on recycle 
period 

Unique 
composit
es per 
cycle 

Length of 
equidense 
period 

Equidens
e periods 
per cycle 

Total 
Composites 
per cycle 

2 4-8 2 2 1 2 1 1 

3 9-24 2.5 6 1 3 2 4 

5 25-48 23/30 
(≈2/3) 

30 2 15 2 22 

7 49-120 71/210 
(≈1/3) 

210 8 35 6 162 

11 121-
168 

47/2310 
(≈2/65) 

2310 48 77 30 1830 

13 169-
288 

119/30030 
(≈3/757) 

30030 480 1001 30 24270 

 

Table 2.  The last column in bold is particularly relevant for addressing intuition failures..  This “ratio of primes to new composites” 
measures the number of primes that enter as a function of the number of new composites that enter relative to before the latest prime factor 
progression is considered. 

Prime Total 
Composites 

per 
Equidense 

period 

Overall 
Prime 

Density 

New 
Composite 

Density 

New 
Entitiy 
Density 

Ratio of 
primes to 

new 
composites 

2 1 1/2 1/2 1 1 

3 2 1/3 1/6 1/2 2 

5 11 4/15 1/15 1/3 4 

7 27 8/35 4/105 4/15 6 

11 61 16/77 8/385 8/35 10 

13 809 "192/1001" "16/1001" 16/77 12 

 

Figure 2.  Some popular for profit spreadsheet software takes it upon itself to change the value of small fractions, we leave it in the document 
as an error to warn other researchers because the software does not signal that it is taking liberties, requiring the user to be aware of the lost 
precision.  The appropriate ratios are {192/1001, and 16/1001}*, notice how the simple pattern is veiled by the liberties taken by the 
software.. 

1/2  

1/3  

4/15 

8/35 

16/77 

103/537

1/2  

1/6  

1/15 

4/105

8/385

7/438

2  ( 4 - 8 )

3  ( 9 - 2 4 )

5  ( 2 5 - 4 8 )

7  ( 4 9 - 1 2 0 )

1 1  ( 1 2 1 - 1 6 8 )

1 3  ( 1 6 9 - 2 8 8 ) *

NEW NUMBERLINE ELEMENTS 
CONSTITUTIONS PER SEASON 

Seasonal Prime Density Seasonal Orbit Density
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 We see empirically that composites due to a factor greater than three contribute by filling gaps 

at 6p ± p.  This means that the longest possible gap is that formed when the 6p ± 1 positions are 

occupied by the greatest two factor orbits and the remaining are all factors of 6p.  A practical way to 

understand why this is true is the fact that between any composite number x such that p (x) is greater 

than three occurs exclusively when x equals 6𝑝𝑛 ± 𝑝𝑛, hence for every appearance there is a gap of 

length 4𝑝𝑛 where there is a drought.  

The theoretical implication is that maximal gap length increases as a step function.  This 

function steps with a radius of the preceeding prime on the squares of prime numbers.  Practically, due 

to the exponentially growing primorial with each additional prime, relative to the square of the prime 

introducing its’ factor orbit, the theoretical limit to prime gaps is never seen for factor orbits greater 

than eleven.  We see that the data match the premise in table 1.   Since the source of prime gaps is 

explicitly known, and we have a closed formula for its’ upper bound, we have addressed the PISC. 

 Regarding the lower bound, constructing pa¢kets explicitly proves the prime patterns conjecture.  

The tonic progression fits unoccluded within all combinations of orbits greater than three.  This is 

exactly the microstructure of the number line explicitly detailed,  The criterion for prime k-tuple 

admissibility are precisely the complement of pa¢ket formation.  Since by definition the pa¢kets persist 

ad infinitum so too do all admissible k – tuples.    

Periodicity of factor packets:  All finite sets of factors produce a palindromic list of composites that 

repeats at the product of the factors ad infinitum.  Therefore, putting the beginning zero over any 

number sharing the factors indicated, the differences in the packet identify composites in that order 

indefinitely.  We equally allow both conventions of indicating the difference between consecutive entries 

or the absolute difference from the initial zero since it is clear by the resulting numbers which is being 

used, and indicate that it is a packet rather than k-tuple presentation with a terminal “:|”, e.g. (0, 2, 1, 1, 

2):|.   If we were looking only at one prime at a time, we would see an orbit progression ¢(p) = (0, p):|.   

The sub-primes, two and three, form the tonic progression packet ¢(2,3)= (0,2,1,1,2):|.  The next 

pair form dominant progression packet ¢(5,7) = (0,5,2,3,4,1,5,1,4,3,2,5):|.  We can summarize all pairs of 

factors with a difference of two as a generalization of this one.  The general packet for such factors has a 

tongue twisting description: palindromic alternating antiparalell parity progression.   (0, q, 2, q-2, …1, q, 

1, …, q-2, 2, q).  For another concrete example,  ¢(11,13) = (0, 11, 2, 9, 4, 7, 6, 5, 8, 3, 10, 1, 11, 1, 10, 3, 

8, 5, 6, 7, 4, 9, 2, 11):|.  The density of these packets of composites / total numbers, where b = q+2 is 
𝑏+𝑞 – 1

𝑏𝑞
.   So ¢(11,13)=23/143.   

Now, if we do represent in the k-tuple notation convention by adding the elements and replacing 

the summand by the sum each time.  For example, ¢(2,3) = (0, 2, 3, 4, 6):|.  This packet becomes 

remarkable for the fact that it’s complement is the twin prime 2- tuple (0, 2).  If two and three were the 

only prime numbers, twin prime infinitude would be immediately apparent, with primes emerging 

between the four and six and zero and two.   This is obscured as we advance in the number systems. We 

see a transition from the modular context notation depicting the prime candidate positions in an 

integral context, to the modular packet context, to the infinite linear context: (-2, 0, 2) → (0, 2, 0) 

→
0 2 4
 1  3  5

:| respectively for ¢(2),  For ¢(2,3): (-6, -4,-3,-2, 0, 2, 3, 4, 6).  We see these generalize 
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¢(5,7) = (0,5,2,3,4,1,5,1,4,3,2,5):|  →

(

 
 
0 {

5 10 15 20 25    30
        7 14    21 28         

0

⋮  ⋮

210
215 220
217 224

   
225 231 238
230 235 240

245 ≡ 35
)

 
 

 

where the top makes some effort of maintaining their relations but the bottom does not. 

We now understand that the orbits of primes continue indefinitely precisely at their expected  

positions.  The prime k=tuple admission condition is exactly the negation of a prime orbit.  Namely, a 

prime k-tuple is admissible if and only if the desired progression of residues does not span the 

equivalence classes of any prime less than k.  But this is the only way under canonical conditions that 

there cannot be infinitely many occasions for a k – tuple.  The twin prime k – tuple, (0,2) is admissible 

because ¢(2,3) is (0,2,3,4,6):|, so it sneaks in at 6k ± 1.  Now ¢(5,7) has relatively prime positions that 

accommodate the twin prime 2-tuple in many ways.  Indeed, all ¢-packets of primes greater than three 

contain such gaps, we know this expllicitly from the preceeding section.  There is no meaningful 

uncertainty regarding the status of the twin prime or prime pattern conjectures.  Its veracity is explicit and 

in the very definitions but obscured by impressions from the language.   

  

 We have shown the explicit range of prime gaps in the integers is bounded from below by two 

and above by the expression,  2𝑝𝑛−1 , valid with infemum (𝑝𝑛
2 − 1) − 𝑝𝑛−1.   Thus satisfying the stated 

goal of this report. 


