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Abstract

For the collided region of two gravitationally bound structures A and B, geodesic equation is

derived using calculus of variations. With the help of geodesic equation derived for the collided

region of A and B, a method to calculate any possible curvature of universe beyond observable

flat universe is detailed. This relativistic method is used to describe a generic idea on the

evolution of gravitationally bound structures and its effect on the evolution of universe. Using

this idea, distribution of matter and antimatter in the universe, observed accelerating expansion

of universe, cosmic inflation, and large-scale structure of present universe are explained.

Key words: cosmology: theory — dark energy — early universe — inflation — large-scale

structure of universe — methods: analytical

1 Introduction

In calculus of variations, the problem of finding shortest paths in a manifold and specifically, the
problem of finding extremal of energy functional E(γ) is used in this paper to derive geodesic
equations. Considering two gravitationally bound structures A and B colliding with each other,
geodesic equation for the collided region of A and B is derived using the problem of finding the
critical points for energy functional. In section 4, A and B are assumed to collide in a flat region of
universe. By using geodesic equation, derived for the collided region of A and B and three coordinate
systems, x, y, and z, possible curvature beyond the flat region is calculated. This approach using
geodesic equations is employed to derive an equation, which in specific explains the evolution of
gravitationally bound structures and in general explains the evolution of universe. Though, this
idea of evolution conceptually contradicts with the standard cosmological model, galaxy lattice
(Susskind, 2013a) in standard model is supportively used here to explain the evolution of universe.
Both cosmic inflation and accelerating expansion of universe follow naturally from this evolution
pattern, and more importantly, from the gravitational forces itself. The widely known potential
energy curve (Susskind, 2013b), which relates the hypothetical scalar field for cosmic inflation and
dark energy for accelerating expansion, is juxtaposed with this evolution pattern for comparison.
Distribution of matter and antimatter objects1 is studied. Finally, large-scale structure of universe,
as inferred from this evolution pattern and the meaning of curvature beyond observable flat universe
in the context of this evolution, are discussed.

2 Finding Shortest Paths in a Manifold

To understand the problem of finding shortest paths in a manifold, here we employ the calculus
of variations technique. Considering a simple problem where we are given a suitably differential
function, F : R×R×R → R, we seek among all functions f(t) : [a, b] → R, where f(a) = a′, f(b) = b′

one which will minimize or maximize the quantity
b
∫

a

F (t, f(t), f
′

(t)) dt.

To find maxima or minima for J(f) =
b
∫

a

F (t, f(t), f
′

(t)) dt, curves in the set of all functions

f(t) : [a, b] → R is considered. This is done by considering a variation of f, which is a function
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Maharashtra, India-411033. Orcid Id: 0000-0002-3356-3462 Email: vikipr@gmail.com Mobile: +91 9535471230

1Objects refer to gravitationally bound structures.
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α : (−ǫ, ǫ) × [a, b] → R, such that α(0, t) = f(t).

b ta

f

α(u, a) = a′

α(u, b) = b′

f(t) : [a, b] → R

Figure 1: The Problem of finding shortest paths in a manifold is discussed here using calculus of
variations method.

The functions t 7→ α(u, t) here are a family of functions on (−ǫ, ǫ) which pass through f for u
= 0. This function is denoted by α(u). So, α(u) is a function from (−ǫ, ǫ) to the set of functions
f(t) : [a, b] → R. If α(u, a) = a′ and α(u, b) = b′ for all u ∈ (−ǫ, ǫ), then we call α a variation of f

keeping endpoints fixed. Computing dJ(α(u))
du

∣

∣

∣

∣

u=0

, we get

dJ(α(u))

du

∣

∣

∣

∣

u=0

=

b
∫

a

∂α(0, t)

∂u

[

∂F (t, f(t), f
′

(t))

∂x
−

d

dt

(

∂F (t, f(t), f
′

(t))

∂y

)]

dt+
∂α(0, t)

∂u

∂F (t, f(t), f
′

(t))

∂y

∣

∣

∣

∣

b

a

For variations α keeping end points fixed, second term is 0, and so

dJ(α(u))

du

∣

∣

∣

∣

u=0

=

b
∫

a

∂α(0, t)

∂u

[

∂F (t, f(t), f
′

(t))

∂x
−

d

dt

(

∂F (t, f(t), f
′

(t))

∂y

)]

dt

Generalizing the above considerations for functions f(t) : [a, b] → R
n and F : R×R

n ×R
n → R,

where the functional is J(F ) =
∫ b

a
F (t, f(t), f

′

(t)) dt, variation of function f(t) is a function
α(u, t) : (−ǫ, ǫ) × [a, b] → R

n. α(u, t) is denoted by α(u).

The general solution to find shortest paths in a manifold is that f(t) should satisfy dJ(α(u))
du

∣

∣

∣

∣

u=0

=

0, where

dJ(α(u))

du

∣

∣

∣

∣

u=0

=

b
∫

a

n
∑

t=1

∂αt(0, t)

∂u

[

∂F (t, f(t), f
′

(t))

∂xt
−

d

dt

(

∂F (t, f(t), f
′

(t))

∂yt

)]

dt+
n

∑

t=1

∂αt(0, t)

∂u

∂F (t, f(t), f
′

(t))

∂yt

∣

∣

∣

∣

b

a

For variations α keeping end points fixed, second term is 0, and so

dJ(α(u))

du

∣

∣

∣

∣

u=0

=

b
∫

a

n
∑

t=1

∂αt(0, t)

∂u

[

∂F (t, f(t), f
′

(t))

∂xt
−

d

dt

(

∂F (t, f(t), f
′

(t))

∂yt

)]

dt (1)
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So, any critical point f(t) : [a, b] → R
n of J(F ) (or an extremal for J(F )) must satisfy the n

equations

[

∂F (t, f(t), f
′

(t))

∂xt
−

d

dt

(

∂F (t, f(t), f
′

(t))

∂yt

)]

= 0

We can apply the above results to the problem of finding shortest paths in a manifold M.

γ(t) : [a, b] → M is a piecewise smooth curve, with γ(a) = p and γ(b) = q, variation of γ here
is a function α : (−ǫ, ǫ) × [a, b] → M for some ǫ > 0, such that

(1) α(0, t) = γ(t),

(2) Partition a = t0 < t1 < ... < tN = b of [a, b] so that α is C∞ on each strip (−ǫ, ǫ) × [ti−1, ti].

α is a variation of γ with endpoints fixed if

(3) α(u, a) = p and α(u, b) = q for all u ∈ (−ǫ, ǫ)

Now, we find the critical points for the energy functional, E(γ(t)) = 1
2

b
∫

a

〈

dγ
dt

, dγ
dt

〉

dt. α(u) is the

path t 7→ α(u, t).

Analogous to the general solution above, here γ(t) should satisfy dE(α(u))
du

∣

∣

∣

∣

u=0

= 0, where

dE(α(u))

du

∣

∣

∣

∣

u=0

= −

b
∫

a

n
∑

t=1

∂αt(0, t)

∂u

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

i,j=1

[ij, t](γ(t))
dγi

dt

dγj

dt

]

dt−

N
∑

i=0

〈

∂α(0, ti)

∂u
, ∆ti

dγ

dt

〉

For variations α with end points fixed, the sum in the second term can be written from 1 to
N − 1 and the integral term in the above equation is independent of the coordinate system.

dE(α(u))

du

∣

∣

∣

∣

u=0

= −

b
∫

a

n
∑

t=1

∂αt(0, t)

∂u

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

i,j=1

[ij, t](γ(t))
dγi

dt

dγj

dt

]

dt (2)

Where gtr is the metric tensor and
[

ij, t
]

is the Christoffel symbol of first kind containing first
derivatives of the metric tensor.

[

ij, t
]

=
1

2

(

∂git

∂xj
+

∂gjt

∂xi
−

∂gij

∂xt

)

So, any critical point γ(t) : [a, b] → M of E(γ(t)) (or an extremal for E(γ(t))) must satisfy the
n equations

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

i,j=1

[ij, t](γ(t))
dγi

dt

dγj

dt

]

= 0
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A complete analysis on the problem of finding shortest paths in a manifold with the derivation
of equations mentioned in this section is available in Spivak (1999). An interesting discussion on
the motion of bodies in general relativity and how it differs from the motion of bodies in Newtonian
methods is explained in Wisdom (2003). In the next section, equation (2) is used to derive an
equation for the collided region of two gravitationally bound structures.

3 Equation of Motion in the Collided Region of Gravitationally Bound Structures

We will derive below the geodesic equation for the collided region of two gravitationally bound struc-
tures using the method of finding shortest paths in a manifold.

a c b d t

γ(t)

Figure 2: Collision of gravitationally bound structures; equation (2) is employed to derive an equation
for the collided region, using the geodesic equations of two collided objects as shown here.

Adding the energy functional of these three paths, we get

E(γ(t))
∣

∣

b

a
+ E(γ(t))

∣

∣

b

c
+ E(γ(t))

∣

∣

d

c
=

1

2

b
∫

a

〈

dγ

dt
,

dγ

dt

〉

dt +
1

2

b
∫

c

〈

dγ

dt
,

dγ

dt

〉

dt +
1

2

d
∫

c

〈

dγ

dt
,
dγ

dt

〉

dt

Here, equation (1) becomes

dJ(α(u))

du

∣

∣

∣

∣

u=0

=

b
∫

a

n
∑

t=1

∂αt(0, t)

∂u

[

∂F (t, f(t), f
′

(t))

∂xt
−

d

dt

(

∂F (t, f(t), f
′

(t))

∂yt

)]

dt

+

b
∫

c

n
∑

t=1

∂αt(0, t)

∂u

[

∂F (t, f(t), f
′

(t))

∂xt
−

d

dt

(

∂F (t, f(t), f
′

(t))

∂yt

)]

dt

+

d
∫

c

n
∑

t=1

∂αt(0, t)

∂u

[

∂F (t, f(t), f
′

(t))

∂xt
−

d

dt

(

∂F (t, f(t), f
′

(t))

∂yt

)]

dt

Substituting equation (2) for the energy functional here, we get
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dE(α(u))

du

∣

∣

∣

∣

b

a

+
dE(α(u))

du

∣

∣

∣

∣

b

c

+
dE(α(u))

du

∣

∣

∣

∣

d

c

= −

b
∫

a

n
∑

t=1

∂αt(0, t)

∂u

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

i,j=1

[ij, t](γ(t))
dγi

dt

dγj

dt

]

dt

−

b
∫

c

n
∑

t=1

∂αt(0, t)

∂u

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

k,l=1

[kl, t](γ(t))
dγk

dt

dγl

dt

]

dt (3)

2 −

d
∫

c

n
∑

t=1

∂αt(0, t)

∂u

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

m,n=1

[mn, t](γ(t))
dγm

dt

dγn

dt

]

dt

For equation (3) to become 0, the condition below must hold.

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

i,j=1

[ij, t](γ(t))
dγi

dt

dγj

dt

]

+

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

k,l=1

[kl, t](γ(t))
dγk

dt

dγl

dt

]

+

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

m,n=1

[mn, t](γ(t))
dγm

dt

dγn

dt

]

= 0

Γp
ij , Γp

kl, and Γp
mn are introduced here to write the above equation in standard form.

Γp
ij =

n
∑

t=1

gpt[ij, t] =
n

∑

t=1

gpt 1

2

(

∂gti

∂xj
+

∂gtj

∂xi
−

∂gij

∂xt

)

Γp
kl =

n
∑

t=1

gpt[kl, t] =

n
∑

t=1

gpt 1

2

(

∂gtk

∂xl
+

∂gtl

∂xk
−

∂gkl

∂xt

)

Γp
mn =

n
∑

t=1

gpt[mn, t] =
n

∑

t=1

gpt 1

2

(

∂gtm

∂xn
+

∂gtn

∂xm
−

∂gmn

∂xt

)

Now, we get

[ n
∑

r=1

gptgtr(γ(t))
d2γr

dt2
+

n
∑

i,j=1

Γp
ij(γ(t))

dγi

dt

dγj

dt

]

+

[ n
∑

r=1

gptgtr(γ(t))
d2γr

dt2
+

n
∑

k,l=1

Γp
kl(γ(t))

dγk

dt

dγl

dt

]

+

[ n
∑

r=1

gptgtr(γ(t))
d2γr

dt2
+

n
∑

m,n=1

Γp
mn(γ(t))

dγm

dt

dγn

dt

]

= 0

Simplifying the above equation, we get

[

d2γp

dt2
+

n
∑

i,j=1

Γp
ij(γ(t))

dγi

dt

dγj

dt

]

+

[

d2γp

dt2
+

n
∑

k,l=1

Γp
kl(γ(t))

dγk

dt

dγl

dt

]

+

[

d2γp

dt2
+

n
∑

m,n=1

Γp
mn(γ(t))

dγm

dt

dγn

dt

]

= 0

2In equation (3), n in subscript of
∑

refers to n
th component of γ and n in superscript refers to summation limit.

This holds for equations up to equation (4).
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Rearranging the terms, we get equation of motion in the collided region of gravitationally bound
structures A and B, which is

[

d2γp

dt2
+

n
∑

k,l=1

Γp
kl(γ(t))

dγk

dt

dγl

dt

]

= −

[

d2γp

dt2
+

n
∑

i,j=1

Γp
ij(γ(t))

dγi

dt

dγj

dt

]

−

[

d2γp

dt2
+

n
∑

m,n=1

Γp
mn(γ(t))

dγm

dt

dγn

dt

]

(4)

Using this equation, an analytical method to calculate the curvature of universe beyond our
observable is discussed below in section 4, and a generic evolution model is discussed in section 5.

4 Curvature Beyond Observable Flat Universe

We can consider the region in which the gravitationally bound structures collide to be flat, in a flat
universe. So, the metric of Riemannian manifold is just a flat Euclidean metric on R

n, which is

( , 〉 =
n

∑

i=1

gijdxi ⊗ dxi

Equation of motion in the collided region is
[

d2γp

dt2
+

n
∑

k,l=1

Γp
kl(γ(t))

dγk

dt

dγl

dt

]

= −

[

d2γp

dt2
+

n
∑

i,j=1

Γp
ij(γ(t))

dγi

dt

dγj

dt

]

−

[

d2γp

dt2
+

n
∑

m,n=1

Γp
mn(γ(t))

dγm

dt

dγn

dt

]

In flat Euclidean metric on R
n, gij = δij . All the first derivatives of gij in the Christoffel symbols

are 0, and so Γp
ij = 0, and Γp

mn = 0. Substituting Γp
ij = 0 and Γp

mn = 0 in the above equation, we
get

[

d2γp

dt2
+

n
∑

k,l=1

Γp
kl(γ(t))

dγk

dt

dγl

dt

]

= −

[

d2γp

dt2
+

d2γp

dt2

]

In flat Euclidean metric on R
n, critical point γ(t) for the energy function satisfy, d2γp

dt2 = 0.

Substituting d2γp

dt2 = 0 in the above equation, we get

[

d2γp

dt2
+

n
∑

k,l=1

Γp
kl(γ(t))

dγk

dt

dγl

dt

]

= 0

4.1 Inference

1. Assumption is that universe is flat and so the region in which the gravitationally bound struc-
tures are about to collide is flat. After the collision, if curvature is observed in the collided region
of gravitationally bound structures, then it is suggestive of a non-flat universe.

If after collision

[

d2γp

dt2 +
∑n

k,l=1 Γp
kl(γ(t))dγk

dt
dγl

dt

]

= 0, the assumption that the universe is flat

holds.

If after collision

[

d2γp

dt2 +
∑n

k,l=1 Γp
kl(γ(t))dγk

dt
dγl

dt

]

6= 0, the assumption that the universe is flat

does not holds correct. In this case, the mathematical method to accurately calculate the curvature
of universe is detailed in subsection 4.2.
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4.2 Mathematical Method

Let the geometry of universe be defined by coordinate system x and the geometry of region in
which the collision occurs be y. Coordinate system z defines the geometry of the collided region
of gravitationally bound structures. Either of the images in fig. 3 illustrates the arrangement of
coordinate systems.

or

x coord system

y coord system

z coord system

x coord system

y coord system

z coord system

Figure 3: Relation between coordinate systems x, y, and z

First, we calculate the curvature of z coordinate system by comparing it with flat y coordinate
system. Then, we calculate the curvature of x coordinate system by comparing it with the calculated
curvature of z coordinate system.

Curvature of z coordinate system with respect to flat y coordinate system:

Metric equations which are needed to calculate Christoffel symbol Γt
sn are

gls =
∑

α

∂zα

∂yl

∂zα

∂ys
, gln =

∑

α

∂zα

∂yl

∂zα

∂yn
, gsn =

∑

α

∂zα

∂ys

∂zα

∂yn
, and gtl =

∑

β

∂yt

∂zβ

∂yl

∂zβ
(5)

First derivative of the metric equations with respect to y coordinate system components are as
follows.

∂gls

∂yn
=

∑

α

∂zα

∂yl

∂2zα

∂ys∂yn
+

∑

α

∂zα

∂ys

∂2zα

∂yl∂yn
(6)

∂gln

∂ys
=

∑

α

∂zα

∂yl

∂2zα

∂ys∂yn
+

∑

α

∂zα

∂yn

∂2zα

∂yl∂ys
(7)

∂gsn

∂yl
=

∑

α

∂zα

∂ys

∂2zα

∂yl∂yn
+

∑

α

∂zα

∂yn

∂2zα

∂yl∂ys
(8)

Now, Christoffel symbols of first and second kind are

[

sn, l
]

=
1

2

(

∂gls

∂yn
+

∂gln

∂ys
−

∂gsn

∂yl

)

=
∑

α

∂zα

∂yl

∂2zα

∂ys∂yn
(9)

Γt
sn =

n
∑

l=1

gtl[sn, l] (10)

Similarly, Christoffel symbols with other combination of indices can be calculated and substituted
in Riemannian curvature tensor below to get the curvature defined by z coordinate system.

Rt
srn =

∂Γt
sn

∂yr
−

∂Γt
rn

∂ys
+

n
∑

µ=1

Γp
snΓt

pr −

n
∑

µ=1

Γp
rnΓt

ps (11)

7



Curvature of x coordinate system with respect to curved z coordinate system:

Metric equations which are needed to calculate Christoffel symbol Γt
sn are

gls =
∑

α

∂xα

∂zl

∂xα

∂zs
, gln =

∑

α

∂xα

∂zl

∂xα

∂zn
, gsn =

∑

α

∂xα

∂zs

∂xα

∂zn
, and gtl =

∑

β

∂zt

∂xβ

∂zl

∂xβ
(12)

In the equations from equation (5) to equation (9), z and y can be replaced by x and z to
get equation (13), which give us the curvature defined by x coordinate system with respect to the
curvature of z coordinate system calculated using equation (11).

Rt
srn =

∂Γt
sn

∂yr
−

∂Γt
rn

∂ys
+

n
∑

µ=1

Γp
snΓt

pr −
n

∑

µ=1

Γp
rnΓt

ps (13)

The curvature defined by equation (13) gives us any possible curvature of universe beyond the
observable flat universe. The meaning of this curvature in the context of evolution explained in
section 5, is described in subsection 5.3.

5 Evolution of Gravitationally Bound Structures

A generic idea on the evolution of gravitationally bound structures and its consequences are discussed
here. Let us say there are n classifications of gravitationally bound structures corresponding to
order 1, order 2,..., order n. Order 1 to order n are the epoch in which, still interacting associated
gravitationally bound structures are formed. As seen in fig. 4 below, smaller gravitationally bound
structures, as they cease to interact, give rise to larger gravitationally bound structures. This method
of evolution applies from smallest possible to largest sustainable gravitationally bound structures,
that is, from order 1 to order n.

Figure 4: Evolution of gravitationally bound structures; left side image shows interacting objects of
some order and right side image shows that these interacting objects have become independent.

For explanation below, two non-interacting smaller gravitationally bound structures in the in-
tersecting region of two larger gravitationally bound structures can be considered (see fig. 5).

c b d tfea

γ(t)

g h

Figure 5: Geodesic arrangement – equation (2) is employed here to explain the evolution of objects.
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So, the sum of differentiation of energy functional with respect to u for these paths is

dE(α(u))

du

∣

∣

∣

∣

b

a

+
dE(α(u))

du

∣

∣

∣

∣

f

e

+
dE(α(u))

du

∣

∣

∣

∣

b

c

+
dE(α(u))

du

∣

∣

∣

∣

h

g

+
dE(α(u))

du

∣

∣

∣

∣

d

c

=

−

b
∫

a

n
∑

t=1

∂αt(0, t)

∂u

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

i,j=1

[ij, t](γ(t))
dγi

dt

dγj

dt

]

dt

−

f
∫

e

n
∑

t=1

∂αt(0, t)

∂u

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

s,u=1

[su, t](γ(t))
dγs

dt

dγu

dt

]

dt

−

b
∫

c

n
∑

t=1

∂αt(0, t)

∂u

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

k,l=1

[kl, t](γ(t))
dγk

dt

dγl

dt

]

dt (14)

−

h
∫

g

n
∑

t=1

∂αt(0, t)

∂u

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

v,w=1

[vw, t](γ(t))
dγv

dt

dγw

dt

]

dt

3 −

d
∫

c

n
∑

t=1

∂αt(0, t)

∂u

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

m,n=1

[mn, t](γ(t))
dγm

dt

dγn

dt

]

dt

For equation (14) to become 0, the condition below must hold.

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

i,j=1

[ij, t](γ(t))
dγi

dt

dγj

dt

]

+

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

s,u=1

[su, t](γ(t))
dγs

dt

dγu

dt

]

+

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

k,l=1

[kl, t](γ(t))
dγk

dt

dγl

dt

]

+

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

v,w=1

[vw, t](γ(t))
dγv

dt

dγw

dt

]

+

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

m,n=1

[mn, t](γ(t))
dγm

dt

dγn

dt

]

= 0

Γp
ij , Γp

su, Γp
kl, Γp

vw, and Γp
mn are introduced here to write the above equation in standard form.

[

d2γp

dt2
+

n
∑

i,j=1

Γp
ij(γ(t))

dγi

dt

dγj

dt

]

+

[

d2γp

dt2
+

n
∑

s,u=1

Γp
su(γ(t))

dγs

dt

dγu

dt

]

+

[

d2γp

dt2
+

n
∑

k,l=1

Γp
kl(γ(t))

dγk

dt

dγl

dt

]

(15)

+

[

d2γp

dt2
+

n
∑

v,w=1

Γp
vw(γ(t))

dγv

dt

dγw

dt

]

+

[

d2γp

dt2
+

n
∑

m,n=1

Γp
mn(γ(t))

dγm

dt

dγn

dt

]

= 0

Rearranging equation (15), we get

[

d2γp

dt2
+

n
∑

s,u=1

Γp
su(γ(t))

dγs

dt

dγu

dt

]

+

[

d2γp

dt2
+

n
∑

v,w=1

Γp
vw(γ(t))

dγv

dt

dγw

dt

]

= −

[

d2γp

dt2
+

n
∑

k,l=1

Γp
kl(γ(t))

dγk

dt

dγl

dt

]

(16)

−

[

d2γp

dt2
+

n
∑

i,j=1

Γp
ij(γ(t))

dγi

dt

dγj

dt

]

−

[

d2γp

dt2
+

n
∑

m,n=1

Γp
mn(γ(t))

dγm

dt

dγn

dt

]

3In equation (14), n in subscript of
∑

refers to n
th component of γ and n in superscript refers to summation

limit. This holds for equations up to equation (16).
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For the intersecting region of two larger gravitationally bound structures, we can use equation
(4). Substituting equation (4) in equation (16), we get

[

d2γp

dt2
+

n
∑

s,u=1

Γp
su(γ(t))

dγs

dt

dγu

dt

]

+

[

d2γp

dt2
+

n
∑

v,w=1

Γp
vw(γ(t))

dγv

dt

dγw

dt

]

= 0 (17)

[

d2γp

dt2
+

n
∑

s,u=1

Γp
su(γ(t))

dγs

dt

dγu

dt

]

= −

[

d2γp

dt2
+

n
∑

v,w=1

Γp
vw(γ(t))

dγv

dt

dγw

dt

]

(18)

Equation (18) is the condition when smaller gravitationally bound structures cease to interact.
The fact that we have used equation (4) for the intersecting region of two larger gravitationally
bound structures to derive equation (18) is incidentally the proof that larger gravitationally bound
structures which did not exist when the smaller gravitationally bound structures were intersecting,
has formed.

For any n, expansion of independent objects of order n − 1 4 inside interacting objects of order
n can be described by Standard Model of Cosmology (Susskind, 2013c). While the expansion of
independent objects inside interacting objects obey Standard Model, expansion of universe obey the
evolution of gravitationally bound structures described in this section.

In Newtonian two-body problem, say for a binary system, equation of motion can be easily
obtained. This equation of motion which expresses acceleration in terms of position and velocity
suit the needs of exact theory. On the contrary, for General Relativity, approximation methods
are preferred as deriving equations of motion in the way exact theory demands is difficult. For
General Relativity, apart from Post-Newtonian approximations, Numerical Relativity simulations,
Gravitational Self-Force computations, recently developed Effective One Body formalism, and var-
ious combinations of these are discussed in Damour (2014a,b). For both Newtonian and General
Relativity two-body problems, observations i.e., binary systems, including binary systems of neutron
stars and black holes were already in place. This in fact was the driving factor to come up with the
required equations of motion to validate the theories with observed facts.

Unlike the aforementioned two-body problem in General Relativity, two-body problem discussed
in this section is motivated by the prospect of a consequence, in this case, specifically, as to how
the gravitationally bound structures evolve. So, two body approximations which primarily validates
General Theory of Relativity using observations and/or experiments is by purpose different from the
two-body problem discussed in this section. And also considering the limitations in observational
data for this evolution pattern at this point of time, formulations for this two-body problem, in a way
which adheres to exact theory is out of scope of this paper. To get a more detailed understanding
of approximate solutions to general relativity, refer Poisson & Will (2014).

With the details inferred in this section, accelerating expansion of universe, cosmic inflation,
large-scale structure of universe, collapse5 of gravitationally bound structures, and distribution of
matter and antimatter are discussed in the subsections below.

5.1 Accelerating Expansion of Universe and Dark Energy

I. In the explanation below, objects of order n refer to interacting objects formed in order n, and
objects of order n − 1 refer to independent objects inside interacting objects of order n. Both these
objects are relatively used to explain accelerating expansion of universe in this subsection and
cosmic inflation in subsection 5.2. Though, objects of order n in this evolution pattern refer to the
largest sustainable objects in our universe, it is used here for explanation as interacting objects of
any order.

A. From order 2 to order n, interacting groups become larger in geometry and the mass densities
of larger groups are always lower than that of its immediate predecessor. This
proportionately decreases the gravitational attraction between larger gravitationally bound

4Objects of an order refer to the objects formed in that order (epoch).
5Collapse of an object here refers to the object loosing it structure, but still exists.
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Independent objects of order n-1 Interacting objects of order n

Figure 6: Accelerating expansion of universe

structures compared to its immediate predecessors, causing the expanding universe to
accelerate.

B. If independent objects of order n − 1 are still expanding inside the newly formed objects of
order n, then the former delays latter from becoming independent. Actually, expanding
independent objects do not slow down the receding rates of interacting objects, but they just
delay interacting objects from becoming independent.

C. Then, in increasing steps, receding rate of independent objects of order n − 1 increases due to
decrease in their mass densities. A short proof using details in Susskind (2013a) is provided
below.

Center of small cluster

Center of large cluster

.

Figure 7: Accelerating expansion of independent objects

Dab = a(t)∆Xab

Vab =
da(t)

dt
∆Xab

Hubble function =
Vab

Dab

=
da(t)

dt

a(t)
(19)

In equation (19), ∆Xab cancels each other. As discussed in Susskind (2013a), Hubble
function is independent of actual distances between galaxies in galaxy lattice. So, for any
n > 1, galaxy lattice in this lecture can be used to describe objects of order n − 1.

As shown in fig. 7, when looked at from the center of small or big cluster, mass inside the
respective cluster is isotropic. So, total mass of all objects of order n − 1 inside any
interacting cluster is assumed to be concentrated at center of the cluster. Though in fact it is
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the opposite, the center of cluster is considered to be not moving for mathematical ease. The
equation for acceleration to distance ratio is

d2a(t)
dt2

a(t)
= −

4

3
πρG (20)

The negative second derivative says, expanding independent objects of order n − 1 will
eventually slow down. If the mass density is low, RHS = (small negative value), and so the
expansion slows down slowly. Therefore, in increasing steps, expansion of independent
objects of order n − 1 accelerates.

D. The combined action of independent and interacting objects should be considered as a single
phenomenon, decreasing the mass density of universe. For each step, the time delay, objects
of order n − 1 induces to objects of order n from becoming independent is same. Yet, the
decrease in mass density causes expanding universe to accelerate.

II. Another consequence that follows is that the need for dark energy to primarily account for the
accelerating expansion of universe is not required in this evolution.

5.2 Cosmic Inflation

In the very early universe before order 1, gravitationally bound structures are not formed.
Consequently, they cannot be grouped together. So, when gravitationally bound structures
corresponding to order 1 are formed, they are already non-interacting objects. So, by equation
(18), gravitationally bound structures corresponding to order 1 and order 2 are formed
simultaneously. From order 2 to order n they are formed in the increasing order of time. This
explains in the infant universe just after big bang, an exponential expansion, which slowed after
that. Simultaneous formation of gravitationally bound structures corresponding to order 1 and
order 2 substantially reduced the mass density of universe just after big bang, before getting into
accelerating expansion at a much slower rate.

Furthermore, as objects associated with order 1 and order 2 start expanding at same time,
expansion of former considerably delays the latter from becoming independent. But eventually
objects associated with order 2 become independent because of relatively higher expansion rate
than that of order 1 objects. So, inflation starts precisely at time ti, when objects of order 1 and
order 2 are formed, and ends precisely at time tf , when objects of order 2 become independent.

Inflationary theory as described in Susskind (2013b), invokes a hypothetical scalar field to describe
the potential energy curve shown in fig. 8.

d2φ(t)

dt2
+ 3H

dφ(t)

dt
= F (φ) (21)

Where, F (φ) is the tendency of the field to move towards lower potential energy.

Φ

V(Φ) Inflation

Present Universe

Figure 8: Potential energy curve
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As shown in fig. 8, the hypothetical dark energy is employed to explain the accelerating expansion
observed in our present universe. But, as inferred from the evolution of gravitationally bound
structures, inflation and observed accelerating expansion are accounted by gravitational forces
itself. Therefore, the hypothetical scalar field and dark energy becomes irrelevant in this context.

Though, the cause of inflation differs in this context, there are similarities they both share in
explaining the phenomenon. As discussed in Susskind (2013b), inflation should have happened
over a sufficient amount of time to simultaneously account for flatness of observable universe and
dilution of magnetic monopoles. Quantitatively, this means that eHt in equation (22) should be at
least e60.

a = eHt (22)

Objects of order 1 and order 2 simultaneously initiate their expansion and consequently, objects of
order 1 considerably delays objects of order 2 from becoming independent. This is in concurrence
with the prolonged inflation illustrated by the potential energy curve in fig. 8.

As we know, inflationary theory accounts for two cosmological principles, isotropy and
homogeneity of observable universe, and in addition also accounts for the observed flatness of space
and dilution of magnetic monopoles.

• Isotropy: Equation (19) which explains the contraction or expansion of galaxy lattice is the
basis for standard cosmology theory. Now, that clusters and super clusters are observational
facts, the process of forming and certainly arrangement of clusters decide the correctness of
isotropy. As shown in fig. 6, the direction we look at from earth does matter, rendering the
conception of isotropy obsolete in this context.

• Homogeneity: The evolution described in this paper, with the expansion of objects
constrained to their own clusters, causes a disparity in their expansion rates. Therefore, the
homogeneity of the entirety of space is as obsolete as isotropy in this context.

• Flatness of Space: In this context, irrespective of observable universe being flat or curved,
there are curvatures on scales larger than observable universe, due to gravitationally bound
structures of relatively recent orders. Subsection 5.3 contains a brief discussion about the
large-scale structure of universe, inferred from this evolution pattern.
This inflation does not explain the flatness in our observable universe. A statement about the
cause of this observed flatness is added as the last paragraph in conclusion. So, the condition
below for inflation, as discussed in Lesgourgues (2006, pp. 6 to 8) is not required here.

af

ai

≥
ao

af

Therefore, the exactly exponential De Sitter expansion during inflation for simplifying
calculations to primarily solve flatness problem is not discussed here. Furthermore, as
discussed in Lesgourgues (2006, pp. 6 to 8), number of inflationary e-folds should be greater
than or equal to the number of post-inflationary e-folds.

Nf − Ni ≥ No − Nf

For solving observable flatness problem, inflation could be arbitrarily long. On the contrary,
inflation here has fixed constraints, defined by ti and tf .

• Dilution of Magnetic Monopoles: This inflation, like the inflationary theory (Susskind,
2013b) can explain the dilution of magnetic monopoles
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Put together, the evolution pattern discussed in section 5 does not accommodates isotropy,
homogeneity, and flatness of universe which inflation theories historically accounted for. Yet, this
pattern naturally explains inflation in the early universe which can still explain the dilution of
magnetic monopoles.

In this evolution pattern, though the same mechanism which drives both cosmic inflation and
accelerating expansion of universe looks similar to quintessence proposal, it is just the gravity with
different cosmological principles here that explains both cosmic inflation and accelerating
expansion of universe.

5.3 Large-scale Structure of Universe

For observational purposes, discussion on the geometry of universe inferred from this evolution is
limited to our own epoch. Let us assume here, order n corresponds to the largest interacting
objects now. The geometry of space will be like the illustration in fig. 6. Each of the interacting
objects will have geometry like the illustration in fig. 7.

The evolution process, which forms interacting objects by grouping independent objects, makes it
evident that the objects of recent orders will be less in number. Consequently, number of
interacting objects in our epoch will be the least compared to objects of all other orders.

Let us say that the observable flat universe is an object of order n − l, where l = 1, ..., n + 2, that
is, from order 2 to order n − 1. Then, section 4 helps us to calculate the curvature of x coordinate
system (see fig. 3), that is, curvature of objects of order (n − l) + 1. Implications it has on
observational astronomy to study the geometry of space is added in conclusion.

To get an idea about the curvature on the scale of order n, a pictorial representation of the
curvature embedded in 3D Euclidean space, for four interacting objects of order n is sketched
below.

Curved observable universe

Observable universe

 becomes less curvy

Figure 9: Large-scale structure of universe

5.4 Collapse of Gravitationally Bound Structures

As discussed in subsection 5.1 (see fig. 7), receding rate of larger cluster’s objects is higher than
the receding rate of smaller cluster’s objects. Consequently, objects of order 1 at some point of
time will first stop to recede from each other, and will start to collapse. This will be followed by
the collapse of order 2, order 3,..., order n objects in chronological order.

To understand this, let us say the larger cluster’s objects are of order 2 classification and smaller
cluster’s objects are of order 1 classification. Then, when objects of order 1 are collapsed, the
structure in fig. 7 is transformed as below
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Object of Order 1

Object of Order 2

Object of Order 3

Figure 10: Shows the collapse of order 1 and order 2 objects. As long as objects of order 1 are
collapsed to a single gravitationally bound structure, albeit they have collided, they continue to
exist.

The universe expansion from big bang, and eventual collapse is symmetrical in nature. Though,
collapse of order 1 objects will be followed by collapse of order 2 objects, by reversing the logic
used for cosmic inflation, we can presume that objects of order 1 and order 2 will cease to exist at
same time. So, fig. 10 is transformed as below

Objects of order 1

and order 2 ceased

to exist

Object of Order 3

Object of Order 4

Object of order 5

Figure 11: Using this evolution pattern for object birth6and death7, when objects of order 3 collide,
objects of order 1 and order 2 will have ceased to exist. Similar to this, when objects of order 4
collide, objects of order 3 will have ceased to exist and so on.

Eventually, objects of all orders will be dead due to collision of objects. This collision of objects
will cause the temperature of universe to rise substantially.

5.5 Distribution of Matter and Antimatter

In the treatment of Riemannian metrics in Spivak (1999), geodesics are the critical points for the

energy functional. If energy functional is negative, i.e. E(γ(t)) = − 1
2

b
∫

a

〈

dγ
dt

, dγ
dt

〉

dt, then equation

(2) becomes

dEα(u)

du

∣

∣

∣

∣

b

a

= −

b
∫

a

n
∑

t=1

∂αt(0, t)

∂u
× −

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

i,j=1

[ij, t](γ(t))
dγi

dt

dγj

dt

]

dt (23)

5Birth of order 1 objects refers to the forming of independent objects in order 1. Birth of other objects refers to
the forming of interacting objects in their respective orders.

6Death of objects is used to indicate that the objects eventually will cease to exist after collapse.
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So here, γ(t) should satisfy the equation,

−

[ n
∑

r=1

gtr(γ(t))
d2γr

dt2
+

n
∑

i,j=1

[ij, t](γ(t))
dγi

dt

dγj

dt

]

= 0 (24)

The negative energy functional here is similar to the negative-energy state of electrons, noted in
the prediction of positrons (Dirac, 1933). Consequently, equation (24) is the critical point of this
energy functional on Riemannian manifold formed by antimatter. So, the positive and negative
energy functional correspond to the matter and antimatter region of curvature.

If n is some arbitrary number, multiplying equation (18) by n on both sides, we get

n

[

d2γp

dt2
+

n
∑

s,u=1

Γp
su(γ(t))

dγs

dt

dγu

dt

]

= −n

[

d2γp

dt2
+

n
∑

v,w=1

Γp
vw(γ(t))

dγv

dt

dγw

dt

]

(25)

+ -

Figure 12: Distribution of matter and antimatter in independent objects: This means that when
objects become independent or in case of order 1, when they are just formed, there are equal number
of matter objects as that of antimatter objects.

Let x be the total number of intersecting regions, and n here be the total number of intersecting
objects. Generalizing equation (4) for all intersecting objects, we get

x
∑

i=1

Geodesic equation of ith intersecting region = −

n
∑

i=1

Geodesic equation of ith intersecting object

(26)

Multiplying equation (26) by -1 on both sides, we get

−
x

∑

i=1

Geodesic equation of ith intersecting region =
n

∑

i=1

Geodesic equation of ith intersecting object

(27)
Distribution of matter and antimatter in intersecting objects does not obey either equation (26) or
equation (27). It obeys both equation (26) and equation (27). Consequently, for a single
intersecting pair, there is an equal sharing of matter and antimatter objects. Graphically, it can be
represented as shown in fig. 13.

Matter

Antimatter

Antimatter

Matter

AntimatterMatter

Matter and Antimatter

andEquation (26) and Equation (27), i.e. 

is

Figure 13: Distribution of matter and antimatter in intersecting objects: In case of intersecting
region which obeys both equation (26) and equation (27), matter and antimatter are shared in
that region. Whereas, there are two shaded regions and so, matter and antimatter are shared by
separation in these two regions.
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From the discussion in section 5, we can infer that when objects become independent or in case of
order 1, when they are just formed, they lie within the intersecting region of newly formed objects.
The dynamics of matter and antimatter objects during the simultaneous formation of order 1 and
order 2 objects and during the formation of order 3 objects are shown in fig. 14 and fig. 15.

.
.

.

.
.
.

.
.

Order 1 objects

Order 2 objects

Figure 14: Simultaneous formation of order 1 and order 2 objects

+

-
+

-

Order 2 objects

Order 3 objects

Figure 15: Formation of order 3 objects: To obey equation (25), we can see from fig. 14 and fig.
15, in each step, equal number of independent matter and antimatter objects move away from each
other to form equal number of next order independent matter and antimatter objects.

For x > 1, if two objects of order n − x are observed to be collided, we can safely presume at least
two order n − 1 objects are collided. The collided objects of order n − x have to obey both
equation (26) and equation (27). So, matter and antimatter in the collided region of these objects
has to come from a matter and antimatter object of order n − 1 and it further says that we are in
an epoch, where order n objects are becoming independent.

5.5.1 Inferences

Let Ne− and Ne+ be the number of electrons and positrons. As discussed in Susskind (2013d), in
the very early universe at high temperatures, electrons and positrons annihilate to become
photons. Then the photons loose energy by scattering and heating the universe. So, they won’t be
able to collide with high energies to produce back electrons and positrons.

So, if Ne− = Ne+ in the very early universe, what is the reason for Ne− ≫ Ne+ in today’s
observable universe? There was never an anti-nuclei detected in cosmic rays even from far away
galaxies. This is suggestive of electrons dominance over positrons on a large scale.

From the pattern discussed in subsection 5.5 (see fig. 13), observable universe should lie within the
shaded matter region of order n objects to account for the observed dominance of electrons over
positrons.

It is an experimental fact that charge of electron is equal and opposite to the charge of proton. In
today’s observable universe, number of protons and electrons are equal. So, universe appears to be
electrically neutral. Similarly, charge of positron is equal and opposite to the charge of antiproton.
It is natural to expect, and considering the electrically neutral behavior of our observable universe,
it is highly likely that there will be equal number of positrons and antiprotons in the antimatter
region of universe.
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Electrons and protons are bonded together by hydrogen atom which is electrically neutral.
Similarly, positrons and antiprotons could be bonded together by antihydrogen atom. The fact
that antihydrogen atom was never detected in cosmic rays substantiates that we are reasonably far
away from antimatter objects.

Few questions related to matter-antimatter distribution are discussed below.

Why we haven’t observed an antihydrogen atom in our observable universe?

In the model discussed here, matter dominates our observable universe. So, few antimatter
particles present here are annihilated by these matter particles and become photons. Hydrogen
being the most abundant element in the universe, cancels out the few antihydrogen atoms in our
observable universe.

Why matter escaped total annihilation in the universe?

In this model, not just matter, both matter and antimatter escaped total annihilation in the
universe. In general, independent matter and antimatter objects move away from each other to
form higher order independent matter and antimatter objects (see fig. 15). In the early smaller
universe, for independent order 1 objects, there is a higher possibility of matter and antimatter
objects getting collided during the crossover between intersecting order 2 objects, resulting in
higher annihilations. As the universe expands, possibility of matter-antimatter collision reduces for
higher order objects, resulting in lesser annihilations and correspondingly affects the production of
photons.

What are the observational constraints on this hypothesis?

Total number of object classifications existing in our current epoch should be understood to get an
idea about the region where antimatter objects are located in the universe. While we may or may
not be able to look at antimatter objects directly depending on the scale of universe, there could
be many interesting indirect observational methods to prove their existence.

6 Related Numerical Relativity Results

Results from three recently published papers on numerical relativity are compared with the
evolution of universe discussed here and inferences are made.

6.1 Results in Giblin et al. (2016)

As mentioned in Giblin et al. (2016), one of the main predictions of FLRW universe is that any
path on a constant t surface, no matter the shape, has a proper length that scales with the scale
factor of universe.

√∆x
ab

2+∆y
ab

2+∆z
ab

2
pt a pt b
. .

Figure 16: Standard model of cosmology – lattice

In standard model of cosmology, expansion of universe is plotted with t along x-axis and a along
y-axis. So, scale factor a gives the expansion rate of universe. This says that, as mentioned in
equation (19), the distance between pt a and pt b,

√

∆x2
ab + ∆y2

ab + ∆z2
ab does not matter (as it

cancels out). 18



A numerical relativity result calculated by Giblin et al. (2016) is in contrast to the aforementioned
idea. They have defined a set of arbitrary paths on their constant t hypersurfaces. They have
calculated the proper length of those paths to track the ratio of those lengths as a function of time
to see deviations from FLRW behavior, and found that

√

∆x2
ab + ∆y2

ab + ∆z2
ab at time t1

√

∆x2
ab + ∆y2

ab + ∆z2
ab at time t2

6=

√

∆x2
ab + ∆y2

ab + ∆z2
ab at time t2

√

∆x2
ab + ∆y2

ab + ∆z2
ab at time t3

Where,

t1

t2
=

t2

t3

That is, expansion rate of universe depends on the distance between a and b, contradicting the
main prediction of FLRW universe.

Two important details can be observed from fig. 3 in Giblin et al. (2016).

1. It shows that the growth of the proper length of these paths depend on the length of path,
and not just some scale factor, a.

2. Further it suggests that this departure is more important at smaller distances than at larger
distances.

First result can be compared to the evolution pattern discussed in this paper. To highlight the
difference in distance between objects of different orders, fig. 7 is edited as below

pt a pt b

pt a1 pt b1

Figure 17: Distance between objects

In fig. 7, the claim that the expansion rate of larger cluster is higher than that of small cluster is
substantiated by the first result from fig. 3 in Giblin et al. (2016). It also says, if inhomogeneities
are present in the universe, objects recede from each other depending on the distance between
them. Here, it means difference in ∆Xab and ∆Xa1b1 affects the expansion rate of small and large
cluster proportionately.

The initial conditions in Giblin et al. (2016) describes an universe expanding at a constant rate
across a set of points, each representing slightly different volumes. This falls in line with the
evolution discussed in this paper, as objects of order 1 and order 2 start receding from their
respective objects at same time, ti (order 1 and order 2 are formed simultaneously at time, ti). So,
objects of order 1 and order 2 or in general any independent and intersecting objects pair start
receding from their respective objects at same rate.
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Essence of the discussion in this subsection is that the distance
√

∆x2
ab + ∆y2

ab + ∆z2
ab does

matter, which means that whether the Newton’s standard model of cosmology lattice is a galaxy
lattice or a galaxy cluster lattice, or a lattice of other cluster classification does matter in our
universe. So, it means geodesics, a measure of distance in Riemannian manifold is significant in
inferring the evolution of universe, as discussed here in this paper.

6.2 Results in Bentivegna & Bruni (2016)

When universe is evolved with FLRW background and with overdensity at some region using
numerical relativity, the density contrast between the overdense region and FLRW background
increases nonlinearly a little while after evolution and becomes unconstrainedly nonlinear after
some time.

This can be noted from fig. 4 in Bentivegna & Bruni (2016). Compared to linear perturbation
theory, for small values of the initial δi, the density contrast grows linearly with a, all the way
through a/ai = 100. For δi = 10−2, there is a clear departure from this behavior, with the
overdensity becoming nonlinear already at a/ai = 5, and growing unbounded at a/ai ≈ 96.

We can apply this to the evolution discussed here (see fig. 7). As mentioned in subsection 5.1, the
small and large cluster start expanding at same rate and the density contrast between them
increases as the universe evolves.

1. If the initial density contrast between small and large cluster is small, then according to fig.
4 in Bentivegna & Bruni (2016), the increase in density contrast is negligible.

2. If the initial density contrast between small and large cluster in large, then the increase in
density contrast is non-linear.

We can apply the second case above, and consider the overdense region as of order 1 objects and
FLRW background as of order 2 objects, the density contrast between them increases nonlinearly.
So, this happens for order 1 and order 2 pair, order 2 and order 3 pair, and so on. This supports
the claim that the evolution pattern in this paper itself explains acceleration of expanding universe.

6.3 Results in Green & Wald (2014)

As mentioned in Green & Wald (2014), in the ΛCDM model, the space time metric gab of our

universe is approximated by a FLRW metric g
(0)
ab . However, derivatives of gab are not close to the

derivatives of g
(0)
ab . Geodesic equation has a Christoffel symbol which is made of first derivatives of

gab and g
(0)
ab , and Riemannian curvature tensor is made of second derivatives of gab and g

(0)
ab . So,

there can be significant difference in the behavior of geodesics and huge difference in curvature for
these two metrics. Consequently, observable quantities in the actual universe may differ
significantly from the corresponding observables in the FLRW model.

Green & Wald (2014) used the above argument to prove that anomalies in observables are
mismatch between actual metric of universe and FLRW metric and not backreaction effect.

Inference is, this anomaly due to the significant differences in geodesics between gab and g
(0)
ab ,

whether we call it backreaction effect or not, explains the acceleration of expanding universe. In

the context of this paper, g
(0)
ab should be such that its Riemannian curvature tensor is close to this

universe (see fig. 9), so that the g
(0)
ab calculated values match exactly with the observed data. As

mentioned in subsection 5.2, this universe is not isotropic and so the position of earth in our
universe, from where we observe should also be considered.

6.4 Inferences

Conceptually, galaxy lattice in Newton’s standard model of cosmology should be compared to the
lattice below in this evolution pattern to understand its meaning here.
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Super cluster

Galaxy cluster

Galaxy

Figure 18: Newton’s standard model of cosmology galaxy lattice is superimposed on the evolution
pattern discussed in this paper. Clearly, distance between the galaxies is not constant. On the
contrary, the distance between the galaxies increases from within galaxy clusters to between cluster
of galaxies, and from between galaxy clusters to between super clusters and so on.

Small scale inhomogeneities

FLRW background

All dots are galaxies

Figure 19: FLRW background with small scale inhomogeneities

In these numerical relativity calculations, they have essentially grouped together galaxies on small
scale to find how galaxies are distributed on large scales of universe. But instead, galaxies should
be grouped to find how galaxy clusters are arranged on large scales, and galaxy clusters should be
grouped to find how super clusters are arranged on large scales, and so on.

Inhomogeneity in our universe is an observable fact (de Vaucouleurs, 1970; Broadhurst et al., 1990;
Sylos Labini et al., 2009) and this has led contemporary cosmologists to contemplate the presence
of inhomogeneity even in the early universe. As we acknowledge this, it is natural to expect that
inhomogeneity exist between different scales, or orders in this context — between galaxies and
galaxy clusters, and between galaxy clusters and super clusters, etc. So, as inhomogeneity exist
between different orders of objects, it should also exist between order n − 1 and order n objects.
As, there is inhomogeneity in the largest scale of universe, other two important cosmological
principles like isotropy and flatness of universe does not hold true.

Observable universe, on large scales is flat, matching the homogeneously arranged galaxies in
standard cosmology model galaxy lattice. As shown in fig. 18, studying the arrangement of
galaxies based on object classification could help to understand the inhomogeneous nature in the
arrangement.

7 Discussion

In the geometrical study of universe, most common investigations cover the flat, spherical, and
hyperboloid spaces, as described in Susskind (2013e). Section 4 describes a method to study the
geometry of space beyond observable flat universe by using the details available within the
observable limit. In big scales, matter is electrically neutral. So, gravitational force alone is
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considered to be the deciding force for the working of universe.

In Newton’s standard model of cosmology,
da(t)

dt

a(t) describes the expansion or contraction of galaxy

lattice as defined by equation (19). Specifically, the ratio
da(t)

dt

a(t) , to explain the expansion or

contraction of galaxy lattice is replaced in this paper by the evolution of gravitationally bound
structures. As described in Susskind (2013c), equation of motion of our real universe, that is,
mixed matter and radiation dominated universe is

( da(t)
dt

a(t)

)2

=
cm

a3
+

cr

a4
(28)
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Radiation dominated universe
Matter dominated universe

Figure 20: Comparison with standard model

To primarily account for the dotted line, that is, accelerating expansion of universe, dark energy
was introduced. But, it has to do with the conception of galaxy lattice, which is replaced with the
evolution of gravitationally bound structures in this paper, explain the accelerating expansion of
universe.

This paper, though gives a variational approach to describe accelerating expansion of universe
using evolution of gravitationally bound structures, does not elaborate the specifics of how
corrections to Newtonian cosmology can be achieved. So, the purpose of this paper is not to
correct, but to make contact with standard cosmological equations to an essential extent. The
abstract nature of this paper is to make the understanding more generic against the naturally
intuitive standard model.

8 Conclusion

In this paper, wherever collision or intersection of gravitationally bound structures is mentioned, it
is implied that they are of same classification. Equation (4) derived in section 3 is the basis for
analysis in all other sections. The primary nature of equation (4) in all other sections is a display
of its generality which can be used to study varied geometrical dynamics.

In the analytical method discussed in section 4 to calculate the curvature of universe beyond our
observable flat universe, for practical purposes, we can consider the gravitationally bound
structures colliding in the observable flat region to be galaxy collisions. This method can be
plausibly used to calculate the large-scale structure of universe, using interactions of
gravitationally bound structures observed in our own epoch.

If observable universe is confirmed to be flat, then section 4 can be used to find the curvature of an
object of order (n − l) + 1, which accommodates and whose expansion flattened our observable
universe. On the contrary, as shown in fig. 9, if observable universe is curved, then we have to look
at geometry, where the space starts becoming less curvy.
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