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Abstract

An explanation of the Riemann Hypothesis is given in 8 parts, with the
first being a statement of the problem. In the next 3 parts, the complex
valued Dirichlet Eta sum, a known equivalence to Riemann Zeta in the
critical strip, is split into 8 real valued sums and 2 constants. Part 5
explains a recursive relationship between the 8 sums. Section 6 shows
that the sums must individually equal 0. Part 7 details the ratios of the
system when all sums equal 0 at once. Finally, part 8 solves the system in
terms of the original Dirichlet Eta sum inputs. The result shows that the
only possible solution for the real portion of the complex input, commonly
labeled a, is that it must equal 1/2, and thus proves Riemann’s suspicion.

1 A Statement of the Problem and the General
Approach to the Solution

The explanation begins with a well known version of the hypothesis based on
the closely related Dirichlet Eta function. In that version, the Dirichlet Eta sum
is given in a functional equation with the Riemann Zeta function, to analytically
continue the domain of the Zeta function, and it is shown as equation 1.

η(s) ≡
∞∑

n=1

(−1)
n−1

ns
=
(
1− 21−s

)
ζ(s) (1)

Using the Dirichlet Eta sum, the hypothesis is commonly stated as ”all the
zeros of the Dirichlet eta function, falling in the critical strip 0 < < (s) < 1, lie
on the critical line < (s) = 1/2,” where < (s) is the real portion of the complex
input s. That real portion is often labeled lower case a.

So what is the nature of the zeroes of the Eta function? The Eta function
is an infinite sum of fractions, sometimes totaling to zero, where the denom-
inator of that fraction sequence is the changing index of the sum raised to a
complex valued power s. Small s is a standard complex number given as a +
bi. The numerator of the sum’s fraction also contains information, in this case,
a negative 1 raised to a power involving the index. This causes the fraction to
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alternate. The goal, and challenge of the problem, is to explain why the value
of a, in the domain between 0 to 1, must be 1/2, and only 1/2, in order for the
entire infinite sum of fractions to sum to zero. This is stated as equation 2, still
using the short hand complex number s.

η(s) ≡
∞∑

n=1

(−1)
n−1

ns
= 0 (2)

As stated in the paper’s abstract, an explanation of the Riemann Hypothesis
is now given in 8 parts, with the first being this section. In the next 3 parts, the
complex valued Dirichlet Eta sum, a known equivalence of the Riemann Zeta
within the critical strip, is split into 8 real valued sums and 2 constants. Part
5 explains a self referential functional relationship between the 8 sums. Section
6 shows that the sums must individually equal 0. Part 7 details the ratios of
the system when all sums equal 0 at once. Finally, part 8 solves the system in
terms of the input of the original Dirichlet Eta sum, and confirms Riemann’s
suspicion.

The first major step is separating the real and complex portions of the com-
plex Eta sum, so that there is no longer a complex variable inside the sum, but
rather 2 real valued sums instead.

2 Separating the Real and Complex Portions of
the Complex Sum

Start by expressing s as the complex number a + bi, and then separate the
exponents using exponent rules, equation 3.

ns = na+bi = nanbi (3)

Then expand the complex exponent nbi with Euler’s formula. The result is
shown in equation 4.

ns = na (cos (b lnn) + i sin (b lnn)) (4)

Put the expanded form back into equation 2, and express the numerator as
a complex number, equation 5. Please note, that I also changed the n-1 to n+1
out of personal preference of convention, as I had preferred it while working the
problem out on paper. This is allowed as it does not change any of the values
indexed by the sum. That is, (−1)n−1 = (−1)n+1 over the index.

(−1)n+1

ns
=

(−1)n+1 + 0i

na cos (b lnn) + na sin (b lnn) i
(5)

Then use the general formula for dividing complex numbers, equation 6, to
carry out the division shown in 7.

u+ vi

x+ yi
=

(ux+ vy) + (vx− uy) i

x2 + y2
(6)
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(−1)n+1 + 0i

na cos (b lnn) + na sin (b lnn) i
=

(−1)n+1na cos (b lnn)

(na cos (b lnn))
2

+ (na sin (b lnn))
2 +

0− (−1)n+1na sin (b lnn)

(na cos (b lnn))
2

+ (na sin (b lnn))
2 i (7)

The result can be simplified via factoring the na and the sin squared plus cos
squared in the denominator, and the complex input Dirichlet Eta sum can now
be expressed as the sum-difference of 2 sums with only real inputs, equation 8.

∞∑
n=1

(−1)n−1

ns
=

∞∑
n=1

(−1)n+1 cos (b lnn)

na
−
∞∑

n=1

(−1)n+1 sin (b lnn)

na
i = 0 (8)

Notice that the left sum is real valued and deals with cosines, and that the
right sum, though still sitting in front of the imaginary number i, is real valued
in magnitude and deals with sines. Since the Dirichlet Eta sum is a sum of
complex numbers, the result is also complex, which is expected. Therefore, in
order for the original complex Eta sum to equal zero, and thus have a root, both
the real and complex parts of its total must be zero. That is, 0 + 0i.

After factoring out and dividing away a constant -1 from equation 8, the
results are the 2 sums, equations 9 and 10, labeled A and B as follows.

A =

∞∑
n=1

(−1)n cos (b lnn)

na
(9)

A is referred to as the real portion of the complex Dirichlet Eta sum.

B =

∞∑
n=1

(−1)n sin (b lnn)

na
(10)

B is referred to as the complex portion of the complex Dirichlet Eta sum,
though its magnitude is real valued.

Now, the task is to determine when these 2 new sums are both zero. To do
that, they will need to be broken down further, and the first stage for such, is
separating them each into their even and odd parts.

3 Separating the Even and Odd Portions of Both
the Real and Complex Sums

Instead of using one sum for each of A and B as they are stated, and letting
their indices n run over the full set of integers, use 2 sums for each, separating
the even and odd inputs of the indices. Do this by separating n into 2n, for the
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evens, and into 2n-1, for the odds. This is shown for both A and B in equations
11 and 12.

A =

∞∑
n=1

(−1)n cos (b lnn)

na
=

∞∑
n=1

(−1)2n−1 cos (b ln (2n− 1))

(2n− 1)a
+

∞∑
n=1

(−1)2n cos (b ln 2n)

(2n)
a = 0 (11)

B =

∞∑
n=1

(−1)n sin (b lnn)

na
=

∞∑
n=1

(−1)2n−1 sin (b ln (2n− 1))

(2n− 1)a
+

∞∑
n=1

(−1)2n sin (b ln 2n)

(2n)
a = 0 (12)

The behavior of -1 raised to even or odd powers allows the right sides of
equations 11 and 12 to be simplified, obtaining 13 and 14 respectively.

A =

∞∑
n=1

cos (b ln 2n)

(2n)
a −

∞∑
n=1

cos (b ln (2n− 1))

(2n− 1)a
= 0 (13)

B =

∞∑
n=1

sin (b ln 2n)

(2n)
a −

∞∑
n=1

sin (b ln (2n− 1))

(2n− 1)a
= 0 (14)

The sums involving 2n are known as the even portions, and the sums with
2n-1, the odd portions. Notice that due to how the -1 simplified in this form,
that it is now the even sums minus the odd sums. Specifically labeling the 4
sums from equations 13 and 14 gives equations 15 through 18.

Aeven = Ae =

∞∑
n=1

cos (b ln 2n)

(2n)
a (15)

Ae is referred to as the real even portion.

Aodd = Ao =

∞∑
n=1

cos (b ln (2n− 1))

(2n− 1)a
(16)

Ao is referred to as the real odd portion.

Beven = Be =

∞∑
n=1

sin (b ln 2n)

(2n)
a (17)

Be is referred to as the complex even portion.

Bodd = Bo =

∞∑
n=1

sin (b ln (2n− 1))

(2n− 1)a
(18)
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Bo is referred to as the complex odd portion.

This isn’t yet broken down far enough, and in order to determine when these
new sum-differences in the real and complex sums are equal to zero, they need
to be deconstructed further. However, the odd sums do not lend themselves
to being broken down easily, if possibly at all. Luckily, the even sums do, and
later, functional relationships for the odd sums will be found so that they can
be handled. In the mean time, the next main phase of the explanation requires
separating the Sine and Cosine portions of the even parts.

4 Separating the Sin and Cos Portions of the
Real Even and Complex Even Sums

To separate the even sums, begin with the ln(2n) using log rules, equation 19,
and follow up with the trigonometry formulas for addition within Cosines and
Sines, equations 20 and 21. The initial results are then shown in 22 and 23.

ln 2n = ln 2 + lnn (19)

cos(x+ y) = cosx cos y − sinx sin y (20)

sin(x+ y) = sinx cos y + cosx sin y (21)

Ae =

∞∑
n=1

cos(b ln 2) cos(b lnn)− sin(b ln 2) sin(b lnn)

2ana
(22)

Be =

∞∑
n=1

sin(b ln 2) cos(b lnn) + cos(b ln 2) sin(b lnn)

2ana
(23)

Because in this case of 22 and 23 having separable addition and subtraction
inside them over a common denominator, they can each be split into yet another
2 sums. Because those resulting sums take the form of products of functions of
a and b independent of the index, multiplied by a portion of the sum dependent
on the index, those independent functions of a and b can be pulled out in front
as constants. This is shown as equations 24 and 25.

Ae =

(
cos(b ln 2)

2a
∗
∞∑

n=1

cos(b lnn)

na

)
−

(
sin(b ln 2)

2a
∗
∞∑

n=1

sin(b lnn)

na

)
(24)

Be =

(
sin(b ln 2)

2a
∗
∞∑

n=1

cos(b lnn)

na

)
+

(
cos(b ln 2)

2a
∗
∞∑

n=1

sin(b lnn)

na

)
(25)
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Next, respectively label Kc and Ks for the new cosine based and sine based
constants in equations 24 and 25, shown as 26 and 27.

Kc =
cos(b ln 2)

2a
(26)

Ks =
sin(b ln 2)

2a
(27)

Also, label the 2 different sums amongst 24 and 25, noting that the K con-
stants are the same for the real even, Ae, and complex even, Be, sums, only in
different positions. These are equations 28 and 29.

C =

∞∑
n=1

cos(b lnn)

na
(28)

This is known as the cosine sum.

S =

∞∑
n=1

sin(b lnn)

na
(29)

This is known as the sine sum.

Now, between the 10 terms A, B, Ae, Ao, Be, Bo, Kc, Ks, C, and S, there
is enough information to determine when the original infinite complex valued
Dirichlet Eta sum is equal to zero, and to answer why the real variable a must
be 1/2. In order to do that, the next step is to understand what maintains
an output of 0 throughout splitting the original Dirichlet Eta sum into 8 other
sums and 2 constants.

5 The Partial Recursive Functional Relationships
Between the Sums

For the remaining sections, the indices and upper bounds of the sums do not
change, and have mostly been omitted for brevity and visual clarity, as they do
not affect the relationships.

The self referential relationship amongst the sums is generally stated in words
as follows. The real and complex sums are broken into even and odd sums, then
the even sums are broken into sine and cosine sums, however, those sine and
cosine sums end up being composed in terms of the earlier even and odd sums,
and thus include a loop.

Stating the relation from equation 13, using 15 and 16, gives equation 30,
which is the even and odd split of the real portion.

A = Ae −Ao (30)
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Similarly, stating the relation from 14, using 17 and 18, gives 31, which is
the even and odd split of the complex portion.

B = Be −Bo (31)

With equation 8, it was noted that the sums A, eq.9, and B, eq.10, must
both be 0, and this is stated again with eq.30 and eq.31 as equation 32.

A = Ae −Ao = 0 AND B = Be −Bo = 0 (32)

This leads to the requirement in 33.

Ae = Ao AND Be = Bo (33)

Using the labels from equations 26-29, 24 and 25 are written as 34 and 35.

Ae = KcC −KsS (34)

Be = KsC +KcS (35)

Now, review and more closely examine equations 28 and 29. Do the cosine
and sine sums look familiar? They sure look like the real sum A, eq.9, and the
complex sum B, eq.10, except for the -1 raised to the power, that is, except
for the alternating part. In fact though, that is exactly what they are! The
alternating real and complex sums, eqs. 9 and 10, subtract out every other
term, while the sine and cosine sums, eqs. 28 and 29, add all the terms, of the
otherwise same sum. What are those other terms, which are being subtracted
in the case of the real and complex sums, but added in the case of the sine
and cosine sums? Equations 13 and 14 show that those terms are the odd
function sums! That is, the real and complex sums are the difference of their
respective even and odd sums, while the cosine and sine sums are the sum of
their respective even and odd sums. This gives equations 36 and 37.

C = Ae +Ao (36)

S = Be +Bo (37)

Adding 2 copies of the corresponding odd function to each side of equations
in 32, and then substituting with equations 36 and 37 respectively, gives the 2
equations shown in 38.

C = Ae +Ao = 2Ao AND S = Be +Bo = 2Bo (38)

However, eq.33 requires Ae = Ao and Be = Bo, which leads to 39.

C = 2Ae = 2Ao AND S = 2Be = 2Bo (39)

Equation 33 can be split into 2 cases. At a minimum, it shows that corre-
sponding even and odd sums have the same value. Case one is a shared value
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of 0. Case 2 is sharing any value other than 0. The next section shows that it
must be case one, and that the 4 even and odd sums, as well then as the other
4 sums, must all individually be 0.

6 Showing that the Even and Odd Sums Must
Individually be 0

Dividing the twos over in eq.39, and substituting into 34 and 35, gives 40 and
41.

1

2
C = KcC −KsS (40)

1

2
S = KsC +KcS (41)

Since the Ks are constants to the sums, this can now be treated as 2 equations
and 2 unknowns. Solving for S in eq.40 gives the following.

S =

(
Kc − 1

2

)
Ks

C (42)

Substituting 42 into 41, and simplifying, leaves 43.(
K2

c −Kc +K2
s +

1

4

)
C = 0 (43)

This shows that either C is 0, the portion in the parentheses is 0, or both
parts are 0. In any case where C is 0, it means from eq.39 and eq.42 that case
1 must be true. Using the quadratic equation on the parentheses gives eq.44.

Kc =
1±

√
−4K2

s

2
(44)

From eq.27 it is known that Ks is real valued, and therefore its square will
be positive. Similarly, from eq.26, Kc is real valued. Because of the -4 inside
the square root, the only possible solution is for Ks = 0 and Kc = 1/2.

Then, if Ks = 0, eq.27 gives that b ln 2 = nπ for an integer n. However, if
b ln 2 = nπ, then from eq.26, and the results from eq.44, you get the following.

1

2
= Kc =

±1

2a
(45)

This says that a is either complex valued or 1, which places it outside the
domain of a, and therefore that the solutions within the domain of a occur in
case one when C is 0.

A = B = Ae = Ao = Be = Bo = C = S = 0 (46)
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So now that it’s been determined that all 8 sums must be 0 in order to make
the Dirichlet Eta 0, a system of equations can be formed in terms of ratios of the
sums. That system allows the irreducible sums to be canceled out, and places
conditions on Kc and Ks such that they can be solved for the requirements on
a.

7 The Ratio Conditions Generated by the Sums

The method used at the start of this section on the real and complex sums is
also duplicated on the even and odd sums. If 2 values are both 0, then the sum
and difference of those values are also 0. From 46 and 32 you get the following.

A+B = Ae−Ao +Be−Bo = 0 AND A−B = Ae−Ao−Be +Bo = 0 (47)

Substitute in using 34 and 35 for the even sums, and in C and S using eq.39
for the corresponding odd sums, to get 48 and 49.

KcC −KsS −
1

2
C +KsC +KcS −

1

2
S = 0 (48)

KcC −KsS −
1

2
C −KsC −KcS +

1

2
S = 0 (49)

Rearranging each for the ratio C/S gives 50 and 51.

C

S
=
−Kc +Ks + 1

2

Kc +Ks − 1
2

(50)

C

S
=
Kc +Ks − 1

2

Kc −Ks − 1
2

(51)

Setting 50 and 51 equal, cross multiplying, and simplifying, gives 52.

4K2
c − 4Kc + 4K2

s + 1 = 0 (52)

Next, repeat the process for the odd sums. From eq.38 you get the following.

Ao +Bo = C−Ae +S−Be = 0 AND Ao−Bo = C−Ae−S+Be = 0 (53)

Trade in using 34 and 35 for the even sums.

C −KcC +KsS + S −KsC −KcS = 0 (54)

C −KcC +KsS − S +KsC +KcS = 0 (55)

Rearranging each for the ratio C/S gives 56 and 57.
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C

S
=

Kc −Ks − 1

−Kc −Ks + 1
(56)

C

S
=
−Kc −Ks + 1

−Kc +Ks + 1
(57)

Setting 56 and 57 equal, cross multiplying, and simplifying, gives eq.58.

K2
c − 2Kc +K2

s + 1 = 0 (58)

Even though there are now already 2 equations and 2 unknowns, the process
can be duplicated on the even sums. This is included, as it helps in understand-
ing the nature of the role of the sum constants Kc and Ks within the system.

Ae +Be = 0 AND Ae −Be = 0 (59)

Again using 34 and 35 on 59 gives 60 and 61.

KcC −KsS +KsC +KcS = 0 (60)

KcC −KsS −KsC −KcS = 0 (61)

Rearranging each for the ratio C/S gives 62 and 63.

C

S
=
−Kc +Ks

Kc +Ks
(62)

C

S
=
Kc +Ks

Kc −Ks
(63)

Setting 62 and 63 equal, cross multiplying, and simplifying, gives 64.

K2
c +K2

s = 0 (64)

As the last steps, it is now possible to gather the results from equations 52,
58, and 64, to do the substitutions back using Kc and Ks, and to show the
requirements on a and b from the original Dirichlet Eta sum.

8 Solving the Conditions Generated by the Ra-
tios of Sums

At this point, all 3 of those equations must make sense for the Dirichlet Eta
sum to equal 0. The odd ball is equation 64, the condition from the even sums,
so it is addressed first.

Substituting eq.26 and eq.27 back into eq.64, and simplifying, gives 65.

1

22a
= 0 (65)
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However, there is clearly no solution for a that would make eq.65 possible.
So what does it mean? Well, looking at eq.34 and eq.35, the even sums are the
only ones directly composed from sums that include coefficients Kc and Ks in
the fronts. When the sum and difference requirements are made on the even
sums in eq.59, it’s comparing the entire product of the coefficients with sine and
cosine sums as a whole, rather than just the sum and difference of sums without
coefficients, as in the other cases.

In very general terms, using temporary variables, the even sums’ sum and
difference has the form wx ± yz = 0 instead of just x ± z = 0. In this case, it
means that the even portions are relying on the cosine and sine sums, which are
dictated by the rest of the system, and the product, to balance them to zero,
rather than on the constants Kc and Ks.

This leaves the other 2 equations and 2 unknowns, now a and b. Substituting
eq.26 and eq.27 back into eq.52 gives equation 66, and back into eq.58 gives
equation 67.

4 + 22a − 4 ∗ 2a cos(b ln 2) = 0 (66)

1 + 22a − 2 ∗ 2a cos(b ln 2) = 0 (67)

Both 66 and 67 can be studied separately for the relation of a and b dictating
when the real and complex sums, or odd sums, would be 0 via the constants.
Solving the system simultaneously is done by separating for the cos(b ln 2) term
in one equation, plugging it into the other, and then solving for a. Equation 68,
is 67 in terms of the cosine.

cos(b ln 2) =
1 + 22a

2 ∗ 2a
(68)

And finally, there it is. Plugging 68 into 66, gives 2 = 22a, leading to 2a = 1,
and finally a=1/2. This shows that there is indeed only one possible choice for
a that allows the correct ratio of sums and coefficients, such that all 8 sums,
and thus the original Dirichlet Eta function, equals 0.

a =
1

2
(69)

Therefore, a must = 1/2, and Riemann’s suspicions were correct!

Q.E.D.
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