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Abstract:  Let 𝑝𝑠 denote the greatest prime with squared value less than a given number.  We call the 4 

interval from one prime’s square to the next, a prime’s season.  By improving on the well known proof of 5 

arbitrarily large prime gaps, here we show that for all seasons, the upper bound of prime gap length is 6 

2𝑝𝑠.   7 

Introduction: Prime gaps are still of interest (1) but the well known proof of arbitrarily long prime 8 

gaps is suboptimal.  The standard proof, (e.g. (1)) exploits the corraling of prime factor orbits by 9 

factorial numbers.  It levereges the coincident appearance of,all factors in a product and sees that it 10 

imitates the prime number positions at the origin.  The resulting gaps found from factorials will 11 

necessarily be longer than the n of the factorial, extending from n! + 2 to n! + p, where p  is the least 12 

prime greater than n.  We reduce the cardinality of identified gaps by targeting ex-primorial numbers, 13 

i.e. integer multiples of primorial numbers p#, where primorials are identical to factorials except 14 

excluding composite factors.  Additionally, by paying attention to the prime factors in orbit, and their 15 

well ordering, we recognize rogue orbits, occasions with the np# ±1 positions occupied can uniquely 16 

boost the gap length 17 

Calculations:  We call prime factor orbits not included as a factor with the others rogue, and indicate 18 

their occupancy of positions ±1 an ex-primorial with post-superscript notation r {0, 1, 2}.  For a set of 19 

primes, the computationally identified prime gaps optimize the composite density of the orbiting prime 20 

factors by either having them all together mimicking the origin, in an ex-primorial, or allowing the 21 

greatest two orbits go rogue.  If not the greatest two orbits, any rogue contribution is comparitavely 22 

suboptimal. 23 

𝐅𝐚𝐜𝐭𝐨𝐫𝐢𝐚𝐥𝐥𝐲 𝐛𝐚𝐬𝐞𝐝 𝐩𝐫𝐢𝐦𝐞 𝐠𝐚𝐩:  with unknown rogue orbits.     |𝒈𝒏
𝒓𝟎| ∶ 𝒏! ≥  𝒏 − 𝟏 24 



2 
 

.. (0).  (𝑝?, … , −𝑛, … , −2], −
1

𝑟
.

( )
+

1

𝑟
, [2, … , 𝑛, … , 𝑝?). 25 

𝐄𝐱𝐩𝐫𝐢𝐦𝐨𝐫𝐚𝐥𝐥𝐲 𝐛𝐚𝐬𝐞𝐝 𝐩𝐫𝐢𝐦𝐞 𝐠𝐚𝐩: with no rogue orbits.     |𝒈𝒏
𝒓𝟎| ∶  𝒌𝒑𝒔# =  𝒑𝒔+𝟏 − 𝟏 26 

❶.  (−𝒑𝒔+𝟏, . . , 𝒑𝒔, … , −𝟐], −1.
൫ ൯

+1. [𝟐, … , 𝒑𝒔, … , 𝒑𝒔+𝟏). 27 

𝐄𝐱𝐩𝐫𝐢𝐦𝐨𝐫𝐚𝐥𝐥𝐲 𝐛𝐚𝐬𝐞𝐝 𝐩𝐫𝐢𝐦𝐞 𝐠𝐚𝐩: with two rogue orbits.     𝒈𝒏
𝒓𝟐 ∶  𝒌𝒑𝒔−𝟐# =  𝟐𝒑𝒔−𝟏.   28 

❷.  (−𝒑𝒔−𝟏, . . , 𝒑𝒔−𝟐, . . . , −𝟐], 𝑟 .
൫ ൯

 𝑟′, [𝟐, … , 𝒑𝒔−𝟐, … , 𝒑𝒔−𝟏) 29 

 If the next prime’s square occurs during a prime gap in progress, this raises the longest possible 30 

gap to the next season’s limit, hence the least expression valid for prime gaps in any season is ❸ 2𝑝𝑠. 31 

Results: 32 

Table 1  Comparison and placement of the first five seasons’ theoretical upper bound without rogues (1), with contributing 33 

rogues (3), and their proximity to primorials and empirical maximal gaps. 34 

Season Range Max Gap 

❶ 

𝑝𝑠+1 − 1  

Max Gap  

❸2𝑝𝑠 

Primorial Maximal Gaps 

from n=2 (prime 

initiating) 

 

I.2 4-8 4 4 2 2  (3) 

II.3 9-24 6 6 6 4 (7) 

III.5 25-48 10 10 30 6 (23) 

IV.7 49-120 12 14 210 8 (89) 

V.11 121-168 16 22 2310 14 (113) 

VI.13 169-288 22 26 30,030 18 (523) 

 35 
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Conclusion: 36 

Bonse inequality, observes that for primes seven and above, the next greater prime’s square is 37 

less than the primorial, of that prime (2).  The prime gap from 113 to 127, centered on ex-primorial 120, 38 

is the most efficient prime gap in the number line.  Thereafter, the Bonse type inequality only gets 39 

stronger, forcing the maximal gaps to rely on suboptimal rogue orbits, not the greatest in the season.  40 

Empirically, all subsequent maximal prime gaps stay well below the theoretical supremum discovered 41 

here and cannot reverse the trend.  Hence, 2𝑝𝑠 is the prime gap supremum in all seasons.   42 

This proves the prime-intersquare (Legendre’s) conjecture.   43 

Proof..  We wish to show that ❸ (2𝑝𝑠), the prime gap supremum, is less than the difference between 44 

squares in all seasons. 45 

1.  ∀𝑛 ∈ ℕ, ∃ 𝑝 ∈ ℙ ∶ 𝑛2 < 𝑝 < (𝑛 + 1)².  Assertion 46 

2. ((𝑛 + 1)2 − 𝑛2 = 2𝑛 + 1.  By algebra. 47 

3. 𝑛 ≥ 𝑝𝑠.  By definition of a season. 48 

4. 2𝑛 + 1 > 2𝑛.  By definition of inequality.  ∎.  49 
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