
1 
 

On the Emergence of Spacetime Dimensions from the Kolmogorov Entropy 

Ervin Goldfain 

Abstract 

This short pedagogical report is based on a couple of premises. First, it was recently shown that the long 

run of non-equilibrium Renormalization Group flows is prone to end up on strange attractors. As a result, 

multifractals are likely to provide the proper framework for the characterization of effective field theories. 

Secondly, it is known that multifractal analysis uses the Kolmogorov entropy (K-entropy) to quantify the 

degree of disorder in chaotic systems and turbulent flows. Building on these premises, the report details the 

remarkable connection between K-entropy, multifractal sets and spacetime dimensions. It also supports 

the proposal that near and above the Fermi scale, spacetime is defined by continuous and arbitrarily small 

deviations from four-dimensions.  
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We have conjectured in [1, 2] that the flow from the ultraviolet (UV) to the infrared (IR) 

sector of any multidimensional nonlinear field theory approaches chaotic dynamics in a 

universal way. This result stems from several independent routes to aperiodic behavior 

and implies that the IR attractor of effective field theories is likely to replicate the 

properties of strange attractors (SA) and multifractal sets. In particular, the chaotic 

behavior of the Renormalization Group flow near or above the Fermi scale suggests that 

phenomena on or above this scale mimic the dynamics on the SA [3-5, 9]. A 

counterintuitive property of these attractors is that adjacent trajectories separate 

exponentially fast, yet they remain forever trapped to a bounded region of phase-space. 

This is to say that, while microscopic SA dynamics is locally unstable, it stays stable at the 

global attractor scale. Elaborating further, it can be shown that the global stability of SA 
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trajectories provides the foundation for classical statistical mechanics, which is based on 

invariant measures and the ergodic hypothesis [10]. 

Let a generic UV to IR trajectory be described by the n - dimensional phase-space flow 

( )x  . Here,   denotes the evolution parameter (“time”) corresponding to the 

Renormalization Group scale    
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The random behavior of the flow near the strange attractor can be characterized by 

dividing the phase-space into n - dimensional hypercubes of side r , which are sampled at 

discrete time intervals  . The generalized K-entropy of order 1q   is given by the 

equation [6]    
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where iX x=  is the discrete random variable, that is, ( )ix x i = =  , and 
1 2, ,..., Mi i ip  stands 

for the joint probability that the trajectory ( )x  =   is in 1i , ( 2 )x  =   is in 2i  and 

( )x M =  is in Mi . The K-entropy defines the asymptotic scenario where 0r →  and the 

phase-space is sampled with an infinite number of steps ( N → ) at vanishing time 

intervals ( 0) → . In the special case 1N  =  and when the joint probability is constant 

across all hypercubes ( ( ) .M r const= ,  
1 2, ,..., Mi i i ip p=  ), (2) turns into the Rényi entropy in 

the logarithm base b , which assumes the form 
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Furthermore, (3) reduces to the familiar thermodynamic entropy when 1q →  and 

Boltzmann constant is set to 1Bk =  [7]  
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Finally, the concept of generalized dimension of order q  is introduced in conjunction 

with (3) according to  
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A particularly straightforward expression of (3) is obtained for the null order 0q =  and 

the natural logarithm base. It is referred to as topological entropy and is given by 
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It is known that the box-counting dimension of a fractal object of normalized size r  is 

defined as   
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in which M  denotes the number of covering boxes and 1r −=  is the normalized size of 

the box. The dimension of ordinary Euclidean space corresponds to integer and positive-

definite values of the box-counting dimension, 0 , 0,1,2...D k k= = .   

Comparing (6) to (7) leads to the connection between the box-counting dimension and 

topological entropy via 

 0

0exp[ ( )]
D

S r −
=   (8) 

Two straightforward conclusions may be drawn from (8): 

• Maximal topological entropy ( 0 ( )S r → ) matches the limit 0 →  and 

corresponds to the four-dimensional continuum of both General Relativity and 

Quantum Field Theory.  

• The steady increase of topological entropy along the flow implies that, near or 

above the Fermi scale, spacetime is endowed with a continuous spectrum of 

dimensions ( 04 1D = −  ), asymptotically reaching 0 4D =  as 0 →  [8, 4].    
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