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Abstract 
In this work, we discuss the possibility to classify relativity in accordance with 
the classification of second order partial differential equations that have been 
applied into the formulation of physical laws in physics. In mathematics, 
since second order partial differential equations can be classified into hyper-
bolic, elliptic or parabolic type, therefore we show that it is also possible to 
classify relativity accordingly into hyperbolic, elliptic or parabolic type by es-
tablishing coordinate transformations that preserve the forms of these second 
order partial differential equations. The coordinate transformation that pre-
serves the form of the hyperbolic equation is the Lorentz transformation and 
the associated space is the hyperbolic, or pseudo-Euclidean, relativistic space-
time. Typical equations in physics that comply with hyperbolic relativity are 
Maxwell and Dirac equations. The coordinate transformation that preserves 
the form of the elliptic equation is the modified Lorentz transformation that 
we have formulated in our work on Euclidean relativity and the associated 
space is the elliptic, or Euclidean, relativistic spacetime. As we will show in 
this work, equations that comply with elliptic relativity are the equations that 
describe the subfields of Maxwell and Dirac field. And the coordinate transfor-
mation that preserves the form of the parabolic equation is the Euclidean trans-
formation consisting of the translation and rotation in the spatial space and 
the associated space is the parabolic relativistic spacetime, which is a Euclid-
ean space with a universal time. Typical equations in physics that comply with 
parabolic relativity are the diffusion equation, the Schrödinger equation and in 
particular the diffusion equations that are derived from the four-current defined 
in terms of the differentiable structures of the spacetime manifold, and the 
Ricci flow. 
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1. Introduction 

In physics, it appears that physical objects are endowed with many different 
physical properties each of which couples to a physical field that obeys a specific 
physical law that can be described by a particular system of partial differential 
equations. It is also conventionally assumed, due to our ability of observing and 
perceiving of the natural environment, that physical events occur in a three-dim- 
ensional space and progress forward in one-dimensional time, even though it is 
conceivable to speculate that physical events may also progress backwards in 
time and occur in a higher dimensional space. From the physical laws that are 
derived and formulated from observation, a mathematical structure of space and 
time can be constructed to conform to the corresponding observed physical oc-
currences. In Newton physics since the established dynamical laws that describe 
the dynamics of material particles seem to obey the Galilean transformation of 
space and time therefore it is reasonable to assume that time is absolute. On the 
other hand, in Einstein physics, space and time are relative since it is established 
that Maxwell field equations of the electromagnetic field comply with the Lor-
entz transformation. Maxwell field equations are wave equations that describe 
the dynamics of a wave motion rather than that of a material particle. Until the 
quantum mechanics was invented which embraces the wave-particle dual char-
acteristics of a material particle, it had been regarded that Newton and Maxwell 
dynamics are two different dynamics that describe physical systems that have 
completely different physical compositions, even though Newton himself specu-
lated that the electromagnetic field is also composed of particles. The difficulty 
associated with the wave-particle duality may be due to the assumption that an 
elementary particle such as an electron is simply a mass-point with no internal 
structure. In fact, we have shown that it is possible to describe mathematically 
an elementary particle as a three-dimensional differentiable manifold whose 
mathematical structure can be expressed in terms of a Schrödinger wavefunc-
tion. Therefore, from the superposition principle associated with the wave mo-
tion and the assumption of internal structures of an elementary particle, we may 
assume that a physical property endowed to an elementary particle does not 
have to satisfy the requirements that are imposed on other physical properties of 
the particle but rather follows its own physical law that obeys its own type of 
relativity. For example, in quantum mechanics the time-independent Schrödinger 
wave equation describes the structure of atoms and it has been shown that atoms 
are stable and their physical structures are invariant with respect to translation 
and rotation, and we have also shown that the spin dynamics can be formulated 
by the Schrödinger equation in terms of intrinsic coordinates rather than the 
Dirac relativistic equation, therefore the Schrödinger equation should not be 
considered as a non-relativistic limit of Dirac relativistic equation but rather a 
physical formulation that follows its own relativity and as we will show later that 
the relativity that the Schrödinger equation obeys is the parabolic relativity, in 
the same way as Maxwell and Dirac field to comply with the pseudo-Euclidean 
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relativity. 
In this work, we discuss a classification of relativity in which the spacetime 

manifold in which physical phenomena occur are classified into hyperbolic, el-
liptic or parabolic relativistic spacetime. Since the classification of relativity is 
closely related to the classification of second order partial differential equations 
therefore for reference we first outline the classification of the second order par-
tial differential equations in Section 2, and the classification of relativity will be 
given in Section 4. A hyperbolic relativistic spacetime is a pseudo-Euclidean 
space that was formulated by Minkowski to establish a mathematical foundation 
for Einstein’s theory of special relativity. That is a four-dimensional differenti-
able manifold which possesses a fundamental quadratic form of Lorentz signa-
ture that makes the wave equation invariant under Lorentz transformation [1]. 
On the other hand, we have shown in our work on the Euclidean relativity that 
quantum particles may possess physical properties that comply with the Euclid-
ean relativity rather than the pseudo-Euclidean relativity. Since this type of rela-
tivity is associated with the elliptic equation therefore we will refer to the space-
time continuum whose mathematical structure complies with the Euclidean 
relativity an elliptic relativistic spacetime. And we have also shown in our work 
on Euclidean relativity that the elliptic equations are invariant under a modified 
Lorentz transformation, which is a rotation in spacetime [2] [3]. The two types 
of relativistic spacetime that we have considered depend essentially on the cor-
responding second order partial differential equations that are used to describe 
possible physical properties associated with a quantum particle. In fact, in Sec-
tion 3 we show that the Euclidean relativity is the spacetime structure that is as-
sociated with the subfields of the Maxwell and Dirac field, in which the dynam-
ics of the subfields is described by elliptic equations. In addition to the elliptic 
and hyperbolic relativity, in Section 4 we also discuss the parabolic relativity. As 
it is well-known that second order partial differential equations can be classified 
into three distinctive types of equations therefore it seems appropriate also to 
classify relativistic spacetime into three different types, and the third type of 
relativistic spacetime that we introduce in this work is the parabolic relativistic 
spacetime. Therefore, by definition, a parabolic relativistic spacetime is a space 
whose mathematical structure is determined by the invariance of a parabolic 
equation such as the diffusion equation and the Schrödinger wave equation in 
quantum mechanics. Overall, we assume that a quantum particle may have dif-
ferent physical properties which are described by different physical laws each of 
which is formulated independently in either the hyperbolic or the elliptic or the 
parabolic relativistic spacetime. All of these relativistic spaces can be regarded as 
different fibres of the fibre bundle of the spacetime continuum. 

2. A Classification of Second Order Partial  
Differential Equations 

A general second order partial differential equation can be written in the form: 
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2

1 1 1
0

n n n

ij i
i j ii j i

a b c d
x x x
ψ ψ ψ

= = =

∂ ∂
+ + + =

∂ ∂ ∂∑∑ ∑                (1) 

If the matrix ( )ijA a=  is symmetric then it can be transformed into a diago-
nal matrix by applying a diagonalising matrix M 

1
T

0

0 n

M AM
λ

λ

 
 =  
 
 



  



                     (2) 

Then the second order partial differential equation given in Equation (1) can be 
classified into three different types of partial differential equations as follows [4]. 
• If all eigenvalues iλ  are non-zero and have the same sign then Equation (1) 

is elliptic. 
• If all eigenvalues iλ  are non-zero and have the same sign except for one of 

the eigenvalues then Equation (1) is hyperbolic. 
• If exactly one of the eigenvalues is zero and all the others have the same sign 

then Equation (1) is parabolic. In this case, the matrix A is singular. 
In this work, we consider the second order partial differential equations, and 

classify relativity accordingly, in the spacetime continuum in which space has 
three dimensions and time has one dimension therefore we only need to present 
the case of the partial differential equations in the four-dimensional space whose 
coordinates are specified by three spatial coordinates ( ), ,x y z  and one tempo-
ral coordinate t. With this specification, the three different types of second order 
partial differential equations are given as follows: 
• Elliptic equation can be written in the form 

2 2 2 2

2 2 2 2 a b c d e f
t x y zt x y z

ψ ψ ψ ψ ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + + + + +

∂ ∂ ∂ ∂∂ ∂ ∂ ∂
     (3) 

We will show in the next section that elliptic equations in the four-dimen- 
sional spacetime manifold play an important role in the determination of the 
dynamics of the subfields of Maxwell and Dirac field [5]. Therefore, the subfields 
of Maxwell and Dirac field comply with the Euclidean relativity which we will 
classify as elliptic relativity in this work. 
• Hyperbolic equation can be written in the form 

2 2 2 2

2 2 2 2 a b c d e f
t x y zt x y z

ψ ψ ψ ψ ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = + + + + +

∂ ∂ ∂ ∂∂ ∂ ∂ ∂
     (4) 

Hyperbolic equations play an important role in physics with Maxwell theory 
of the electromagnetic field and Dirac theory of quantum particles [6] [7]. In 
particular, the invariance of the hyperbolic equations under Lorentz transforma-
tion led Einstein to develop his theories of special and general relativity. We will 
classify Einstein relativity as hyperbolic relativity in this work. 
• Parabolic equation can be written in the form 

2 2 2

2 2 2 a b c d e f
t x y zx y z

ψ ψ ψ ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + + + +

∂ ∂ ∂ ∂∂ ∂ ∂
       (5) 
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We will classify as parabolic relativity for the mathematical structure of the 
spacetime manifold that makes the parabolic equations invariant. The important 
parabolic equations in physics are the diffusion equation, the Schrödinger equa-
tion, and diffusion equations that are derived from the four-current associated 
with the differentiable structure of the spacetime manifold and the Ricci flow. 
The parabolic relativity complies with the Euclidean transformation which con-
sists of translation and rotation in the spatial space. 

3. Subfield Structure of Maxwell and Dirac Field 

In this section, we will discuss possible physical fields that comply with the ellip-
tic equation given in Equation (3). We have shown in our previous works that 
both Maxwell field equations of the electromagnetic field and Dirac equation of 
massive quantum particles can be formulated from a general system of linear 
first order partial differential equations, and, as a consequence, the field equa-
tions of the two physical fields have many common features that specify charac-
teristics that are not typical in classical physics [8] [9] [10] [11]. In the following, 
we further show the similarity between the Maxwell and Dirac field by examin-
ing the subfields that are coupled to form either of these two physical fields. We 
show that the subfields have the mathematical structures and physical properties 
that are essentially different from the coupled field of Maxwell, and that of Dirac. 
In particular, we show that the subfields of both Maxwell and Dirac field satisfy 
elliptic equations rather than hyperbolic equations therefore while Maxwell and 
Dirac field are described by wave equations therefore they comply with the laws 
of the pseudo-Euclidean relativity, the Maxwell and Dirac subfields are described 
by elliptic equations therefore they comply with those of the Euclidean relativity 
instead [12]. The fact that the subfields of Maxwell and Dirac fields are Euclid-
ean relativistic has profound implications, such as they can be used to explain 
the stability of elementary particles because if elementary particles are repre-
sented by subfields which are described by elliptic equations then since elliptic 
equations are used to describe equilibrium states of physical systems therefore 
elementary particles associated with those subfields are also stable. Furthermore, 
if quantum particles possess physical properties that are represented by subfields 
which are described by elliptic equations, hence acting in accordance with the 
Euclidean relativity, then they can be used to explain physical phenomena that 
require physical transmissions with speeds greater than the speed of light in 
vacuum, such as the Einstein-Podosky-Rosen paradox in quantum entanglement 
[13] [14] [15]. 

The system of linear first order partial differential equations that we need to 
use in this work is given as follows [16] [17] 

1 2
1 1 1

, 1, 2, ,
n n n

r r ri
ij l l

i j lj

a k b k c r n
x
ψ

ψ
= = =

∂
= + =

∂∑∑ ∑              (6) 

Equation (6) can be rewritten in a matrix form as: 
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1 2
1

n

i
i i

A k k J
x

ψ σψ
=

 ∂
= + ∂ 

∑                    (7) 

where ( )T
1 2, , , nψ ψ ψ ψ=  , ( )T

1 2, , ,i i i n ix x x xψ ψ ψ ψ∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂ , iA , 
σ  and J are matrices representing the quantities k

ija , r
lb  and rc , and 1k  and 

2k  are undetermined constants. Now, if we apply the operator 1
n

i ii A x
=

∂ ∂∑  on 
the left on both sides of Equation (7) then we obtain 

( )1 2
1 1 1

n n n

i j i
i j ii j i

A A A k k J
x x x

ψ σψ
= = =

    ∂ ∂ ∂
= +     ∂ ∂ ∂    

∑ ∑ ∑          (8) 

If we assume further that the coefficients k
ija  and r

lb  are constants and  

i iA Aσ σ= , then Equation (8) can be rewritten in the following form 

( )
2 2

2
2

1 1

2 2
1 1 2 2

1

n n n

i i j j i
i i j i i ji

n

i
i i

A A A A A
x xx

Jk k k J k A
x

ψ

σ ψ σ

= = >

=

 ∂ ∂
+ +  ∂ ∂∂ 

∂
= + +

∂

∑ ∑∑

∑
             (9) 

In order for the above systems of partial differential equations to be applied to 
physical phenomena, the matrices iA  must be determined. For the case of 
Maxwell and Dirac field, the matrices iA  must take a form so that Equation (9) 
reduces to a wave equation 

2
2 2 2

1 1 2 22
1 1

n n

i i
i i ii

JA k k k J k A
xx

ψ σ ψ σ
= =

 ∂ ∂
= + + 

∂∂ 
∑ ∑            (10) 

From Equation (9), for Dirac field, we simply require the matrices iA  to sat-
isfy the conditions 0i j j iA A A A+ =  and 2 1iA = ± . However, for the case of 
Maxwell field, the conditions required for the matrices iA  can be determined 
from the classical form of Maxwell field equations [3] [18]. Furthermore, as 
shown in the next subsection, in order to reduce Equation (9) to Equation (10) 
for the case of Maxwell field, we will also need an extra condition on the com-
ponents of the wavefuction ψ  in the form of a divergence or Gauss’s law 

1

n
i

i ix
ψ

ρ
=

∂
=

∂∑                          (11) 

In this work, we will discuss only Maxwell and Dirac field therefore we will set 
1σ = . 

3.1. Maxwell Field as a Coupling of Two Elliptic Fields 

In this subsection, we show that Maxwell field of electromagnetism is a coupled 
field that is formed from the coupling of two subfields that satisfy an elliptic 
equation. In order to distinguish a field that satisfies an elliptic equation from a 
field that satisfies a hyperbolic equation, or wave equation, we refer to the for-
mer as an elliptic field and the latter as a hyperbolic field. From the general 
equation given in Equation (7), the two subfields that are coupled to form the 
Maxwell field can be rewritten in the following simple form: 
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0 1 2 3 1 2
1 2 3

A A A A k k J
t x x x

ψ ψ
 ∂ ∂ ∂ ∂

+ + + = + ∂ ∂ ∂ ∂ 
          (12) 

where ( )T
1 2 3, ,ψ ψ ψ ψ=  and ( )T

1 2 3, ,J j j j= , and the matrices iA  are given 
as follows 

0 1

2 3

1 0 0 0 0 0
0 1 0 , 0 0 1 ,
0 0 1 0 1 0

0 0 1 0 1 0
0 0 0 , 1 0 0
1 0 0 0 0 0

A A

A A

   
   = = −   
   
   

−   
   = =   
   −   



              (13) 

In Equation (13), the negative sign, or negative time, in front of the matrix 

0A  together with other matrices form one subfield and the positive sign, or 
positive time, in front of the matrix 0A  together with other matrices form an-
other subfield. Then we obtain the following results 

2 2
0 1

2 2
2 3

1 0 0 0 0 0
0 1 0 , 0 1 0 ,
0 0 1 0 0 1

1 0 0 1 0 0
0 0 0 , 0 1 0
0 0 1 0 0 0

A A

A A

   
   = = −   
   −   
− −   
   = = −   
   −   

              (14) 

0 0 2 for 1,2,3i i iA A A A A i+ = =                 (15) 

1 2 2 1 1 3 3 1

2 3 3 2

0 1 0 0 0 1
1 0 0 , 0 0 0 ,
0 0 0 1 0 0

0 0 0
0 0 1
0 1 0

A A A A A A A A

A A A A

   
   + = + =   
   
   
 
 + =  
 
 

        (16) 

Using the matrices iA  given in Equation (13) with the negative sign for the 
matrix 0A  we obtain the following system of differential equations from Equa-
tion (12) 

31 2
1 1 2 1

2 3

k k j
t x x

ψψ ψ
ψ

∂∂ ∂
− + − = +

∂ ∂ ∂
                (17) 

32 1
1 2 2 2

1 3

k k j
t x x

ψψ ψ
ψ

∂∂ ∂
− − + = +

∂ ∂ ∂
                (18) 

3 2 1
1 3 2 3

1 2

k k j
t x x
ψ ψ ψ

ψ
∂ ∂ ∂

− + − = +
∂ ∂ ∂

                (19) 

Similarly, using the matrices iA  given in Equation (13) with the positive sign 
for the matrix 0A  we obtain the following system of differential equations from 
Equation (12) 
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6 54
1 4 2 4

2 3

k k j
t x x

ψ ψψ
ψ

∂ ∂∂
+ − = +

∂ ∂ ∂
                 (20) 

5 6 4
1 5 2 5

1 3

k k j
t x x
ψ ψ ψ

ψ
∂ ∂ ∂

− + = +
∂ ∂ ∂

                 (21) 

6 5 4
1 6 2 6

1 2

k k j
t x x
ψ ψ ψ

ψ
∂ ∂ ∂

+ − = +
∂ ∂ ∂

                 (22) 

In Equations (20)-(22), we have used different subscripts for the field compo-
nents iψ  because it is a different field from the field given in Equations 
(17)-(19). However, for simplicity, we have used the same 1k  and 2k  for the 
system of equations given in Equations (20)-(22) even though they may have 
different dimensional values from those given in Equations (17)-(19). 

On the other hand, using the matrices iA  given in Equation (13) with negative 
sign for the matrix 0A  we obtain the following system of differential equations 
from Equation (9). 

2 2 2
3 31 1 1 2 2

2 2 2
2 3 1 2 32 3

2 31 2
1 1 1 2 1 2

2 3

2
t x x x x xt x x

jj jk k k j k
t x x

ψ ψψ ψ ψ ψ ψ

ψ

   ∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂
− − − − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂∂ ∂
= + + − + − ∂ ∂ ∂ 

     (23) 

2 2 2
3 32 2 2 1 1

2 2 2
1 3 2 1 31 3

2 32 1
1 2 1 2 2 2

3 1

2
t x x x x xt x x

jj jk k k j k
t x x

ψ ψψ ψ ψ ψ ψ

ψ

   ∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂
− − + − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂∂ ∂
= + + − + − ∂ ∂ ∂ 

     (24) 

2 2 2
3 3 3 2 1 1 2

2 2 2
1 2 3 1 21 2

2 3 2 1
1 3 1 2 3 2

1 2

2
t x x x x xt x x

j j jk k k j k
t x x

ψ ψ ψ ψ ψ ψ ψ

ψ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂
− − − − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂ ∂ ∂
= + + − + − ∂ ∂ ∂ 

     (25) 

Similarly, using the matrices iA  given in Equation (13) with positive sign for 
the matrix 0A  we obtain the following system of differential equations also 
from Equation (9). 

2 2 2
6 5 5 64 4 4

2 2 2
2 3 1 2 32 3

2 6 54
1 4 1 2 4 2

2 3

2
t x x x x xt x x

j jjk k k j k
t x x

ψ ψ ψ ψψ ψ ψ

ψ

   ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂
− − + − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂ ∂∂
= + + + − ∂ ∂ ∂ 

     (26) 

2 2 2
5 5 5 6 64 4

2 2 2
1 3 2 1 31 3

2 5 6 4
1 5 1 2 5 2

2 3

2
t x x x x xt x x

j j jk k k j k
t x x

ψ ψ ψ ψ ψψ ψ

ψ

   ∂ ∂ ∂ ∂ ∂∂ ∂∂ ∂
− − − − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂ ∂ ∂
= + + + − ∂ ∂ ∂ 

     (27) 

2 2 2
6 6 6 5 54 4

2 2 2
1 2 3 1 21 2

2 6 5 4
1 6 1 2 6 2

1 2

2
t x x x x xt x x

j j jk k k j k
t x x

ψ ψ ψ ψ ψψ ψ

ψ

   ∂ ∂ ∂ ∂ ∂∂ ∂∂ ∂
− − + − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂ ∂ ∂
= + + + − ∂ ∂ ∂ 

     (28) 
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The equations given in Equations (23)-(28) contain cross derivatives that in-
volve both space and time. Even though the cross derivatives that involve the 
time coordinate can be removed by using the system of equations given in Equa-
tions (17)-(19) and Equations (20)-(22), the cross derivatives that involve the 
spatial coordinates can only be removed by imposing on the wave function ψ  
an additional condition that is commonly known as the divergence of a vector 
field as given in Equation (11). The divergence of a field in fact endows the field 
with a physical character and gives a direct relationship between a mathematical 
object and a physical entity. Using Equation (11), Gauss’s laws for the field 

( )T
1 2 3, ,ψ ψ ψ ψ=  and the field ( )T

4 5 6, ,ψ ψ ψ ψ=  are written as follows: 

31 2
1

1 2 3x x x
ψψ ψ

ρ
∂∂ ∂

+ + =
∂ ∂ ∂

                    (29) 

5 64
2

1 2 3x x x
ψ ψψ

ρ
∂ ∂∂

+ + =
∂ ∂ ∂

                    (30) 

where 1ρ  and 2ρ  are physical quantities that can be identified with the elec-
tric and magnetic charge density. Using Equation (29) and Equations (17)-(19) 
then from Equations (23)-(25) we obtain the following system of equations: 

2 2 2 2
1 1 1 1 1

12 2 2 2
1 2 3

2 31 2 1
1 1 1 2 1 2

2 3 1

2k
tt x x x

jj jk k k j k
t x x x

ψ ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂ ∂
+ + + +

∂∂ ∂ ∂ ∂

 ∂∂ ∂ ∂
= − − − + − + ∂ ∂ ∂ ∂ 

            (31) 

2 2 2 2
2 2 2 2 2

12 2 2 2
1 2 3

2 32 1 1
1 2 1 2 2 2

2 3 2

2k
tt x x x

jj jk k k j k
t x x x

ψ ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂ ∂
+ + + +

∂∂ ∂ ∂ ∂

 ∂∂ ∂ ∂
= − − − + − + ∂ ∂ ∂ ∂ 

           (32) 

2 2 2 2
3 3 3 3 3

12 2 2 2
1 2 1

2 3 2 1 1
1 3 1 2 3 2

1 2 3

2k
tt x x x

j j jk k k j k
t x x x

ψ ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂ ∂
+ + + +

∂∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
= − − − + − + ∂ ∂ ∂ ∂ 

           (33) 

In order to obtain a system of differential equations that can be applied to the 
electromagnetic field we set 1 0k = . Then Equations (31)-(33) reduce to the fol-
lowing system of equations: 

2 2 2 2
31 1 1 1 1 2 1

22 2 2 2
2 3 11 2 3

jj jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (34) 

2 2 2 2
32 2 2 2 2 1 1

22 2 2 2
2 3 21 2 3

jj jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

     (35) 

2 2 2 2
3 3 3 3 3 2 1 1

22 2 2 2
1 2 31 2 1

j j jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (36) 

The equations given in Equations (34)-(36) are elliptic equations rather than 
hyperbolic or wave equations therefore these subfields are more suitable to rep-
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resent stable quantum particles with invariant physical properties. Moreover, 
since elliptic equations comply with the Euclidean relativity instead of the pseudo- 
Euclidean relativity therefore there may exist some physical properties associated 
with quantum particles that can travel with speeds greater than the speed of light 
in vacuum, which is a speed limit of transmission for physical events that com-
ply with the pseudo-Euclidean relativity. 

Similarly, by using the matrices iA  given in Equation (13), Equations 
(26)-(28), Gauss’s laws given in Equation (30), and 1 0k = , a system of equa-
tions with the positive sign for the matrix 0A  can be obtained and given as fol-
lows: 

2 2 2 2
6 54 4 4 4 4 2

22 2 2 2
2 3 11 2 3

j jjk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

     (37) 

2 2 2 2
5 5 5 5 5 6 4 2

22 2 2 2
2 3 21 2 3

j j jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

     (38) 

2 2 2 2
6 6 6 6 6 5 4 2

22 2 2 2
1 2 31 2 1

j j jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

     (39) 

The equations of the subfield with the positive sign for the matrix 0A  also 
satisfy elliptic equations rather than wave equations therefore they are also suit-
able to represent quantum particles with stable properties that accompany the 
stable properties associated with the field equations given in Equations (37)-(39). 

Having shown the basic equations for the two subfields by using the matrices 

iA  with negative and positive time, each of which can be used to represent sta-
ble properties of quantum particles due to the fact that they satisfy elliptic equa-
tions rather than wave equations, we now show that a coupling of these two sub-
fields can give rise to a coupled field that satisfies wave equations such as Max-
well field equations of the electromagnetic field. A coupled field from the two 
subfields with the matrices given in Equation (13) can be formulated by using 
the following coupled matrices. 

0 1

2 3

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0

, ,
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0

,
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

A A

A A

−   
   − −   
   −

= =   
   
   −
      
   

− 
 
 
 −

= = 
 
 
  − 

1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

 
 
 
 
 

− 
 
  
 

    (40) 

Then we obtain the following results: 
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2 2
0 1

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0

,
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

A A

   
   −   
   −

= =   
   
   −
      −     

2 2
2 3

1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

,
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0

A A

− −   
   −   
   −

= =   
− −   

   −
      −     

1 2 2 1 1 3 3 1

0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0

,
0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

A A A A A A A A

   
   
   
   

+ = + =   
   
   
      
     

2 3 3 2 0 0

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

, 0 for 1, 2,3
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

i iA A A A A A A A i

 
 
 
 

+ = + = = 
 
 
  
 

     (41) 

It is noticed from the results obtained in Equation (41) that by coupling the 
two subfields with negative and positive time the cross derivatives that involve 
time are automatically removed. This shows that the electromagnetic field may 
be considered as a resonant field which is formed from the superposition of two 
physical fields that flow in opposite temporal directions. Similar to the case of 
subfields, we also rewrite Equation (7) for the coupled field in the following sim-
ple form: 

0 1 2 3 1 2
1 2 3

A A A A k k J
t x x x

ψ ψ
 ∂ ∂ ∂ ∂

+ + + = + ∂ ∂ ∂ ∂ 
          (42) 

where ( )T
1 2 3 4 5 6, , , , ,ψ ψ ψ ψ ψ ψ ψ=  and ( )T

1 2 3 4 5 6, , , , ,J j j j j j j= . Using the 
matrices given in Equation (40) we obtain the following system of equations for 
the coupled field from Equation (42): 

6 51
1 1 2 1

2 3

k k j
t x x

ψ ψψ
ψ

∂ ∂∂
− + − = +

∂ ∂ ∂
                (43) 

62 4
1 2 2 2

3 1

k k j
t x x

ψψ ψ
ψ

∂∂ ∂
− + − = +

∂ ∂ ∂
               (44) 

https://doi.org/10.4236/jmp.2020.114036


V. B. Ho 
 

 
DOI: 10.4236/jmp.2020.114036 546 Journal of Modern Physics 
 

3 5 4
1 3 2 3

1 2

k k j
t x x
ψ ψ ψ

ψ
∂ ∂ ∂

− + − = +
∂ ∂ ∂

                (45) 

34 2
1 4 2 4

2 3

k k j
t x x

ψψ ψ
ψ

∂∂ ∂
+ − = +

∂ ∂ ∂
                 (46) 

5 31
1 5 2 5

3 1

k k j
t x x
ψ ψψ

ψ
∂ ∂∂

+ − = +
∂ ∂ ∂

                 (47) 

6 2 1
1 6 2 6

1 2

k k j
t x x
ψ ψ ψ

ψ
∂ ∂ ∂

+ − = +
∂ ∂ ∂

                 (48) 

Using the results obtained for the matrices iA  given in Equation (41) we ob-
tain the following system of equations for the coupled field from Equation (9): 

2 2 2
31 1 1 2

2 2 2
1 2 32 3

2 6 51
1 1 1 2 1 2

2 3

x x xt x x

j jjk k k j k
t x x

ψψ ψ ψ ψ

ψ

 ∂∂ ∂ ∂ ∂∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂ ∂∂
= + + − + − ∂ ∂ ∂ 

             (49) 

2 2 2
32 2 2 1

2 2 2
2 1 31 3

2 62 4
1 2 1 2 2 2

3 1

x x xt x x

jj jk k k j k
t x x

ψψ ψ ψ ψ

ψ

 ∂∂ ∂ ∂ ∂∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂∂ ∂
= + + − + − ∂ ∂ ∂ 

             (50) 

2 2 2
3 3 3 1 2

2 2 2
3 1 21 2

2 3 5 4
1 3 1 2 3 2

1 2

x x xt x x

j j jk k k j k
t x x

ψ ψ ψ ψ ψ

ψ

 ∂ ∂ ∂ ∂ ∂∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂ ∂ ∂
= + + − + − ∂ ∂ ∂ 

             (51) 

2 2 2
5 64 4 4

2 2 2
1 2 32 3

2 34 2
1 4 1 2 4 2

2 3

x x xt x x

jj jk k k j k
t x x

ψ ψψ ψ ψ

ψ

 ∂ ∂∂ ∂ ∂ ∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂∂ ∂
= + + + − ∂ ∂ ∂ 

             (52) 

2 2 2
5 5 5 64

2 2 2
2 1 31 3

2 5 31
1 5 1 2 5 2

3 1

x x xt x x

j jjk k k j k
t x x

ψ ψ ψ ψψ

ψ

 ∂ ∂ ∂ ∂∂∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂ ∂∂
= + + + − ∂ ∂ ∂ 

             (53) 

2 2 2
6 6 6 54

2 2 2
3 1 21 2

2 6 2 1
1 6 1 2 6 2

1 2

x x xt x x

j j jk k k j k
t x x

ψ ψ ψ ψψ

ψ

 ∂ ∂ ∂ ∂∂∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂ ∂ ∂
= + + + − ∂ ∂ ∂ 

             (54) 

Using the divergence conditions or Gauss’s laws given in Equations ((29), 
(30)) the system of equations given in Equations (49)-(54) reduces to the following 
system of equations: 
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2 2 2 2
1 1 1 1

2 2 2 2
1 2 3

2 6 51 1
1 1 1 2 1 2

2 3 1

t x x x

j jjk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂ ∂∂ ∂
= + + − + − − ∂ ∂ ∂ ∂ 

           (55) 

2 2 2 2
2 2 2 2

2 2 2 2
1 2 3

2 62 4 1
1 2 1 2 2 2

3 1 2

t x x x

jj jk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂∂ ∂ ∂
= + + − + − − ∂ ∂ ∂ ∂ 

           (56) 

2 2 2 2
3 3 3 3

2 2 2 2
1 2 3

2 3 5 4 1
1 3 1 2 3 2

1 2 3

t x x x

j j jk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
= + + − + − − ∂ ∂ ∂ ∂ 

           (57) 

2 2 2 2
4 4 4 4

2 2 2 2
1 2 3

2 34 2 2
1 4 1 2 4 2

2 3 1

t x x x

jj jk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂∂ ∂ ∂
= + + + − − ∂ ∂ ∂ ∂ 

           (58) 

2 2 2 2
5 5 5 5

2 2 2 2
1 2 3

2 5 31 2
1 5 1 2 5 2

3 1 2

t x x x

j jjk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂ ∂∂ ∂
= + + + − − ∂ ∂ ∂ ∂ 

           (59) 

2 2 2 2
6 6 6 6

2 2 2 2
1 2 3

2 6 2 1 2
1 6 1 2 6 2

1 2 3

t x x x

j j jk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
= + + + − − ∂ ∂ ∂ ∂ 

           (60) 

Now, to obtain Maxwell field equations of the electromagnetic field we set 

1 0k =  and the system of equations given in Equations (43)-(48) reduces to: 

6 51
2 1

2 3

k j
t x x

ψ ψψ ∂ ∂∂
− + − =

∂ ∂ ∂
                   (61) 

62 4
2 2

3 1

k j
t x x

ψψ ψ ∂∂ ∂
− + − =

∂ ∂ ∂
                   (62) 

3 5 4
2 3

1 2

k j
t x x
ψ ψ ψ∂ ∂ ∂

− + − =
∂ ∂ ∂

                   (63) 

34 2
2 4

2 3

k j
t x x

ψψ ψ∂∂ ∂
+ − =

∂ ∂ ∂
                   (64) 

5 31
2 5

3 1

k j
t x x
ψ ψψ∂ ∂∂

+ − =
∂ ∂ ∂

                   (65) 

6 2 1
2 6

1 2

k j
t x x
ψ ψ ψ∂ ∂ ∂

+ − =
∂ ∂ ∂

                   (66) 
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By identifying ( )1 2 3, ,ψ ψ ψ=E , ( )4 5 6, ,ψ ψ ψ=B , ( )1 1 2 3, ,j j j=j  and  
( )2 4 5 6, ,j j j=j  the system of equations given in Equations (61)-(66), together 

with Gauss’s laws given in Equations ((29), (30)), can be rewritten in the familiar 
form in classical electrodynamics: 

1ρ⋅ =E∇                          (67) 

2ρ⋅ =B∇                          (68) 

2 2k
t

∂
× + =

∂
BE j∇                       (69) 

2 1k
t

∂
× − =

∂
EB j∇                       (70) 

With 1 0k =  we also obtain the following system of equations from Equa-
tions (55)-(60): 

2 2 2 2
6 51 1 1 1 1 1

22 2 2 2
2 3 11 2 3

j jjk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
− − − = − + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

       (71) 

2 2 2 2
62 2 2 2 2 4 1

22 2 2 2
3 1 21 2 3

jj jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = − + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (72) 

2 2 2 2
3 3 3 3 3 5 4 1

22 2 2 2
1 2 31 2 3

j j jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = − + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (73) 

2 2 2 2
34 4 4 4 4 2 2

22 2 2 2
2 3 11 2 3

jj jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (74) 

2 2 2 2
5 5 5 5 5 31 2

22 2 2 2
3 1 21 2 3

j jjk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂
− − − = + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (75) 

2 2 2 2
6 6 6 6 6 2 1 2

22 2 2 2
1 2 31 2 3

j j jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (76) 

Equations (71)-(76) can be rewritten in a vector form as a system of two equa-
tions as in classical electrodynamics: 

( )
2

2
1 2 2 22

ek k
tt

ρ
∂∂

−∇ = ∇ − + ∇×
∂∂
JE E J               (77) 

( )
2

2
2 2 2 12

bk k
tt

ρ
∂∂

−∇ = ∇ − + ∇×
∂∂
JB B J               (78) 

where the charge density iρ  and the current density ij  satisfy the conserva-
tion law 

0i
i t

ρ∂
⋅ + =

∂
j∇ .                        (79) 

3.2. Dirac Field as a Coupling of Two Elliptic Fields 

In this subsection, we will formulate Dirac field and subfields using the same 
procedure that we have applied to the Maxwell field of electromagnetism in the 
previous subsection. We have shown that Maxwell field is represented by matri-
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ces of rank six but the two subfields that are coupled to form Maxwell field are 
represented by matrices of rank three. Now, as it has been known that Dirac 
equation is formulated with matrices of rank four which are built upon Pauli 
matrices therefore we will simply use Pauli matrices as the required matrices for 
the two subfields. The Dirac equation then can be seen as a coupling of two sys-
tems of field equations similar to the case of Maxwell field equations of the elec-
tromagnetic field. Although the formulation of Dirac equation we consider in 
this work is straightforward from the known results there are new features that 
emerge with regard to the nature of the subfields that are coupled to form the 
Dirac field, such as the subfields also satisfy elliptic equations and therefore 
comply with the Euclidean relativity instead of wave equations and the pseudo- 
Euclidean relativity. Except for the dimensions, these characteristics show that 
the quantum behaviours of both Maxwell and Dirac are similar when they are 
represented by the subfields. The Pauli matrices i iA σ=  that we use for Dirac 
subfields are given as follows: 

0 1

2 3

1 0 0 1
, ,

0 1 1 0

0 1 0
,

0 0 1

A A

i
A A

i

   
= =   

   
−   

= =   −   



                 (80) 

We then obtain the following results: 
2 1 and 0 for , 0,1, 2,3i i j j iA A A A A i j= + = =            (81) 

Using the Pauli matrices iA  given in Equation (80) with negative time we obtain 
the following system of differential equations from Equation (7): 

1 2 2 1
1 1 2 1

1 2 3

i k k j
t x x x
ψ ψ ψ ψ

ψ
∂ ∂ ∂ ∂

− + − + = +
∂ ∂ ∂ ∂

             (82) 

2 1 1 2
1 2 2 2

1 2 3

i k k j
t x x x
ψ ψ ψ ψ

ψ
∂ ∂ ∂ ∂

− + + − = +
∂ ∂ ∂ ∂

             (83) 

Using the Pauli matrices iA  given in Equation (80) with positive time we obtain 
the following system of differential equations from Equation (7): 

3 34 4
1 3 2 1

1 2 3

i k k j
t x x x
ψ ψψ ψ

ψ
∂ ∂∂ ∂

+ − + = +
∂ ∂ ∂ ∂

              (84) 

3 34 4
1 4 2 2

1 2 3

i k k j
t x x x

ψ ψψ ψ
ψ

∂ ∂∂ ∂
+ + − = +

∂ ∂ ∂ ∂
              (85) 

On the other hand, using the results obtained in Equation (81) with negative 
time we obtain the following equation for the components of the function  

( )T
1 2,ψ ψ ψ=  from Equation (9): 

2 2 2 2
1 1 1 1

2 2 2 2
1 2 3

2 1 2 2 1
1 1 1 2 1 2

1 2 3

t x x x

j j j jk k k j k i
t x x x

ψ ψ ψ ψ

ψ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
= + + − + − + ∂ ∂ ∂ ∂ 

           (86) 
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2 2 2 2
2 2 2 2

2 2 2 2
1 2 3

2 2 1 1 2
1 2 1 2 2 2

1 2 3

t x x x

j j j jk k k j k i
t x x x

ψ ψ ψ ψ

ψ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
= + + − + + − ∂ ∂ ∂ ∂ 

           (87) 

Similarly, using the results obtained in Equation (81) with positive time we 
obtain the following equation for the components of the function ( )T

3 4,ψ ψ ψ=  
from Equation (9): 

2 2 2 2
3 3 3 3

2 2 2 2
1 2 3

2 3 34 4
1 3 1 2 3 2

1 2 3

t x x x

j jj jk k k j k i
t x x x

ψ ψ ψ ψ

ψ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

 ∂ ∂∂ ∂
= + + + − + ∂ ∂ ∂ ∂ 

            (88) 

2 2 2 2
4 4 4 4

2 2 2 2
1 2 3

2 3 34 4
1 4 1 2 4 2

1 2 3

t x x x

j jj jk k k j k i
t x x x

ψ ψ ψ ψ

ψ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

 ∂ ∂∂ ∂
= + + + + − ∂ ∂ ∂ ∂ 

            (89) 

As in the case of the subfields of Maxwell field of the electromagnetic field, the 
equations given in Equations (86)-(89) are elliptic equations therefore they can 
be used to describe the steady states of physical systems, in particular they can be 
used to explain the stability of elementary particles. Furthermore, if quantum 
particles possess physical properties that are represented by subfields which are 
described by elliptic equations, hence complying with the Euclidean relativity, 
then they can be used to explain physical phenomena that require physical trans-
missions with speeds greater than the speed of light in vacuum, such as the Ein-
stein-Podosky-Rosen paradox in quantum entanglement. 

Now, as being well-known the coupled field which can be used to represent 
Dirac field is formulated by using the familiar gamma matrices µγ  written in 
terms of the Pauli and unit matrices as: 

0

00
,

00
i

i
i

I
I

σ
γ γ

σ
  

= =    −−   
                 (90) 

0 1

2 3

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0

, ,
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

,
0 0 0 1 0 0 0

0 0 0 0 1 0 0

i
i

i
i

γ γ

γ γ

   
   
   = =
   − −
   

− −   
−   

   −   = =
   −
   
−   

           (91) 

With 2 0k = , Equation (7) reduces to Dirac equation for a free particle which 
is written in the form: 

imµ
µγ ψ ψ∂ = −                        (92) 
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Using the gamma matrices given in Equation (91), Dirac equation given in 
Equation (92) can be written out for the wavefunction ( )T

1 2 3 4, , ,ψ ψ ψ ψ ψ=  as 

31
1 4im i

t z x y
ψψ

ψ ψ
∂  ∂ ∂ ∂

+ = − − + ∂ ∂ ∂ ∂ 
               (93) 

2 4
2 3im i

t x y z
ψ ψ

ψ ψ
 ∂ ∂∂ ∂

+ = − + + ∂ ∂ ∂ ∂ 
              (94) 

3 1
3 2im i

t z x y
ψ ψ

ψ ψ
∂  ∂ ∂ ∂

− = − − − ∂ ∂ ∂ ∂ 
              (95) 

4 2
4 1im i

t x y z
ψ ψ

ψ ψ
 ∂ ∂∂ ∂

− = − + − ∂ ∂ ∂ ∂ 
              (96) 

Dirac equation written as a system of linear first order partial differential 
equations given in Equations (93)-(96) suggests that matter wave can be inter-
preted as a coupling of two different physical subfields represented by the field 
( )1 2,ψ ψ  and the field ( )3 4,ψ ψ  whose temporal rates of change will convert 
one field to the other. From the gamma matrices given in Equation (91) we ob-
tain the following relations: 

2 2
0 1, 1 for 1,2,3 and 0 fori i j j ii i jγ γ γ γ γ γ= = − = + = ≠       (97) 

With the relations obtained in Equation (97), it can be shown that all compo-
nents of Dirac wavefunction ( )T

1 2 3 4, , ,ψ ψ ψ ψ ψ=  satisfy the Klein-Gordon equa-
tion: 

2 2 2 2
2

2 2 2 2 m
t x y z

µ µ µ µ
µ

ψ ψ ψ ψ
ψ

∂ ∂ ∂ ∂
− − − = −

∂ ∂ ∂ ∂
              (98) 

The Klein-Gordon equation is a wave equation that is Lorentz invariant in the 
pseudo-Euclidean space which was proposed and developed by Minkowski based 
on Einstein’s theory of special relativity. 

In fact, it is possible to formulate a coupled field that is similar to Dirac field 
from the subfields represented by the Pauli matrices but instead satisfies an el-
liptic equation rather than a wave equation. Such field therefore will be Euclid-
ean invariant. Consider a coupled field that is formed from the subfields repre-
sented by Pauli matrices with the coupled matrices given as follows: 

0

00
,

00
i

i
i

I
A A

I
σ

σ
−   

= =   
   

                 (99) 

Then we obtain the following results: 
2 2
0 1, 1 for 1,2,3 and 0 fori i j j ii i jγ γ γ γ γ γ= = = + = ≠      (100) 

From the relations obtained in Equation (100), then it can be shown that all 
components of the wavefunction ( )T

1 2 3 4, , ,ψ ψ ψ ψ ψ=  satisfy the following el-
liptic equation: 

2 2 2 2
2

2 2 2 2 m
t x y z

µ µ µ µ
µ

ψ ψ ψ ψ
ψ

∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂
             (101) 
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As a further remark, we would like to mention here that we have formulated 
Maxwell and Dirac field essentially from a general system of linear first order 
partial differential equations which is a purely mathematical framework that can 
be used to formulate any physical theory that requires such mathematical struc-
ture, similar to the case of Laplace or Poisson’s equation. Nonetheless, with such 
perspective, it has been suggested that they should be referred to as Maxwell-like 
and Dirac-like field equations instead of Maxwell and Dirac. The approach that 
we have used to formulate Maxwell and Dirac field is quite different from other 
mathematical methods such as gauge theories whose formulation is based on the 
variational principle [19] [20]. However, as we have shown in our work on the 
principle of least action that the variational principle with quantum objects may 
not lead to the least action as the principle is supposed to provide but only com-
plies with Feynman’s integral method of random paths or random surfaces, 
which itself is not related to the principle of least action [21]. Therefore, physical 
theories such as gauge theories that rely on the variational principle with a La-
grangian function to establish a deterministic least action should not be regarded 
as statistical theories therefore they are not in accordance with the current inter-
pretation of the quantum theory which relies on the probability view for their 
interpretation of experimental results. 

4. A Classification of Relativity 

In this section, we show that relativity can be classified into three different types 
that are determined by the mathematical structures given to the spactime con-
tinuum so that it can manifest as three different types of relativistic spaces as-
sociated with the types of second order partial differential equations that are 
classified in Section 2. We call the spacetime continuum with the mathematical 
structure associated with the hyperbolic or wave equation a hyperbolic relativis-
tic space and the corresponding relativity is the hyperbolic relativity. Similarly, 
we also define the elliptic and parabolic relativity. The problem that we address 
in this section is similar to our discussion on the fibre bundle structure of the 
spacetime continuum in which the spacetime continuum is the base space and 
all other physical events occur on different types of fibres and manifest in dif-
ferent physical forms that can be described by different mathematical structures 
[22]. We have shown that the spacetime structures result from different rela-
tionships between space and time and the apparent geometric and topological 
structures of the total spatiotemporal manifold are due to the dynamics and the 
geometric interactions of the decomposed cells from the base space of the total 
spatiotemporal manifold. The decomposed cells can form different types of fi-
bres which may also geometrically interact with each other. In a more general 
context, we also discussed in detail a spacetime which has the mathematical 
structure of a 6-sphere bundle in which the dynamics of the fibres result from 
the geometric interactions of different types of decomposed cells that give rise to 
various relationships between space and time. In this case, it is assumed that we 
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can only perceive within our physical ability the appearance of the grown intrin-
sic geometric structures on the base space of the total spatiotemporal manifold 
and the base space itself may not be observable with a reasonable assumption 
that a physical object is not observable if it does not have any form of geometric 
interactions. It could be that the base space of the spatiotemporal manifold at the 
beginning was only a six-dimensional Euclidean spatiotemporal continuum R6 
which had no non-trivial geometric structures therefore contained no physical 
objects. As we have shown in our work on Maxwell and Dirac field with three- 
dimensional time [23], we can assume that the spatiotemporal manifold is de-
scribed by a six-dimensional differentiable manifold M which is composed of a 
three-dimensional spatial manifold and a three-dimensional temporal manifold, 
in which all physical objects are embedded, then the manifold M can be decom-
posed in the form 3 3# #S TM M S S= , where 3

SS  and 3
TS  are the spatial and 

temporal 3-sphere, respectively. It is expected that the mathematical formulation 
of possible fibres of the spatiotemporal manifold should be derived from a gen-
eral line element 2d d ds g x xα β

αβ= . In the following, however, we propose that 
the three types of relativity are classified in accordance with the classification of 
their corresponding coordinate transformations. 

4.1. Hyperbolic Relativity 

Hyperbolic relativity refers to the relativistic spacetime continuum with the mathe-
matical structure of a pseudo-Euclidean space that associates with the hyperbolic 
type of the second order partial differential equations. In physics, the concept of 
a pseudo-Euclidean spacetime, or relativistic hyperbolic spacetime, was intro-
duced by Minkowski in order to accommodate Einstein’s theory of special rela-
tivity in which the coordinate transformation between the inertial frame S with 
spacetime coordinates ( ), , ,ct x y z  and the inertial frame S ′  with coordinates 
( ), , ,ct x y z′ ′ ′ ′  are derived from the principle of relativity and the postulate of a 
universal speed c, which is assumed to be the speed of light in vacuum. The co-
ordinate transformation is the Lorentz transformation: 

( )
( )

, , ,x x ct y y z z

ct x ct

γ β

γ β

′ ′ ′= − = =

′ = − +
               (102) 

where v cβ =  and 21 1γ β= − . It can be shown that the Minkowski space-
time interval 2 2 2 2 2c t x y z− − −  is invariant under Lorentz transformation given 
in Equation (102). Now, in order to show that the hyperbolic equations are asso-
ciated with the hyperbolic relativity, we need to show that the part that com-
poses of the second order derivatives of the hyperbolic equation given in Equa-
tion (4) is invariant under Lorentz transformation. The Lorentz transformation 
and its inverse can be rewritten in the following forms: 

Λ and Λx x x xµ µ ν ν ν µ
ν µ′ ′= =                 (103) 

where ( ), , ,x ct x y zµ =  and the Lorentz matrix Λµ
ν  and its inverse Λ ν

µ  are 
given as: 
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0 0 0 0
0 0 0 0

Λ and Λ
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

µ ν
ν µ

γ βγ γ βγ
βγ γ βγ γ

−   
   −   = =
   
   
   

     (104) 

In order to show that the hyperbolic relativity associates with the hyperbolic 
type of second order partial differential equations we only need to show that the 
d’Alembert operator 2 2 2 2c tµ

µ∂ ∂ = ∂ ∂ −∇  is invariant under Lorentz transfor-
mation, where the differential operators µ∂  and µ∂  are defined as  

( ), , ,c t x y zµ∂ = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  and ( )T, , ,g c t x y zµ µν
ν∂ = ∂ = −∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ . 

This can be seen by the fact that the differential operators µ∂  and µ∂  are vectors 
therefore by using the transformations Λ ν

µ µ ν′∂ = ∂  and gµ µν
ν′ ′∂ = ∂  we then 

obtain µ µ
µ µ′ ′∂ ∂ = ∂ ∂ . 

Now, it is remarkable that even though the concept of a relativistic hyperbolic 
spacetime originates from the invariance of Maxwell field equations under Lor-
entz transformation, Einstein was able to generalise it into a more general struc-
ture utilising the mathematics of differentiable manifold and the resulted theory 
has only been applied into the description of the gravitational field in which the 
electromagnetic field can only act as a source. And the only invariance that is 
required is the transformation of general coordinates. Einstein general relativity 
that complies with the hyperbolic relativity in curved spaces is represented in  

tensor form as 1 Λ
2

T k R Rg gµν µν µν µν
 = − + 
 

. Then using the centrally sym-

metric gravitational field with Schwarzschild metric: 

( )2 2 2 2 2 2 2 2d e d e d d sin ds c t r rψ χ θ θ φ= − − +            (105) 

Schwarzschild solution can be found as: 

( )
1

2 2 2 2 2 2 2 2d 1 d 1 d d sin dC Cs c t r r
r r

θ θ φ
−

   = − − − − +   
   

     (106) 

where 22C MG c= . From the Schwarzschild solution, Newton law of gravity 
can be obtained as an approximation. We show in the next subsection on the el-
liptic relativistic spacetime that this result can also be obtained from the elliptic 
or Euclidean relativity. 

4.2. Elliptic Relativity 

Elliptic relativity refers to the relativistic spacetime continuum with the mathe-
matical structure of a Euclidean space that associates with the elliptic type of the 
second order partial differential equations. We have also shown in our work on 
Euclidean relativity that it is possible to construct a special relativistic transfor-
mation that will make the four-dimensional spacetime continuum a Euclidean 
space rather than a pseudo-Euclidean space as in the case of Einstein’s theory of 
special relativity. Consider the following modified Lorentz transformation: 

( ) ( ), , ,E Ex x ct y y z z ct x ctγ β γ β′ ′ ′ ′= − = = = +         (107) 
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where v cβ =  and Eγ  will be determined from the principle of relativity and 
the postulate of a universal speed. If we now assume the invariance of the Euclid-
ean interval 2 2 2 2 2 2 2 2 2 2c t x y z c t x y z′ ′ ′ ′+ + + = + + +  then from the modified 
Lorentz transformation given in Equation (107), we obtain 21 1Eγ β= + . It is 
seen from this expression for Eγ  that there is no upper limit in the relative 
speed v between inertial frames. The value of Eγ  at the universal speed v c=  
is 1 2Eγ = . For the values of v c

, the modified Lorentz transformation 
also reduces to the Galilean transformation. However, it is interesting to observe 
that when v →∞  we have 0Eγ →  and 1Eβγ → , and in this case, we have 
x ct′ → −  and ct x′ → . This result shows that there is a conversion between 

space and time when v →∞ . We can also derive the relativistic kinematics 
from the modified Lorentz transformation, such as the transformation of a 
length, the transformation of a time interval and the transformation of velocities. 
Let 0L  be the proper length and 0t∆  is the proper time interval then the 
length and the time interval transformations can be found as 2

01L Lβ= +  
and 2

0 1t t β∆ = ∆ + . It is observed from the length transformation that the 
length of a moving object is expanding rather than contracting as in Einstein 
theory of special relativity. It is also observed from the time interval transforma-
tion that the proper time interval is longer than the same time interval measured 
by a moving observer. With the modified Lorentz transformation, the transfor-
mation of velocities can be found as: 

( ) ( )
, ,

1 1 1x y
yx z

x E x E x
z

vv c vv v v
v c v c v c
β

β γ β γ β
−′ ′ ′= = =

+ + +
      (108) 

From Equation (108), if we let xv c=  then we obtain ( ) ( )( )xv c v c v c′ = − + . 
Therefore in this case xv c′ =  only when the relative speed v between two iner-
tial frames vanishes. In other words, the universal speed c is not the common 
speed of any moving physical object or physical field in inertial reference frames. 
In order to specify the nature of the assumed universal speed, we observe that in 
Einstein theory of special relativity it is assumed that spatial space of an inertial 
frame remains steady and this assumption is contradicted to Einstein theory of 
general relativity that shows that spatial space is actually expanding. Therefore it 
seems reasonable to suggest that the universal speed c in the modified Lorentz 
transformation is the universal speed of expansion of the spatial space of all in-
ertial frames. The modified Lorentz transformation and its inverse can be re-
written in the following forms: 

Λ and Λx x x xµ µ ν ν ν µ
ν µ′ ′= =                 (109) 

where ( ), , ,x ct x y zµ =  and the modified Lorentz matrix Λµ
ν  and its inverse 

Λ ν
µ  are given as: 

0 0 0 0
0 0 0 0

Λ and Λ
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

E E E E

E E E Eµ ν
ν µ

γ βγ γ βγ
βγ γ βγ γ

−   
   −   = =
   
   
   

   (110) 
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In order to show that the elliptic relativity associates with the elliptic type of 
second order partial differential equations we only need to show that the Euclid-
ean differential operator 2 2 2 2c tµ

µ∂ ∂ = ∂ ∂ +∇  is invariant under the modified 
Lorentz transformation given in Equation (20), where the differential operators 

µ∂  and µ∂  are defined as ( ), , ,c t x y zµ∂ = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  and  
( )T, , ,g c t x y zµ µν

ν∂ = ∂ = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ . Since the differential operators µ∂  and 
µ∂  are vectors therefore by using the transformations Λ ν

µ µ ν′∂ = ∂  and  
gµ µν

ν′ ′∂ = ∂  we then obtain µ µ
µ µ′ ′∂ ∂ = ∂ ∂ . 

We assume that a general relativity that complies with the elliptic relativity in 
curved spaces can also be represented in tensor form as  

1 Λ
2

T k R Rg gµν µν µν µν
 = − + 
 

. Then using the centrally symmetric gravitational 

field with Schwarzschild-like metric: 

( )2 2 2 2 2 2 2 2d e d e d d sin ds c t r rψ χ θ θ φ= + + +            (111) 

Schwarzschild-like vacuum solution is found as: 

( )
1

2 2 2 2 2 2 2 2d 1 d 1 d d sin dC Cs c t r r
r r

θ θ φ
−

   = − + − + +   
   

      (112) 

where 22C MG c= . It can also be shown from the Schwarzschild-like solution 
given in Equation (112) that Newton law of gravity is obtained as an approxima-
tion [2]. 

4.3. Parabolic Relativity 

We have shown that the hyperbolic and elliptic relativity are classified according 
to the mathematical structure of the second order derivatives of the second order 
partial differential equations 2

1 1
n n

ij i ji j a x xψ
= =

∂ ∂ ∂∑ ∑ . For the hyperbolic rela-
tivity associated with the four-dimensional spacetime manifold we have  

2 2 2 2 2 2 2 2 2
1 1

n n
ij i ji j a x x t x y zψ ψ ψ ψ ψ

= =
∂ ∂ ∂ = ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂∑ ∑ . On the oth- 

er hand, for the elliptic relativity we have  
2 2 2 2 2 2 2 2 2

1 1
n n

ij i ji j a x x t x y zψ ψ ψ ψ ψ
= =

∂ ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂∑ ∑ . Now, for the 
case of the parabolic equation, because there are only three spatial components 
of second order derivatives for the four-dimensional spacetime continuum there-
fore as a consequence we consider the invariance of the parabolic equation 
only for these components under a parabolic coordinate transformation. Para-
bolic relativity refers to the relativistic spacetime continuum with the mathe-
matical structure of a Euclidean space that associates with the parabolic type of 
the second order partial differential equations. There are many physical events 
that are described by the second order partial differential equations that in-
volve only the spatial components of the second order derivatives therefore 
these physical events can be regarded as being associated with the parabolic 
relativity. In particular, the physical events that can be described by the diffu-
sion equation and the Schrödinger equation that can be written generically as 
follows: 
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2 2 2

2 2 2 a
tx y z

ψ ψ ψ ψ∂ ∂ ∂ ∂
+ + =

∂∂ ∂ ∂
                  (113) 

In Equation (113), we obtain the diffusion equation if 0a tψ∂ ∂ ≠  and the 
Schrödinger equation by setting ( )2a t i m tψ ψ∂ ∂ = − ∂ ∂ . As in the case of 
the hyperbolic and elliptic relativity in which the Lorentz and modified Lorentz 
transformation involve only the second order derivatives of the differential equa-
tions, therefore to discuss coordinate transformation for the parabolic equation 
we should also consider the second order derivatives which form the Laplace 
operator. Therefore the corresponding transformations for the parabolic equa-
tion that leave the Laplace operator unchanged, that is in the parabolic relativity 
we only consider the invariance of the Euclidean spatial interval  

2 2 2 2 2 2x y z x y z′ ′ ′+ + = + + . The time in parabolic relativity is therefore a uni-
versal time which is assumed to flow uniformly with the same rate in all refer-
ence systems. In general, the parabolic relativity is invariant with respect to the 
translation and rotation given as follows: 

1
and

n

i i ij ji i
j

x x a x b x
=

′ ′= + = ∑                  (114) 

where ( )T
1 2, , , nx x x=x  , and { }iA a=  is a matrix for the translation and 

{ }ijB b=  is an orthogonal matrix for the rotation. If the matrix { }ijB b=  is an 
orthogonal matrix then we have 1

n j
ik jk ik b b δ

=
=∑ , therefore we obtain the fol-

lowing result: 

2 2
2 2

1 , 1 , 1 1j k j k

n n n n

x ji ki ji ki x
i j k j k i

b b b b
x x x x ′

= = = =

 ∂ ∂ 
∇ = = = ∇    ′ ′ ′ ′∂ ∂ ∂ ∂  

∑ ∑ ∑ ∑       (115) 

We now extend our discussion to a particular parabolic equation that is re-
lated to the curved structure of the spacetime manifold. We have shown in our 
work on the spacetime structure of quantum particles that they can be endowed 
with geometric and topological structures of differentiable manifolds and their 
motion should be described as isometric embeddings in higher Euclidean space 
that involve the diffusion equation. Fundamentally, we show that the three main 
dynamical descriptions of physical events in classical physics, namely Newton 
mechanics, Maxwell electromagnetism and Einstein gravitation, can be formu-
lated in the same general covariant form and they can be represented by the 
general equation [8] [9]: 

M kJβ∇ =                         (116) 

where M is a mathematical object that represents the corresponding physical 
system and β∇  is a covariant derivative. For Newton mechanics,  

( )23
1

1 d d
2

M m x t Vµ
µ== +∑  and 0J = . For Maxwell electromagnetism,  

M F A Aαβ µ ν ν µ= = ∂ − ∂ , with the four-vector potential ( ),A Vµ ≡ A  and J can 
be identified with the electric and magnetic currents. And for Einstein gravita-
tion, M Rαβ=  and J can be defined in terms of a metric gαβ  and the Ricci  
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scalar curvature using the Bianchi identities 1
2

R g Rαβ αβ
β β∇ = ∇ , that is,  

1
2

J g Rαβ
β= ∇ . If we use the Bianchi identities as field equations for the gravita-

tional field then Einstein field equations 1 Λ
2

T k R Rg gµν µν µν µν
 = − + 
 

, as in 

the case of the electromagnetic field, should be regarded as a definition for the 
energy-momentum tensor Tµν  for the gravitational field. From the definition 

of the four-current ( ) 1,
2ij g Rα αβ

βρ= = ∇j  for the gravitational field, by 

comparing with the Poisson equation for a potential V in classical physics,  
2 4V ρ∇ = π , we can identify the scalar potential V with the Ricci scalar curva-

ture R and then obtain a diffusion equation: 
2 2 2

2 2 2

R R R Rk
t x y z

 ∂ ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

                 (117) 

whose solutions can be found to take the form: 

( )
( )

2 2 2

3, , , exp
44

M x y zR x y z t
ktkt

 
 + + = −     π 

          (118) 

which determines the probabilistic distribution of an amount of geometrical 
substance M which is defined via the Ricci scalar curvature R and manifests as 
observable matter. We have also shown that the Ricci scalar curvature R associ-
ated with a differentiable manifold can be expressed in terms of the Schrödinger 
wavefunction ψ  in quantum mechanics. Now, instead of deriving a diffusion 
equation for the Ricci scalar curvature from the four-current we can also derive a  
diffusion equation for the Ricci scalar curvature from the Ricci flow by consid-

ering the case in which 1 0
2

J g Rαβ
β= ∇ = . Then we obtain the equation: 

0Rαβ
β∇ =                         (119) 

Since 0gαβ
µ∇ ≡  for a given metric tensor gαβ , Equation (119) implies  

ΛR gαβ αβ=  which can be written in a covariant form as: 
ΛR gαβ αβ=                         (120) 

where Λ  is an undetermined constant. Using the identities 4g gαβ
αβ =  and 

g R Rαβ
αβ = , we obtain Λ 4R= . 
The Ricci flow can be derived from the field equation given in Equation (119) 

as follows [24] [25]. In differential geometry, the covariant derivative of a con-
travariant tensor of second rank Aαβ  is given by: 

Γ ΓA A A Aαβ αβ α σβ β ασ
γ γ σγ σγ∇ = ∂ + +                (121) 

The partial time derivative of Equation (121) is given as: 

( ) ( ) ( ) ( )
( ) ( )

Γ Γ

Γ Γ

t t t t

t t

A A A A

A A

αβ αβ α σβ α σβ
γ γ σγ σγ

β ασ β ασ
σγ σγ

∂ ∇ = ∂ ∂ + ∂ + ∂

+ ∂ + ∂
        (122) 
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Under the coordinate transformation ( )x f xα α β′ = , the tensor Aαβ  is trans-
formed as 

x xA A
x x

α β
αβ ρσ

ρ σ

′ ′∂ ∂′ =
∂ ∂

                    (123) 

If the coordinate transformation is time-independent then the partial time de-
rivative of the tensor Aαβ  is also a tensor which is transformed according to the 
rule: 

A x x A
t tx x

αβ α β ρσ

ρ σ

′ ′ ′∂ ∂ ∂ ∂
=

∂ ∂∂ ∂
                   (124) 

In this case, we have: 

( ) ( ) ( ) ( )Γ Γt t t tA A A Aαβ αβ α σβ β ασ
γ γ σγ σγ∇ ∂ = ∂ ∂ + ∂ + ∂         (125) 

It is observed from Equations (122) and (125) that if we impose the following 
condition on Equation (122): 

( ) ( )Γ Γ 0t tA Aα σβ β ασ
σγ σγ∂ + ∂ =                  (126) 

then we obtain the identity: 

( ) ( )t tA Aαβ αβ
γ γ∇ ∂ = ∂ ∇                   (127) 

In the case of a metric tensor gαβ  then we have ( ) ( ) 0t tg gαβ αβ
γ γ∇ ∂ = ∂ ∇ ≡ , 

and from the field equations 0Rαβ
β∇ =  we arrive at the Ricci flow: 

g
kR

t
αβ

αβ

∂
=

∂
                        (128) 

From Equation (128) we can obtain a diffusion equation for the Ricci scalar 
curvature as follows [26] [27]: 

2R R g g R R
t

αβ γσ
ασ βγ

∂
= ∆ +

∂
                  (129) 

As a further remark, it should be mentioned here that it has been shown that 
parabolic equations have associated invariants that may be related to physical 
properties of physical objects. For example, consider a linear second order para-
bolic partial differential equation in two independent variables x and t: 

( ) ( ) ( )
2

2, , , 0a x t b x t c x t
t xx
ψ ψ ψ ψ∂ ∂ ∂

+ + + =
∂ ∂∂

           (130) 

It is shown that the form of the parabolic equation given in Equation (130) is 
invariant under the group of equivalence transformations which consists of the 
linear transformation of the dependent variable and the invertible transforma-
tions of the independent variables as follows: 

( ) ( ) ( ), , , ,x t t t x x tχ σ ψ ϕ ρ′ ′= = =               (131) 

where ( ),x tσ , ( )tϕ  and ( ),x tρ  are arbitrary functions [28] [29] [30]. The 
transformed equation of the equation given in Equation (131) then takes the 
form: 
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( ) ( ) ( )
2

2, , , 0a x t b x t c x t
t xx
χ χ χ χ∂ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′ ′+ + + =
′ ′′∂ ∂∂

         (132) 

Then an invariant of the parabolic equation given in Equation (130) is a func-
tion of the form 

2 2 2

2 2, , , , , , , , , , , ,a a b b c c a a aJ J a b c
t x t x t x t xt x

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ 

 .     (133) 

4.4. Simultaneous Relativities 

We have shown in previous subsections that the mathematical structure of the 
spacetime manifold can be classified in accordance with the classification of 
second order partial differential equations into hyperbolic, elliptic or parabolic 
relativistic space. On the other hand, normally a complex physical system such 
as an atom has various physical properties that involve different physical proc-
esses described by different types of second order partial differential equations in 
different relativities. If the physical properties associated with the physical sys-
tem remain invariant then we can assume that they can be described independ-
ently by different second order partial differential equations, and hence their 
corresponding relativistic spaces should also exist independently from each 
other. As we have discussed in the introduction, these relativistic spaces may be 
considered as independent fibres of the spatiotemporal fibre bundle. Then in 
order to describe independent physical properties, we simply express all corre-
sponding physical equations in all relativistic spaces simultaneously. For exam-
ple, we assume that a physical system that possesses physical properties that can 
be described in the parabolic relativity and elliptic relativity respectively. If the 
parabolic property is massive and the elliptic property is massless then we have a 
simultaneous system of two equations that take the forms similar to the massive 
Schrödinger equation and massless Klein-Gordon equation as follows: 

2 2 2

2 2 2

2p p p pmi
tx y z

ψ ψ ψ ψ∂ ∂ ∂ ∂
+ + = −

∂∂ ∂ ∂ 

              (134) 

2 2 2 2

2 2 2 2 2
1 2 3

0e e e e

ec t x x x
ψ ψ ψ ψ∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

                (135) 

where pψ  and eψ  are wavefunctions in the parabolic and elliptic relativistic 
space respectively. We have also written ec  to indicate that, unlike the universal 
speed c in the hyperbolic relativity, the speed ec  may be very large according to 
the elliptic relativity. In an n-dimensional space, solutions to Laplace equation  

can be expressed by the Green function as ( )
2

2 2 2 2
1 2

n

nG k x x x
−

= + + + , hence 

for the Laplace equation given in Equation (135) with 4n = , we obtain the so-
lution: 

2 2 2 2 2e
e

k
c t x y z

ψ =
+ + +

                   (136) 

It is seen that if ec  is very large then while other parabolic relativistic proper-
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ties of a quantum particle remain the same the elliptic properties vanish quickly 
with time, and in particular this result may be invoked to explain the EPR para-
dox in quantum mechanics. However, if different physical properties belong to 
the same type of relativity then we can express the total equation as a sum of 
different equations in the same relativistic space, as in the case we have shown in 
our work on spin dynamics that a total Schrödinger equation can be written as a 
sum of two separate Schrödinger equations in two different coordinate systems, 
one of them can be considered as intrinsic. This can be outlined as follows. In-
stead of introducing a spin operator, we introduce a differential operator that 
depends on an intrinsic coordinate system and can be used to formulate a spin 
dynamics. Since spin angular momentum and orbital angular momentum are 
similar in nature therefore it is possible to suggest that the spin operator in the 
intrinsic coordinate system should also have similar form to that of the orbital 
angular momentum operator. From this perspective, we can write a Schrödinger 
wave equation that is used to describe both the orbital and spin dynamics as fol-
lows [31]: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
2 2, , ,

2 2
, ,

s s s s
s

s s s s

V

V E
µ µ

− ∇ Ψ + Ψ − ∇ Ψ

+ Ψ = Ψ

r r r r r r r

r r r r r

 

         (137) 

The quantity µ  can be identified with a reduced mass. However, since we 
are treating spin angular momentum as a particular case of angular momentum 
therefore we retain the Planck constant and the quantity sµ  also retains the di-
mension of mass. We call the quantity sµ  an intrinsic mass and it could be re-
lated to the curvature that determines the differential geometric and topological 
structure of a quantum particle, as in the case of Bohr model, or charge. On the 
other hand, the quantity ( )V r  can be identified with normal potential, such as 
Coulomb potential but the quantity ( )s sV r  represents an intrinsic potential that 
depends on physical intrinsic properties associated with the spin angular momen-
tum of a quantum particle. Since the two dynamics are independent, the wave 
equation given in Equation (137) is separable and the total wavefunction ( ), sΨ r r  
can be written as a product of two wavefunctions as ( ) ( ) ( ), s sψ χΨ =r r r r . Then 
Equation (137) is separated into two equations as follows: 

( ) ( ) ( ) ( )
2

2
02

V Eψ ψ ψ
µ

− ∇ + =r r r r               (138) 

( ) ( ) ( ) ( )
2

2
12 s s s s s s

s

V Eχ χ χ
µ

− ∇ + =r r r r             (139) 

where 0 1E E E+ = . For the case of the hydrogen atom then the total energy 
spectrum can be found as the sum of two energy spectra as: 

( )
22

2 2 2
0 2

1, ,
42 12

2

s s
s s

s s

AZqE n n m
n

n m

µµ
ε

 
= − − π    + + 

 





       (140) 

It is seen that the total energy spectrum has a fine structure depending on the 
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intrinsic quantum numbers sn  and sm . Furthermore, the total energy spec-
trum also depends on the undetermined physical quantities sµ  and sA  that 
define the intrinsic properties of a quantum particle, which is the electron in this 
case. Without restriction, the quantity sµ  can take zero, positive or negative 
values. Similarly, it is also possible to explain the wave-particle duality by writing 
simultaneous equations for a quantum particle in the parabolic and hyperbolic 
relativistic space respectively. If an experiment is designed to detect an invari-
ance associated with a quantum particle which is invariant in the parabolic rela-
tivity then it appears as a particle, but if it is invariant in the hyperbolic relativity 
then it appears as a wave. The formulation of dual properties of particle and 
wave in two coexisting relativistic spaces may be viewed as a representation of 
the hidden variable theory and de Broglie theory of double solution in wave 
mechanics [32] [33]. 

5. Conclusion 

We have shown in this work the possibility to classify relativity in accordance 
with the classification of second order partial differential equations that have 
been applied into the formulation of physical laws in physics. Based on the clas-
sification of second order partial differential equations into hyperbolic, elliptic 
or parabolic type, we suggested that relativity should also be classified accord-
ingly into hyperbolic, elliptic or parabolic type by establishing coordinate trans-
formations that preserve the forms of the second order partial differential equa-
tions. The coordinate transformation that preserves the form of the hyperbolic 
equation is the Lorentz transformation and the associated space is the hyper-
bolic, or pseudo-Euclidean, relativistic spacetime. The coordinate transforma-
tion that preserves the form of the elliptic equation is the modified Lorentz 
transformation, or rotation in spacetime, that we have formulated in our work 
on Euclidean relativity and the associated space is the elliptic, or Euclidean, rela-
tivistic spacetime. And the coordinate transformation that preserves the form of 
the parabolic equation is the Euclidean transformation consisting of the transla-
tion and rotation in the spatial space and the associated space is the parabolic 
relativistic spacetime, which is a Euclidean space with a universal time. Besides 
the typical equations in physics that comply with hyperbolic relativity such as 
Maxwell and Dirac equations, we have also established equations that comply 
with elliptic relativity and these equations can be used to describe the subfields 
of Maxwell and Dirac field. On the other hand, apart from the typical equations 
in physics that comply with parabolic relativity such as the diffusion equation, 
the Schrödinger equation, we have shown that the diffusion equations that are 
derived from the four-current defined in terms of the differentiable structures of 
the spacetime manifold and the Ricci flow also belong to parabolic relativity. 
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