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Schrödinger’s cat and Wigner’s friend paradoxes are analyzed using the ‘wave-

particle non-dualistic interpretation of quantum mechanics at a single-quantum level’

and are shown to be non-paradoxes within the quantum formalism. Then, the ex-

tended version of Wigner’s friend thought experiment, proposed in a recent arti-

cle titled, “Quantum theory cannot consistently describe the use of itself ”, Nature

Communications 9, 3711 (2018), by Frauchiger and Renner (FR) is considered. In

quantum mechanics, it’s well-known that, statistically observing a large number

of identical quantum systems at some particular quantum state, which results in

Born’s probability, and merely inferring its presence in the same quantum state with

the same probability yield distinct physical phenomena. If this fact is not taken

care while interpreting any experimental outcomes, then FR type paradoxes pop up.

‘What an astonishingly self-consistent the Quantum Theory is!’ - is explicitly worked

out in the case of FR gedankenexperiment. The present work shows the importance

of single-quantum phenomenon for the non-paradoxical interpretation of statistically

observed experimental outcomes.

1. INTRODUCTION

Schrödinger’s cat [1] and Wigner’s friend [2] paradoxes are well-known and deeply stud-

ied gedankenexperiments in the literature of quantum mechanics. An extended version of

Wigner’s friend paradox was recently considered in great detail by Frauchiger and Ren-

ner (FR) and was analyzed using various interpretations of quantum mechanics [3]. In the

present article, these three paradoxes are resolved using the ‘wave-particle non-dualistic in-

terpretation of quantum mechanics at a single-quantum level’ (NI) [4–6], showing that the
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quantum formalism never admits any paradoxes and is applicable to physical systems of any

scale.

SCHRÖDINGER’S CAT AND WIGNER’S FRIEND PARADOXES

FIG. 1: Gedankenexperiment Analogues to Schrödinger’s Cat and Wigner’s Friend

Paradoxes: A source emits a charged spin-1
2 particle whose initial state is prepared ‘up along

Y-axis’, |Sy; ↑>. Then the particle is subjected to the Stern-Gerlach measurement along Z-axis.

For the case of |α| < |β|, the particle enters into |Sz; ↑> and the ontological state, |Sz; ↓>, remains

without a particle. During the observation, the particle contributes a point to | < Sz; ↑ |Sy; ↑> |2

while |Sz; ↓> yields nothing. See the main text for the details of all mathematical symbols.

One of the spin eigenstate, |Sy; ↑>, of an observable Ŝy associated with a charged spin-

1
2

particle - subjected to an observation by the Stren-Gerlach apparatus [7, 8] having the

magnetic field direction along Z-axis (SGz) [see FIG. 1] - can be taken instead of the

radioactive atom in Schrödinger’s thought experiment [1]. All the sequential events leading

to the death or/and live states of the cat are dropped except the first two, i.e., preparation of

the particle in the initial state |Sy; ↑> and its detection by SGz either in |Sz; ↓> or in |Sz; ↑>.

The NI does not distinguish between the microscopic and macroscopic systems, since, they

are all represented by the complex vector spaces (CVSs) of suitable observables, because,

the observables of the particle and the detector must commute with each other in order to
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the detection to happen. Now, |Sz; ↓> and |Sz; ↑> represent the decayed and undecayed

states of the radioactive atom, respectively, result in the SGz detecting the particle either

in |Sz; ↓> or in |Sz; ↑>, which represents the death or live states of the Cat.

According to the NI, the Schrödinger wave function (or in general, the simultaneous

eigenstate of a maximally commuting set of observables) is interpreted as an ‘instantaneous

resonant spatial mode’ in which a quantum moves akin to the case of a test particle in the

curved space-time of the general theory of relativity. The unavoidable initial phase of the

state vector is related to a particular eigenstate of the observable.

The unit operator, Îz, in the CVS of the SGz can be written using the eigenstates of the

observable Ŝz, |Sz; ↑> and |Sz; ↓>:

Îz = |Sz; ↑>< Sz; ↑ |+ |Sz; ↓>< Sz; ↓ |. (1)

Therefore, at the moment |Sy; ↑> encounters SGz, it becomes a superposition of |Sz; ↓> and

|Sz; ↑>:

|Sy; ↑> = |Sz; ↑>< Sz; ↑ |Sy; ↑> +|Sz; ↓>< Sz; ↓ |Sy; ↑>

= |Sz; ↑> .| < Sz; ↑ |Sy; ↑> |.eiα + |Sz; ↓> .| < Sz; ↓ |Sy; ↑> |.eβ

=
1√
2
eiα|Sz; ↑> +

1√
2
eβ|Sz; ↓>, (2)

where, | < Sz; ↑ |Sy; ↑> | = | < Sz; ↓ |Sy; ↑> | = 1√
2

and α and β are the phase angles

between |Sy; ↑> and |Sz; ↑> and |Sy; ↑> and |Sz; ↓>, respectively [6]. According to the

‘principle of minimum phase’ introduced in the NI, if |α| < |β| (|α| > |β|), then the particle

will be present in |Sz; ↑> (|Sz; ↑>). The state |Sy; ↑> induces a dual state at the screen and

interacts according to the inner-product:

< Sy; ↑ |Sy; ↑>= | < Sz; ↑ |Sy; ↑> |2 + | < Sz; ↓ |Sy; ↑> |2
observation−−−−−−→
|α| < |β|

| < Sz; ↑ |Sy; ↑> |2 (3)

yielding the eigenvalue +1
2
; the particle itself contributes a point to | < Sz; ↑ |Sy; ↑> |2 [see

FIG. 1]. Therefore, in a single quantum event, depending on the initial phase of |Sy; ↑>,

SGz will detect the particle either in |Sz; ↑> or |Sz; ↓> [6].

Though during the time interval between the particle entering the magnetic field and

hitting the detector screen, the state of the particle and hence the SGz apparatus is indeed

described by the superposition state as given in Eq. (2), but, the particle and the SGz

themselves will be in any one of the states but not in the both at the same time. Therefore,
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the conclusion is that the Schrödinger cat paradox doesn’t exist in the quantum mechanics

- according to the NI and the same can be said about Wigner’s friend (WF) as well, which

is analyzed in the following:

With respect to Wigner, the particle and the whole laboratory are like two interacting

quantum systems. Let |L; s > be the spin eigenstate of the observable, L̂, associated with

the lab such that the joint state can be written using Eq. (2) as,

|Sy; ↑> ⊗|L; s >=
1√
2
eiα|Sz; ↑> ⊗|L; s > +

1√
2
eβ|Sz; ↓> ⊗|L; s >, (4)

where, L stands for labeling the lab and s, its spin eigenvalue. Considering the case |α| < |β|

resulting in the observation of particle in |Sz; ↑> inside L which is an interaction from outside

L for Wigner (FIG. 1):

|Sy; ↑> ⊗|L; s >
interaction−−−−−−→ 1√

2
eiα|Sz; ↑> |L; s′ >, (5)

which is subjected to the following ‘total spin conservation’ law:

(Ŝy + L̂)(|Sy; ↑> ⊗|L; s >) = (Ŝz + L̂′)|Sz; ↑> |L; s′ >, (6)

where, |L; s′ > is the resulting state of L after interaction, which is an eigenstate of L̂′;

[L̂ , L̂′] 6= 0. Since, WF observed only the eigenvalue of Ŝz, one has L̂′|L; s′ >= 0:

(Ŝz + L̂′)(|Sz; ↑> |L; s′ >) = Ŝz(|Sz; ↑> |L; s′ >) =
1

2
h̄(|L; s′ > |Sz; ↑>). (7)

Therefore, the combined system of the particle and the lab is also an eigenstate of Wigner’s

Ŝz. Hence, there is no Wigner’s friend paradox either.

Notice that, the NI statistically reproduces the standard Born’s probabilistic description

of quantum mechanics and hence naturally explains the observed ‘cat states’ [9]. As exam-

ples, see the reference [5], where, the entanglement swapping, both in space and time, are

analyzed at individual quantum level which is in perfect agreement with the experimental

findings.

ANALYSIS OF FRAUCHIGER-RENNER’S PARADOX AT A

SINGLE-QUANTUM LEVEL

Briefly, the FR gedankenexperiment is as follows: Consider two copies of Wigner’s friend

paradoxes, where, W̄ and W are Wigners and F̄ and F are their friends, respectively. F̄
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tosses a coin system, say C. Whenever the head was the outcome, then he prepares a spin

system, say S, in a state | ↓> and if tail was the outcome, then S is prepared in the state

| →>. The initial state of C is such that it yields 1
3

probability for heads and 2
3

for tails. S

is then sent to F , who measures it in his own basis. Similarly, W̄ and W make observations

on F̄ and F in their own basis, respectively. The toss of coin is repeated over a large number

of times to arrive at the probabilities. See reference [3] for more details.

Let X be a generic agent whose observable is X̂X with eigenstates |u > and |v > corre-

sponding to the eigenvalues u and v, respectively:

X̂X = u|u >< u|+ v|v >< v|, (8)

and having the unit operator,

ÎX = |u >< u|+ |v >< v| = P̂u + P̂v, (9)

where, ÎX = (P̂u, P̂v); P̂u = |u >< u| and P̂v = |v >< v| are the projectors, respectively.

Now, X ∈ {W̄ , F̄ , F,W} and the measurement basis for Wigners and their friends are

W̄ = (−,+), F̄ = (h, t), F = (↓, ↑) and W = (←,→); X = (u, v); where,

|± >=
1√
2

(|h > ±|t >) ; | →>=
1√
2

(| ↓> +| ↑>) ; | ←>=
1√
2

(| ↓> −| ↑>). (10)

Notice that, as described earlier in the case of SGz apparatus, the NI allows one to write

down both C and S as a single entangled state (this will be justified little later) as,

|ψ >>=
1√
3
|h > | ↓> +

√
2

3
|t > | →> (11)

such that, when X = F̄ ,

ÎX |ψ >>= (P̂u , P̂v)|ψ >>=

(
1√
3
|h > | ↓> ,

√
2

3
|t > | →>

)
(12)

and

ˆ̄FF̄ |ψ >>= ˆ̄FF̄ (P̂u , P̂v)|ψ >>= (h , t)|ψ >>, (13)

correctly produce the outcomes of F̄ , because, he will observe either h or t during a single

quantum event. Note that, since, C and S are two independently prepared systems, there are

no conservation laws governing the combined system and hence, Einstein’s spooky action-

at-a-distance will be absent here [5].
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Let t̄2, t1, t2 and t3 be the instances of time at which W̄ , F̄ , F and W make their

observations, respectively; here, t̄2 > t1 < t2 < t3. The four statements given in the reference

[3] are rewritten below for the clarity, following the notations in the present article:

Statement 1 by F̄ : “If I get |t >, then I am certain that W will observe | →>”

Statement 2 by F : “If I get | ↑> , then I am certain that F̄ had observed |t >”

Statement 3 by W̄ : “If I get |− >, then I am certain that F had observed | ↑>”

Statement 4 by W : “If I get <← |, I know that there exists one round of the experiment

in which W̄ also gets |− >”.

Before proceeding to analyze the above statements using the NI, it’s useful to note the

following facts:

1. As already shown earlier, there is no Schrödinger’s cat paradox at the level of a single-

quantum’s single event.

If W̄ uses the same basis as F̄ , then both Schrödinger’s cat and Wigner’s friend

paradoxes are one and the same.

2. When W̄ uses a different measurement basis and treats F̄ ’s state as a superposition,

he knows that F̄ himself will be present in a particular eigenstate which will result

during the observation, though he can’t predict it with certainty. This situation of W̄

is the same as that of F̄ , who can’t predicted the exact outcome of the toss of a coin.

3. Let W̄ = F̄ and F = W . Then F̄ can predict the outcome of F as | ↓> if his

observed eigenvalue is h and F can infer the observed eigenstate of F̄ as |t > if his

measurement results in the eigenvalue 1
2
. Since, F̄ ’s prediction and F ’s inference do

not commute, this FR system doesn’t carry any information, i.e., it’s useless for the

transfer of information.

This fundamental drawback will be further amplified if W̄ and W use the measurement

basis different from F̄ and F , respectively, i.e.,

(a) The certainty of F̄ in predicting the definite outcome of F can’t be extended to

that of W .

(b) The inference of F can’t be extrapolated to W̄ and vice versa.
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See TABLE I describing the propagation of a single-quantum event observed by the

sequential observers, W̄ , F̄ , F and W in the time sequence, t̄2 > t1 < t2 < t3, respectively;

here, t̄2 doesn’t have to be necessarily lie in the interval (t1, t3].

As an example, consider F̄ ’s measurement at t1. If h is the outcome, then F̄ himself

enters into a state of both |h > and | ↓> which is available for W̄ ’s and F ’s measurements,

respectively. Since, [ ˆ̄WW̄ , F̂F ] = 0, both W̄ and F can make simultaneous measurements

on F̄ after his measurement. It’s important to note that, similar to the observation of h,

which throws F̄ into |h >, the preparation of | ↓> also puts him into the same spin state.

Therefore, whether F observes S or F̄ are all one and the same.

W̄ ’s measurement at t̄2 can yield an outcome of either |+ > or |− >, resulting in a state

given at S.No. a1 or a3, respectively, with relative frequency of detection (probability) 1
6

for

each state.

Later measurement of W on the resulting state of F will have no effect on the outcome

of W̄ , since, as already mentioned, |ψ >> does not exhibit Einstein’s spooky action-at-

a-distance. W can observe F either in | →> or | ←> with probability 1
6

for each one.

Similarly, all other outcomes are listed in S.No. b1 to S.No. b7.

Statement 1 by F̄ : TABLE II

Statement 1 by F̄ : “If I get |t >, then I am certain that W will observe | →>”.

From the Table I & II, it can be seen that if S.No. =
∑7

i=1 bi, then | →> becomes a

definite outcome for W because, the contribution at | ←> is zero. But, this necessarily

implies no measurement by F at t2. In this case, W̄ ′s measurement can yield either |+ >

or |− > with probability 1
3

for each one, irrespective of whether t̄2 > t3 or t̄2 < t3.

Statement 2 by F : TABLE III

Statement 2 by F : “If I get | ↑> , then I am certain that F̄ had observed |t >”- implying

S.No. =
∑7

i=1 bi of TABLE III.

The statement is is true at a single-quantum’s single event, but, contradicts the 1st

statement by F̄ about W , because, W ’s outcome now will be either | →> or | ←> with a

probability 1
6

for each one.
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TABLE I: Propagation of a single-quantum event observed by the sequential observers, W̄ , F̄ , F

and W in the time sequence, t̄2 > t1 < t2 < t3, respectively. t̄2 need not be necessarily lie in the

interval (t1, t3].

S. W̄ ′s Measure- W̄ ’s F̄ ’s F̄ ’s Measure- F ’s F ’s Measure- W ’s W ’s Measure-

No. ment at t̄2 ÎW̄ ÎF̄ ment at t1 ÎF ment at t2 ÎW ment at t3

a1
1√
6
|+ > | ↓> P̂+ P̂→

1√
6
|h > | →>

a2 ——————— ——– P̂h
1√
3
|h > | ↓> P̂↓

1√
3
|h > | ↓> ——– ——————–

a3
1√
6
|− > | ↓> P̂− P̂←

1√
6
|h > | ←>

b1 P̂→
1√
6
|t > | →>

b2
1√
3
|+ > | →> P̂+ P̂↓

1√
3
|t > | ↓> ——– ——————–

b3 P̂←
1√
6
|t > | ←>

b4 ——————— ——– P̂t

√
2
3 |t > | →> —— —————– ——– ——————–

b5 P̂→
1√
6
|t > | →>

b6 − 1√
3
|− > | →> P̂− P̂↑

1√
3
|t > | ↑> ——– ——————–

b7 P̂← − 1√
6
|t > | ←>

TABLE II: Statement 1 by F̄ : “If I get |t >, then I am certain that W will observe | →>”;

(provided, F didn’t make any observation).

S. W̄ ′s W̄ ’s F̄ ’s F̄ ’s F ’s No W ’s W ’s

Measurement Measurement Measurement Measurement

No. at t̄2 ÎW̄ ÎF̄ at t1 ÎF by F at t2 ÎW at t3

1√
3
|+ > | →> P̂+ P̂↓

1√
3
|t > | ↓> P̂→

√
2
3 |t > | →>∑7

i=1 bi ——————— ——— P̂t

√
2
3 |t > | →> + + —— ——————

− 1√
3
|− > | →> P̂− P̂↑

1√
3
|t > | ↑> P̂← 0

In this case, W̄ ′s measurement can yield either |+ > or |− > with probability 1
3

for each

one, irrespective of whether t̄2 > t3 or t̄2 < t3 akin to the situation in 1st statement.
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TABLE III: Statement 2 by F : “If I get | ↑> , then I am certain that F̄ had observed |t >”; true

at a single event level, but, makes the Statement 1 of F̄ about W as FALSE.

S. W̄ ′s Measure- W̄ ’s F̄ ’s F̄ ’s Measure- F ’s F ’s Measure- W ’s W ’s Measure-

No. ment at t̄2 ÎW̄ ÎF̄ ment at t1 ÎF ment at t2 ÎW ment at t3

b1 P̂→ 0

b2
1√
3
|+ > | →> P̂+ P̂↓ 0 ——– ——————–

b3 P̂← 0

b4 ——————— ——– P̂t

√
2
3 |t > | →> —— —————– ——– ——————–

b5 P̂→
1√
6
|t > | →>

b6 − 1√
3
|− > | →> P̂− P̂↑

1√
3
|t > | ↑> ——– ——————–

b7 P̂← − 1√
6
|t > | ←>

Statement 3 by W̄ : TABLE IV

Statement 3 by W̄ : “If I get |− >, then I am certain that F had observed | ↑>”.

As it can be seen from TABLE I, this happens if and only if S.No. =
∑3

i=1 ai +
∑7

i=1 bi

(see TABLE IV - (A)). Since, the system is observed in |− >, it will not be present in

|+ >, resulting in the state − 1√
6
|− > | ↑> for F , provided F̄ didn’t make any observation

on |ψ >>, which is a non-existent situation (see TABLE IV - (B)). Now, W can find F in

either | →> or | ←> with probability 1
12

for each one. But, now, F can’t infer the outcome

of F̄ as |t > at time t1 - contradicting the statement 2. One way of making the statement

to be true is by interpreting the state of F̄ to be in the superposition |ψ >>, while F̄

himself is in the particular state, − 1√
6
|− > | ↑>, and the remaining part of |ψ >>, i.e.,

|+ > (
√

2
3
| ↓> + 1√

6
| ↑>) is an ontological empty mode - though this is in agreement with

the NI, but such a situation is excluded in FR’s experiment.

Statement 4 by W : TABLE V

Statement 4 by W : “If I get <← |, I know that there exists one round of the experiment in

which W̄ also gets |− >”.

This statement is true as shown in TABLE V, but, contradicts the Statement 1, because,
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TABLE IV: Statement 3 by W̄ : “If I get |− >, then I am certain that F had observed | ↑>” -

using this, W̄ can’t conclude that F̄ was in |t > (Statement 2) which again results in W being in

| →> (Statement 1), because, in this case, W will be in either | →> or | ←> with probability 1
12

for each one.

S. W̄ ’s W̄ ’s F̄ ’s No F ’s F ’s W ’s W ’s

Measurement Measurement Measurement Measurement

No. at t̄2 ÎW̄ ÎF̄ by F̄ ÎF at t2 ÎW at t3

(A) (A) (A) (A) (A) (A) (A) (A) (A)√
2
3 |+ > | ↓>

√
3

2 |+ > | →>∑3
i=1 ai + P̂+

1√
3
|h > | ↓> P̂↓

√
2
3 |+ > | ↓> P̂→ −

1√
6
|+ > | ↑> P̂h

1√
12
|− > | →>

+ ——————– ——— + + —— ——————– —— ——————–

P̂t
1√
6
|+ > | ↑>∑7

i=1 bi −
1√
6
|− > | ↑> P̂−

√
2
3 |t > | →> P̂↑ − P̂←

1√
3
|+ > | ←>

1√
6
|− > | ↑>

(B) (B) (B) (B) (B) (B) (B) (B) (B)

0 0∑3
i=1 ai + P̂+

1√
3
|h > | ↓> P̂↓ 0 P̂→ −

0 P̂h
1√
12
|− > | →>

+ ——————– ——— + + —— ——————– —— ——————–

P̂t 0∑7
i=1 bi −

1√
6
|− > | ↑> P̂−

√
2
3 |t > | →> P̂↑ − P̂←

1√
12
|− > | ←>

1√
6
|− > | ↑>

F̄ will become uncertain about the outcome of W since there is a probability of 1
6

to get

| ←> as well.
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TABLE V: Statement 4 by W : If I get <← |, I know that there exists one round of the experiment

in which W̄ also gets |− >.

S. W̄ ’s Measure- W̄ ’s F̄ ’s 1st Measure- F ’s 2nd Measure- W ’s 3rd Measure-

No. ment at t̄2 ÎW̄ ÎF̄ ment at t1 ÎF ment at t2 ÎW ment at t3

1√
12
|+ > | →> 1√

12
|+ > | →>

a1 + P̂+ P̂→ +

1√
12
|+ > | ←> 1√

12
|− > | →>

a2 ——————— ——– P̂h
1√
3
|h > | ↓> P̂↓

1√
3
|h > | ↓> ——– ——————–

1√
12
|− > | →> 1√

12
|+ > | ←>

a3 + P̂− P̂← +

1√
12
|− > | ←> 1√

12
|− > | ←>

CONCLUSIONS

Schrödinger’s cat and Wigner’s friend paradoxes are analyzed using the ‘wave-particle

non-dualistic intrepretaion of quantum mechanics at a single quantum level’ and are shown

to be non-paradoxes. These results are then used to study Frauchiger-Renner’s paradox and

found that the four statements given in their article [3] are either mutually or self contra-

dictory ones, which themselves are the actual paradoxes, but, not the Quantum Mechanics.
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