
Curve Decima�on in SE(2) and SE(3)
Generalization of the Ramer-Douglas-Peucker Algorithm to Lie Groups

by Jan Hakenberg, 2019-09-08, ETH Zürich

Figure: The original Ramer-Douglas-Peucker algorithm operates on a sequence of points in ℝ2 (in red). The output is a

subset of points from the original sequence (indicated in gray) between which the connecting lines are guaranteed not to

deviate more than a given threshold from the input points. ■

Figure: The curve decimation algorithm presented in the document generalizes the notion of straight lines in ℝn to

geodesics in Lie groups. When applied to sequences in SE(2) the error combines the deviation in translation as well as in

orientation. ■

Abstract

We generalize the Ramer-Douglas-Peucker algorithm to operate on a sequence of elements from a Lie group. As the

original, the new algorithm bounds the approximation error, and has an expected runtime complexity of O(n log n).

We apply the curve decimation to data recorded from a car-like robot in SE(2), as well as from a drone in SE(3). The results

show that many samples of the original sequence can be dropped while maintaining a high-quality approximation to the

original trajectory.

Overview

Quote: “The Ramer-Douglas-Peucker algorithm decimates a curve composed of line segments to a similar curve with fewer

points. [...] The algorithm defines ‘dissimilar’ based on the maximum distance between the original curve and the simplified

curve. [...] The expected complexity of this algorithm can be described by the linear recurrence T(n) = 2 T(n /2) +O(n), which

has the well-known solution O(n log n). However, the worst-case complexity is On2.” [Wikipedia] ■

For sequences in ℝn, the deviation of a point r ∈ ℝn from the line that connects the points p, q ∈ ℝn is measured by projecting

the point r to the n - 1-dimensional subspace at p orthogonal to the direction q - p. The length of the projected vector is

measured using the Euclidean norm.

For sequences in a Lie group G, the deviation of a point r ∈G from the geodesic that connects the points p, q ∈G is mea-

sured by projecting the point r to the n - 1-dimensional subspace of the tangent space Tp G orthogonal to the direction

log p-1.q. The length of the projected vector is measured using a custom scalar product.

Implementation
The implementation of the curve decimation for the Lie groups SE(2) and SE(3) is open-source at [IDSC-Frazzoli].

2 20190908_curve_decimation_in_se2_and_se3.nb

Examples in SE(2) • Go-kart
The datasets below were recorded during the operation of the autonomous go-kart of IDSC/ETH Zürich, available at

[Ephemeral]. The datasets consist of slow laps as well as fast laps that involve side drift. We apply the new curve decima-

tion algorithm with the approximation error guaranteed to be below 0.064[m] AND 3.667[deg].

20190908_curve_decimation_in_se2_and_se3.nb 3

4 20190908_curve_decimation_in_se2_and_se3.nb

Examples in SE(3) • Drone Racing Quadrotor
We use the “UZH-FPV Drone Racing dataset, which is the most aggressive visual-inertial odometry dataset to date” by

[Delmerico, Cieslewski, Rebecq, Faessler, Scaramuzza]. “Large accelerations, rotations, and apparent motion in vision

sensors make aggressive trajectories difficult for state estimation.”

The (x, y)-coordinates of the trajectories in the datasets range over 20-30[m]. We set the curve decimation to guarantee a

deviation below 0.02[m] AND 1.14592[deg]. The curve decimation results in sequences that consist of only ~1% of the

original data.

Code

frm[m_] := With{t = m〚{1, 2, 3}, 4〛, r = 0.4 m〚{1, 2, 3}, {1, 2, 3}〛}, 
Red, Line[{t, t + r〚1〛}], Green, Line[{t, t + r〚2〛}], Blue, Line[{t, t + r〚3〛}]

shw[name_] := ModuleA = Getname <> "/poses.file",
B = Getname <> "/decimated.file", error = Getname <> "/error.file",

Printname, ToStringLength[A] <> " → " <> ToStringLength[B] <> " samples";
PrintRasterizeGraphics3DGrayLevel[.2], LineAAll, {1, 2, 3}, 4, frm /@ B,

Axes → True, ViewPoint → Above, AxesLabel → {"x[m]", "y[m]"},
ImageSize → Large, RasterSize → 1280;

PrintRasterize@ListPloterror, Joined → True, AxesLabel → "sample#", "error[m⩵rad]",
PlotStyle → Opacity[.2], PlotRange → All

fns = FileNames"Documents/uzh/*";

20190908_curve_decimation_in_se2_and_se3.nb 5

indoor_forward_3_davis

shwfns〚1〛

{Documents/uzh/indoor_forward_3_davis, 54868 → 568 samples}

6 20190908_curve_decimation_in_se2_and_se3.nb

indoor_forward_7_davis

shwfns〚4〛

{Documents/uzh/indoor_forward_7_davis, 73233 → 830 samples}

20190908_curve_decimation_in_se2_and_se3.nb 7

outdoor_forward_3_davis

shwfns〚8〛

{Documents/uzh/outdoor_forward_3_davis, 92826 → 929 samples}

8 20190908_curve_decimation_in_se2_and_se3.nb

References
[Wikipedia] Ramer-Douglas-Peucker algorithm

https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm, 2019

[Delmerico, Cieslewski, Rebecq, Faessler, Scaramuzza]

Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset, 2019

http://rpg.ifi.uzh.ch/uzh-fpv.html, 2019

[IDSC-Frazzoli] Library for non-linear geometry computation, 2019

https://github.com/idsc-frazzoli/owl

[Ephemeral]

https://github.com/idsc-frazzoli/ephemeral

20190908_curve_decimation_in_se2_and_se3.nb 9

