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Abstract 

This paper suggests to describe quantum system by uncertain complex waves. These waves satisfy 

an axiomatic system. This axiomatic system solves the measurement problem elegantly. It understand 

wave function collapse from an axiom about possible states. And observable properties are drive by 

Schrodinger equation without axioms about operators. 

I. Introduction 

Quantum mechanics has a long history and it has been used to explain many experiment 

results. Quantum mechanics passed through countless testing experiment [1][2], even the 

most rigorous experiment [3]. However, the controversy of the foundation of quantum 

mechanics has been never stopped [1][2]. The most outstanding debate is how the wave 

function collapse happen [4][5]? What properties are observable in a particular experiment 

[6]? Many works were done to answer these questions [7]. However, no approach is agreed 

widely because each has own difficulty [7]. 

If axioms about the operator in orthodox quantum mechanics are removed then the 

Schrodinger equation can indicate the observable properties by itself. On the other hand, if 

we know a general rule about possible states before and after measurement then we can 

understand the wave function collapse. So in this paper, I suggest a new description of 

quantum system by uncertain complex waves. The axiomatic system for these waves is 

obtained by modifying the axiomatic system of the orthodox quantum mechanics. Axioms 

about operators are removed. The observable properties are indicated to operators which 

their eigenvalues appear in solutions of the Schrodinger equation. And I propose an axiom 

about the possible states. This suggestion shows that discrete potential energy makes the 

change of state uncertain and suddenly. The wave function collapse is a simple consequence 

of this process. 

II. Theory and discussion 

1. Description of the quantum reality 

We know that the world is composed of micro-particles. So I believe that it exits 

a quantum reality of micro-particles. N. Bohr considered the quantum reality is 

counterintuitively [8]. The axiomatic system of the orthodox quantum mechanics is stated 

by E. G. Harris and it is showed in [9]. It is modified to become a new axiomatic system of 

new description. The new axiomatic system includes two axioms from Harris’s statement. 

They are the Born rule and the Schrodinger equation. Axioms about operators of the 

orthodox quantum mechanics are removed. The axiom about vector in Hilbert space is 

modified to become new form. And I proposed an axiom about possible states. It can be 



used for observed system as well as any other case. The first axiom in the suggested 

axiomatic system is: 

Quantum system is described by a set of vectors which is in Hilbert space. They 

are called state vectors or wave functions of system. The vector 𝜓 and 𝜆. 𝜓 (𝜆 is a complex 

number) describe the same state. In general, 𝜓 is normalized to the unit. 

Here, Only one vector in Hilbert space is not enough to describe quantum system. 

The first axiom requires many vectors for description. These vectors are determined the 

Schrodinger equation and its boundary conditions. Now, in the Hilbert space, we can 

define operators. Example, coordinates operators: 𝑥=x; 𝑦̂ = 𝑦; 𝑧̂ = 𝑧. Momentum 

operators: 𝑝𝑥 = −𝑖. ℏ.
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particle system: 𝐻 =
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+ 𝑉(𝑥, 𝑦, 𝑧, 𝑡). The quantity 𝑉(𝑥, 𝑦, 𝑧, 𝑡) is potential 

energy operator. It is a function of coordinates and time. 𝑚 is mass of the particle. 

Relativity Hamiltonian operator for single particle has form: 𝐻 = 𝛼𝑥 . 𝑝𝑥 + 𝛼𝑦 . 𝑝𝑦 +

𝛼𝑧. 𝑝𝑧 + 𝛽.𝑚. 𝑐2. Here 𝛼𝑥 = (
0 𝜎𝑥

−𝜎𝑥 0
), 𝛼𝑦 = (

0 𝜎𝑦
−𝜎𝑦 0

), 𝛼𝑧 = (
0 𝜎𝑧
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), 𝛽 =

(
𝐼2 0
0 −𝐼2

). 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 are Pauli matrices. 𝐼2 is unit matrix (
1 0
0 1

). The second axiom in E. 

G. Harris’s statement is: 

Wave functions of system satisfy the Schrodinger equation: 𝑖. ℏ.
𝑑

𝑑𝑡
𝜓 = 𝐻𝜓 

The wave functions also satisfy two packs of conditions. The first are initial 

condition and boundary conditions which are Dirichlet and Neumann conditions. The first 

pack is called tight condition. The second pack includes integrable square, single-valued 

and continuous conditions. They pack is called open condition. Wave function which 

satisfies tight condition exists only. It is called tight solution, tight wave function or tight 

state vector. Wave functions which satisfy the open condition are called open solutions, 

open wave functions or open state vectors. 

If the potential energy operator is discontinuous then the Schrodinger equation 

must be investigated in many space domains. We divide space into the as large as possible 

domains 𝐷𝑖  (i=1,2,..) in which the potential energy is continuous in each domain. These 

domains are called continuous domains of the system. The Schrodinger equation has one 

the largest symmetry group 𝐺𝑖 in each domain 𝐷𝑖. It is called basic group of the system in 

𝐷𝑖. Open solutions of the Schrodinger equation in 𝐷𝑖  is a set 𝑈𝑖  which is a linear space. 

𝑇𝑖𝑛 (i=1,2,..;n=1,2,..) is an irreducible representation of 𝐺𝑖 in 𝑈𝑖. In the space of open 

solutions, 𝑈𝑖𝑛 is a subspace which is invariant with 𝑇𝑖𝑛. Space 𝑈𝑖𝑛 is called irreducible 

space of 𝐺𝑖. The axiom about the possible states is suggested by following: 

Possible states of system in a continuous domain 𝐷𝑖  are vectors which belong to 

irreducible spaces 𝑈𝑖𝑛 of the basic group 𝐺𝑖. 

Now, the open solutions can be called possible solutions, possible wave functions 

and possible state vectors. The basis of each space 𝑈𝑖𝑛 are orthogonal, the basis of each 

space 𝑈𝑖  are too. From the first axiom, we can consider these bases are orthonormal. 𝜓𝑖𝑛 

is a vector  in 𝑈𝑖𝑛. 𝜓𝑖  is a vector in space 𝑈𝑖, we have: 𝜓𝑖 = ∑ 𝑐𝑖𝑛. 𝜓𝑖𝑛𝑛 . Vector 𝜓𝑖  which 



is an open solution of the Schrodinger equation, in general, doesn't belong to any 

irreducible space of 𝐺𝑖. So 𝜓𝑖  isn’t a possible state. So the axiom about the possible states 

and the superposition principle aren't compatible. 

With stationary systems, each space 𝑈𝑖𝑛 corresponds to a stationary energy level. 

Vectors in 𝑈𝑖𝑛 correspond to the same energy level. The degenerative degree of this 

energy level equals the number of dimensions of 𝑈𝑖𝑛. Of course, with a stationary system, 

combinations of two possible states which aren’t the same energy level are not a possible 

state. Note 𝐷𝑖  is a 4-dimensions domain. So the axiom about possible states is also used 

for time-dependent possible states. 

If 𝜓 is the tight solution, it can be expanded: 𝜓 = ∑ 𝑐𝑖𝑛. 𝜓𝑖𝑛𝑛 . The Born rule is 

stated: 

In general, in a continuous domain, system doesn’t belong any particular possible 

state. The possibility of each possible state 𝜓𝑖𝑛 is |𝑐𝑖𝑛|
2. 

Here, I suggest that the uncertainty is natural property of quantum system. And 

it doesn’t depend on restriction of human and apparatus. 

The set of tight solution 𝜓 and possible solutions 𝜓𝑖𝑛 are called state of system. 

We symbolize the state {𝜓|𝜓𝑖𝑛}. The state of system is also described by vectors {𝜓𝑖𝑛} 

and coefficients {𝑐𝑖𝑛}. So we can also symbolize the state {𝜓𝑖𝑛|𝑐𝑖𝑛}. Observable 

properties. 

2. Observable properties 

We can divide the measurement into two types. The first, the system acts directly 

on detector. Experiments Stern-Gerlach [10] and double slits [11] belong to this type. The 

second, the system acts on a middle system then it acts on the detector. Example the 

measurement of the radiative spectrum of the atom [12], the radiative field is the middle 

system. 

The distribution function of possibility density of the system can be got from the 

first type. We must combine the measurement results and a suitable mathematical model 

to get other information about the system. We must combine the measurement results 

and solutions of the Schrodinger equation to get quantum properties of the system. 

Example, we can find the energy level’s structure of an atom by combining the its 

experimental spectrum and perturbation solution of the Schrodinger equation. If the 

Schrodinger equation of the system is difficult to analyze then we can only drive a little 

information from the experiment results. Example, we only drive a little information from 

the visible radiative spectrum of solid materials [13] because its Schrodinger equation is 

very difficult to analyzing. 

Qualitative quantum properties can be gotten from the qualitative solutions of 

the Schrodinger equation. Example, it may be driven to the atom’s number of possible 

states from qualitative solutions of the Schrodinger equation. 

Quantitative quantum properties can be gotten only from the combination 

between experiment result and quantitative solutions of the Schrodinger equation. The 

quantitative properties are divided into two types. The first are constants as mass and 

charge of micro-particle. The second, in a stationary system, are eigenvalues of the 



operator 𝐴 which commutes with Hamiltonia. We can drive the value of the eigenvalues 

𝑎𝑖 of operator 𝐴 because they appear in the quantitative solutions of the Schrodinger 

equation. So Observable quantities in a particular experiment are indicated clearly by only 

Schrodinger equation without axioms of operators. They correspond to operators which 

their eigenvalues appear in the quantitative solutions of the Schrodinger equation. And 

we can define: quantitative quantum properties of the system can be described by 

operators, possible values of each quantity are eigenvalues of the operator. These 

operators need to be hermitic because their possible values are real. 

3. The wave function collapse 

If the potential energy is discontinuous then space is divided into many 

continuous domains 𝐷𝑖. Symmetry groups of the Schrodinger equation and possible 

states are different in each domain 𝐷𝑖. So the state of the system changes when it shifts 

to the next continuous domain. An observed system is acted by apparatus. We describe 

this effect by a measurement potential energy 𝑉𝑚𝑒𝑎𝑠. It is made by the apparatus and like 

every other interaction. The total potential energy of system is 𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉 + 𝑉𝑚𝑒𝑎𝑠. The 

total potential energy of system usually is discontinuous because of the measurement 

potential energy. So space is usually divided into continuous domains because of the 

measurement. The shifting between continuous domains of system makes the change of 

state. This process is suddenly and uncertain. And it is like the wave function collapse [5]. 

Because of these properties, the possible states are called uncertain complex waves. And 

the quantum system can be described by uncertain complex wave and their possibility. 

Here, the apparatus isn't restricted in the frame of classical law to understand the 

wave function collapse [14]. It isn't only the measurement potential energy, the state of 

the system but also may change suddenly because of any other interaction. The state of 

the system after measurement doesn’t depend on the observer’s mind. It only depends 

on the Hamiltonian and the measurement potential energy. 

Here, there are no registered properties. This is difference from orthodox 

quantum mechanics. This difference may be cleared because the orthodox quantum 

mechanics can’t indicate clearly observed operator in a particular experiment. 

III. Conclusion 

Paper describes the quantum system by uncertain complex waves. An axiomatic system 

is suggested for these waves completely. They are obtained by modifying the axiomatic 

system of the orthodox quantum mechanics. Then the Schrodinger equation without axioms 

about operators can indicate the observable properties by itself. While we can understand 

the wave function collapse by using an axiom about possible states. 
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