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A modified version of the near horizon metric is introduced, that puts the near horizon metric in
the same form as one of the most commonly-used metric variants of Rindler space. The metric is
then used to calculate the Hawking temperature, using the WKB tunneling approximation.

INTRODUCTION

The emission of thermal radiation by black holes
is a combined prediction of quantum field theory
and general relativity. The idea that black holes
emit photons, and in the process, slowly evaporate,
eventually out of existence, was first introduced to
the physics community by Stephen Hawking in 1975
[1]. The temperature of the black hole’s radiation,
which by definition is measured by an observer lo-
cated infinitely far away from the black hole, has
been termed the Hawking temperature TH .

The Hawking temperature of an astronomical
black hole is very cold.1 This is because the radi-
ation has to undergo an enormous redshift on its
climb out of the black hole’s gravitational potential
well. More massive black holes have stronger grav-
itational fields, which causes the emitted radiation
to lose more energy on its way to infinity, where the
observer measures a correspondingly lower temper-
ature.2

Soon after its introduction, the phenomenon of
Hawking radiation was extended to related concepts,
such as Unruh radiation in 1976 [2], seen by a uni-
formly accelerating observer in Rindler space; and
the radiation emitted by an observer’s cosmological
horizon, in 1977 [3].

Hawking’s original approach has also been ex-
tended to different methods of calculation [4–10],
and to different black hole geometries, such as for
charged and rotating black holes [11, 12]. Of great
relevance to this paper, a tunneling model of Hawk-
ing radiation, introduced by Parikh and Wilczek
in 1999, replaces the original calculation’s use of

1 TH ≈ 6.1× 10−8 K for a hypothetical one solar mass black
hole.

2 Even though it’s typical to talk about black holes being
very cold, if you were to get really close to a black hole’s
event horizon, it would feel very hot, since the photons have
not yet traveled through an extremely strong gravitational
potential well. A better discussion on this can be found in
[9].

quantum field theory with the WKB approxima-
tion of particle tunneling in quantum mechanics [4].
This method can be used to give a very quick and
straight-forward calculation of the Hawking temper-
ature.

The Hawking temperature of a Schwarzschild
black hole has been calculated in many different
metrics of the Schwarzschild geometry, including the
near horizon metric in [9]. In this paper, we derive
a modified version of the near horizon metric, that
puts it in a form that is similar to a specific Rindler
metric variant. The new metric is then used to cal-
culate the Hawking temperature. The primary focus
of this paper can be divided into two parts. Part 1
presents the derivation of a metric variant of the near
horizon approximation. In Part 2, the metric is used
to calculate the Hawking temperature, to show that
it works.

This paper uses c = G = ~ = kB = 1.

PART 1: METRIC VARIANT DERIVATION

Motivating the metric variant’s derivation

The local geometry of a Schwarzaschild black hole
looks a lot like Rindler space. One way to see this is
by comparing some of their metrics. Two commonly
appearing forms of the Rindler metric are

ds2 = − (axR)
2
dt2R + dx2R + dy2R + dz2R (1a)

ds2 = − (1 + axR)
2
dt2R + dx2R + dy2R + dz2R (1b)

where a represents the Rindler observer’s coordinate
acceleration.3 Subscript R is used to distinguish the

3 The coordinate acceleration, in contrast to proper acceler-
ation, is the Rindler observer’s acceleration as it is mea-
sured by an observer in the coordinates of the underlying
Minkowski space.
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coordinates of the Rindler observer’s tetrad from co-
ordinates of the underlying Minkowski space. The
near horizon metric from [9], looks a lot like the first
of the two Rindler metrics (1a)

ds2 = − (κrNH)
2
dt2 + dr2NH + dY 2 + dZ2 (2)

where κ is the black hole’s surface gravity, rNH rep-
resents proper distance of a spacetime event above
the event horizon, and Y,Z are the local coordinates
of a Cartesian plane, tangent to the event horizon.

The fact that (2) is symmetric to (1a) motivates
the question as to whether or not there is a co-
ordinate transformation that can turn (2) into an
equation that looks like (1b). As it turns out, this
can be done, but is not as straight-forward as the
Rindler space transformation that is used to turn
(1a) into (1b). The reason for this has to do with
the fact that the underlying geometry in Rindler
space is flat Minkowski space, instead of the curved
Schwawrzschild spacetime. A Rindler observer ac-
celerates through flat spacetime, while a near hori-
zon observer accelerates through curved spacetime.

Derivation of the original near horizon
approximation

It makes sense to start with a derivation of the
original near horizon metric, from the Schwarzschild
metric, because it will be useful to refer back to some
of the equations that come up later on. This deriva-
tion is based primarily on [9]. An alternative ap-
proach can be found in [13].

The near horizon metric’s derivation starts from
the Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2dΩ2 (3)

where dΩ2 = dθ2 + sin2 θdφ2,
The near horizon radial coordinate rNH repre-

sents proper distance of a spacetime event, above
the event horizon, with rNH = 0 corresponding to
r = 2M , and is calculated as drNH =

√
grrdr

drNH ≡
dr√

1− 2M
r

(4)

Using this to replace the Schwarzschild metric’s ra-
dial component

ds2 = −
(

1− 2M

r

)
dt2 + drNH

2 + r2dΩ2 (5)

Next, drNH needs to be turned into a finite distance
before it can be used to replace r in the metric’s time
component. Integrating (4) to a finite distance

rNH (r) =

ˆ r

0

dr′√
1− 2M

r′

= 2M sinh−1
(√

r
2M − 1

)
+
√
r(r − 2M)

(6)

This integral can be calculated using a change of
variables r′ = 2M sec2 t, and is shown in appendix
Section A 1.

The inverse of (6) is needed to rewrite the time
component explicitly in terms of rNH . This is done
using a separate approximation for each term on the
right hand side of (6).

First, the argument of sinh−1
(√

r/2M − 1
)

goes

to zero in the limit r → 2M , so it can be ap-
proximated with a first order Taylor expansion of

sinh−1
(√

r/2M − 1
)

at r = 2M . Using

sinh−1 x = x−O
(
x3
)

(7)

to approximate the first term on the right hand side
of (6) at r = 2M

2M sinh−1
(√

r
2M − 1

)
≈
√

2M(r − 2M) (8)

Second, Taylor expanding the argument under the
square root, in the second term on the right hand
side of (6), at r = 2M gives

√
r(r − 2M) ≈

√
2M(r − 2M) (9)

Adding (8) and (9)

rNH(r) = 2
√

2M(r − 2M) (10)

whose inverse is given by

r(rNH) = rNH
2

8M + 2M (11)

This can be used to rewrite the metric’s time-
component explicitly in terms of rNH
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−
(

1− 2M

r (rNH)

)
dt2 = − 1

(4M)2
r2NH

(
1( rNH

4M

)2
+ 1

)
dt2

≈ − 1

(4M)2
r2NHdt

2 (12)

Using this to replace the metric’s time component
in (5)

ds2 = − 1

(4M)
2 rNH

2dt2 + drNH
2 + r2dΩ2 (13)

The near horizon time coordinate is usually de-
fined by rescaling Schwarzschild time t → t/4M .
However, it will make sense here to leave the
Schwarzschild time coordinate unchanged, because
it makes the symmetry between the near horizon
and Rindler metrics easier to see.

Normally the angular component is approximated
as a disc situated on top of the event horizon, by
setting r = 2M and sin θ ≈ θ for small deviations
from θ = 0

r2dΩ2 ≈ (2M)
2 (
dθ2 + θ2dφ2

)
= dx2 + dy2 (14)

In this limit, angular components can also be ex-
pressed as a Cartesian plane, tangent to the event
horizon. That being said, we will not need the angu-
lar component for the remainder of this paper. Tak-
ing just the near horizon metric’s time-radial com-
ponent

ds2 = − 1

(4M)
2 rNH

2dt2 + drNH
2 (15)

THE METRIC VARIANT

The surface gravity of a Schwarzschild black hole
is κ = 1/4M , and can intuitively be thought of as a
redshifted-to-infinity measure of the proper accelera-
tion that would be required for an observer to remain
radially at rest at the event horizon. A derivation of
κ that demonstrates this interpretation is given in
the appendix B 2. Replacing 1/4M in (15) with κ
puts the metric in a form that is symmetric to the
Rindler metric’s relevant (1 + 1) component in (1a)

ds2 = −κ2rNH2dt2 + drNH
2 (16)

a−1 equals proper distance to the accelerating observer’s
Rindler horizon

The coordinates of the Rindler metric in (1a)
are related to the coordinates of an underlying
Minkowski space by

t (tR, xR) = xR sinh atR (17a)

x (tR, xR) = xR cosh atR (17b)

Showing that a−1 equals the proper distance to
an accelerating observer’s Rindler horizon, is done
here to set up a situation where a similar insight
can be deduced for our alteration of the original near
horizon metric, and can be shown in two steps.

First, the accelerating observer’s Rindler horizon
is located at xR = 0. Physically, (17a) tells us that
time freezes for events located at xR = 0, and only
at xR = 0, indicating xR = 0 as the Rindler horizon.
Mathematically, the metric is guaranteed to be sin-
gular for arbitrary values of tR, only when xR = 0.
Since xR = 0 is the only spatial location where the
metric is guaranteed to be singular, it must be the
location of the accelerating observer’s Rindler hori-
zon. A similar argument is made in [10].

Second, it can be shown using a very long deriva-
tion, which starts from first principles, that the pa-
rameterized worldline of the Rindler observer with
acceleration a, is given by [14]

t (tR) = a−1 sinh atR (18a)

x (tR) = a−1 cosh atR (18b)

Comparing this to (17) we can see that xR = a−1

is constant for a Rindler observer traveling along
their worldline. Since we found that the accelerating
observer’s horizon is located at xR = 0 in the first
step, and found that the Rindler observer is located
at xR = a−1 as they travel along their worldline in
the second step, it follows that the Rindler observer
is located a proper distance xR = a−1 away from
their Rindler horizon.

Proper acceleration equals inverse proper distance to the
event horizon of a Schwarzschild black hole, in the limit

r → 2M

The near horizon metric in (16) has the same kind
of relation to Minkowski coordinates as is shown for
the Rindler coordinates in (17)
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T (t, rNH) = rNH sinhκt (19a)

X (t, rNH) = rNH coshκt (19b)

which can be shown by putting T and X into a
Minkowski space line element

− dT 2 + dX2 = −κ2rNH2dt2 + drNH
2 (20)

The origin of this local Minkowski space is cen-
tered on the event horizon, since rNH = 0 corre-
sponds to r = 2M .

This also, should be expected, given what was just
shown for the case of an accelerating observer in
Rindler space.

Given these facts, along with the symmetry be-
tween (16) and (1a), it’s tempting to think that rNH
should be equal to κ−1 in the limit r → 2M (since
the near horizon approximation becomes exact in
that limit). However, it turns out that rNH = a−1,
not κ−1, in the limit r → 2M .

It’s shown in the appendix Section B 1, that in or-
der for an observer to remain radially at rest with
respect to the global Schwarzschild geometry, the
observer must maintain a constant proper accelera-
tion

a (r) =
M

r2
√

1− 2M
r

(21)

which exactly offsets the black hole’s downward
gravitational pull.4 This can be inverted and re-
arranged, to write the inverse proper acceleration

a−1 (r) = r
M

√
r (r − 2M) (22)

Taylor expanding the argument under the square
root to first order at r = 2M

a−1 (r) ≈ r
M

√
2M (r − 2M) (23)

In the limit r → 2M , the outside factor of r
M goes to

2 without any problems, so we can replace r
M → 2,

which gives

4 We’ve run into an overuse of notation with a, a(r) being
used to represent two different accelerations. From here
on out, a refers to the coordinate acceleration of a Rindler
observer, and a (r) indicates the proper acceleration of a
near horizon observer.

lim
r→2M

a−1 (r) = 2
√

2M (r − 2M)

= rNH (24)

with rNH as it is given in (10).
We can use this result to replace rNH → a−1 in

(19a) and (19b)

T (t, r) = a−1 (r) sinhκt (25a)

X (t, r) = a−1 (r) coshκt (25b)

However, an additional step is needed, beyond
what would be done for a Rindler space version of
this calculation, since (25) is not symmetric to (18).
Specifically, we need to rescale the proper length in
the local tangent space at r = 2M , to proper length
at infinity, which will make (25) symmetric to (18),
by rescaling a−1 (r)→ κ−1.

Rescaling the local coordinates to measure
proper distance at infinity

The interpretation of surface gravity mentioned
earlier, suggests a rescalling of (19) by a redshift
factor

f(r) ≡ ds

dr
=

1√
1− 2M

r

(26)

where r represents the location from where the ra-
diation is emitted, which in this case is r = 2M .
In the limit r → 2M we find that f (r) → ∞ and
rNH (r)→ 0, but their product remains finite

f(r)rNH(r) = 2
√

2Mr (27)

which at r = 2M becomes

f(2M)rNH(2M) = κ−1 (28)

Both T and X in (19) are proportional to rNH , so
we can easily rescale them by multiplying (19) by
the redshift factor f (r), and then evaluate the new
coordinates at r = 2M to get

T∞ (t) = κ−1 sinhκt (29a)

X∞ (t) = κ−1 coshκt (29b)

which is symmetric to (18).
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T∞, X∞ have a flat metric that measures proper
distance at infinity

To show that T∞ and X∞ have a flat metric that
measures proper distance at infinity, we must first
replace κ−1 in (29), by the unevaluated form of (27)

T∞ = 2
√

2Mr sinhκt
∣∣
r=2M

(30a)

X∞ = 2
√

2Mr coshκt
∣∣
r=2M

(30b)

Taking coordinate differentials, evaluating them at
r = 2M , and then using κ = 1/4M to make simpli-
fying cancellations

dT∞ = sinh (κt) dr + cosh (κt) dt (31a)

dX∞ = cosh (κt) dr + sinh (κt) dt (31b)

Putting this into a Minkowski line element shows
that they measure proper distance at infinity

−dT∞2 + dX∞
2 = −dt2 + dr2

= ds∞
2 (32)

Transforming T∞ and X∞ through an arbitrary
spatial translation ρ, to give them spatial

dependence in the rescaled local tangent space
at r = 2M

The metric’s flatness is important for this section,
because it means that a calculation of the Hawking
temperature (and any other scalar quantity) that is
started from these coordinates, is invariant under
Poincaré transformation. This means we can add
spatial-dependence to (29), by Poincaré transform-
ing T∞, X∞ through an arbitrary spatial translation
ρ.

Starting from a spacelike translation in Minkowski space

The spatial translation on T∞, X∞ can be set
up by starting from the more simple case of a
Poincaré transformation in Minkowski space. This
can then be extended to the current situation
through some minor adjustments. A Lorentz trans-
formation through one space and one time dimension
is given by

(
t′

x′

)
=

(
γ −vγ
−vγ γ

)(
t
x

)
(33)

x̂

t̂

x′

t′t′

x0

− 1
γ
x′

x

FIG. 1: A Poincaré transformation, with a
spatial translation being made in the

negative x′-direction ((1/γ)x′ → − (1/γ)x′

in (34)). The coordinate axes of the rest
frame S are labeled with hatted S-frame
coordinates t̂, x̂, since the un-hatted x is

being used to represent the distance of the
event in S′ from the origin of S.

We can rewrite the spatial component as an expres-
sion for x(t)

x (t) = x0(t) +
1

γ
x′ (34)

where x0(t)=vt represents the not-Lorentz-
contracted distance between the origins of the
two inertial frames, and is the one-dimensional
version of what we already have in (29).

(1/γ)x′ in (34) represents the distance of an event,
with respect to the origin of the moving frame S′,
as seen by an observer in the coordinates of S. Al-
though (29) lacks a corresponding term, we know
that it is possible to add one, since spatial transla-
tions are a symmetry of special relativity. Doing this
for the current situation is more complicated than
for the one-dimensional situation shown in Figure 1,
because it requires us to keep track of components
for two dimensions. In the current situation, the fac-
tor of (1/γ)x′ will be replaced by an inverse Lorentz
transformation.

The situation described by (34) is depicted in Fig-
ure 1, except with the figure being shown for a
translation in the negative x′-direction, (1/γ)x′ →
− (1/γ)x′ in (34), since that will be the direction to
the event horizon in the current situation.
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The analogous situation that takes place in the presence
of a Schwarzschild black hole

In the current situation, S represents an inertial
frame whose axes instantaneously coincide with the
axes of the near horizon observer’s tetrad at r =
2M . S is situated on the event horizon, but since S
is inertial, at the next instant in time, it will have
fallen into the black hole, and its axes will no longer
coincide with the axes of a fixed local tangent space
at r = 2M .

The accelerating frame S′′ is noninertial, and is lo-
cated a very small distance above the event horizon.
Locally, from the perspective of the inertial observer
in S, the noninertial frame S′′ appears to be mov-
ing through space, as it accelerates away from the
observer in S, while in fact S′′, is actually at rest
relative to the global Schwarzschild geometry. The
proper acceleration of S′′ exactly offsets the acceler-
ation due to gravity at its location.
S′ is an inertial infalling frame, like S, whose axes

instantaneously coincide with the axes of S′′. From
the perspective of an observer in S, the other inertial
frame S′ appears to be instantaneously comoving
with S′′, along the parameterized worldline that is
defined by (29).

Assuming instantaneously comoving frames in place of
a noninertial frame

The Poincaré transformation for the current sit-
uation takes the same basic form as (34), but is
made more complicated by the fact that the accel-
erating frame S′′ is noninertial. This is a problem
because Lorentz transformations are technically only
defined for coordinate transformations between iner-
tial frames, neither frame can be noninertial. This
means that there technically is no Lorentz transfor-
mation that takes events in S′′, into the coordinates
of S for all instances in time.

The way around this problem is to assume that
we are planning to define a completely new in-
verse Lorentz transformation for each new instant
in time. Practically-speaking, this just means that
our inverse Lorentz transformation now has time-
dependence Λνα′ = Λνα′ (t). This time-dependence
is due to the acceleration of the noninertial frame
causing the velocity parameter in (33) to become
time-dependent.

We can calculate the velocity
v (t) = (dX∞/dT∞) (t) by taking coordinate differ-
entials of (29), which gives

v (t) = tanhκt (35)

And γ =
(
1− v2

)−1/2
gives

γ (t) = coshκt (36)

which comes from using the trig identity sech2 κt =
1−tanh2 κt. An inverse Lorentz transformation Λνα′
is defined by replacing v → −v in (33), to represent
the fact that we are measuring the velocity of S with
respect to S′. After making this replacement, we can
insert (35) and (36) to get

Λνµ′(t) =

(
coshκt sinhκt
sinhκt coshκt

)
(37)

Spatial translation in the rescaled local tangent space at
the event horizon

The acceleration of S′′ further complicates things
in another way. It is easy to see in Figure 2, that
as time increases, the acceleration of S′′ causes its
worldline to increase in distance from the origin of S,
along both axes. This is in contrast to what is seen
in Figure 1, where the distance between S and S′

changes only along one dimension (the time-axes of
S and S′ remain parallel in Figure 1, but do not re-
main parallel in Figure 2). The fact that the current
situation requires us to keep track of the increase in
separation between S and S′ along two dimensions
instead of one, means that (34) must be re-expressed
as a position 4-vector equation in the rescaled local
tangent space at r = 2M

x(t, ρ) = x0(t) + x′(t, ρ) (38)

where ρ is a spacelike coordinate of S′ that measures
distance along the direction of acceleration of S′′.

The objective is to find the 4-vector components of
this equation in the basis vectors eν of frame S. The
first term on the right hand side of (38) is a time-
dependent position vector, representing the world-
line of S′ as seen from the origin of S. Since the basis
vectors eν of S are at rest in their own frame, the
time-dependence of x0 (t) is entirely attributed to
the time dependence of its coordinates x0

ν = x0
ν (t)

when expressed in the eν basis

x0 (t) = x0
ν (t) eν (39)
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X∞, t = 0

T∞

P
ast

H
orizon

(r
N
H

=
0)

F
u
tu
re

H
or
iz
on

(r N
H

=
0)

t = ∞

t = −∞

x0 (0)

x (0) x′ (0)

FIG. 2: The red, and blue hyperbolas,
represent the worldlines of the accelerating
frame S′′ (and comoving frame S′), and the
event in S′ that is a spacelike translation x′

(depicted in the negative direction, since that
is the direction of the event horizon) with

respect to the origin of the comoving frame.

whose first and second components are T∞ (t),
X∞ (t). From (29), we can write

x0
ν (t) =

(
κ−1 sinhκt, κ−1 coshκt

)
(40)

which correspond to the position vector that traces
out the worldline that is depicted as a red hyperbola
in Figure 2.

The second term x′ (t, ρ) on the right hand side
of (38), represents a separation vector in that local
tangent space, extending from the origin of S′, to
an arbitrary event in that local tangent space. The
event differs from the origin of S′ by a spatial trans-
lation ρ, when expressed in the coordinates x′µ

′
of

S′. So

x′µ
′

=
(
0, ρ

)
(41)

where ρ is a spatial coordinate defined on the interval
[−κ−1,∞), and can be viewed as a gravitationally-
redshifted-to-infinity rescaling of rNH , and therefore

reflects measurements on rNH , made by an observer
at infinity.

The condition that x′ (t, ρ) correspond to a purely
spacelike translation when expressed in the coor-
dinates of S′, means that the time-dependence of
x′ (t, ρ) in (38) is entirely attributed to its basis vec-
tors

x′ (t, ρ) = x′µ
′
(ρ) eµ′ (t) (42)

The basis vectors of S′ are related to the basis
vectors of S by the inverse Lorentz transformation
in (37)

eµ′ (t) = Λνµ′ (t) eν (43)

Putting this into (42) allows us to rewrite (38) en-
tirely in the basis vectors eν of S, which has com-
ponents

xν (t, ρ) = x0
ν (t) + x′

µ′
(ρ) Λνµ′ (t) (44)

Calculating the second term on the right hand side
of (44) from (41) and (37), and then adding it to
(40), which contributes the components for the first
term on the right-hand side of (44), gives the new
coordinate relations

T∞(t, ρ) =
(
κ−1 + ρ

)
sinhκt (45a)

X∞ (t, ρ) =
(
κ−1 + ρ

)
coshκt (45b)

As a consistency check, it’s easy to see that we get
(29) back when ρ = 0.

Taking coordinate differentials of (45a) and (45b)
gives us a new variant of the near horizon metric

ds2∞ = − (1 + κρ)
2
dt2 + dρ2 (46)

where the infinity subscript is used to emphasize
that the metric measures proper distance at infin-
ity, which follows from (32). This is in contrast to
the original near horizon metric in (2), which mea-
sures distance on the lengthscale of proper distance
just above the event horizon.

Conclusion for Part I

A variant of the near horizon metric is shown in
(46). It takes the same form as the Rindler metric



8

variant in (1b). In some situations, the fact that
all of its parameters are defined in terms of their
measurements at infinity, may make it slightly more
useful than the original near horizon metric in (2).
However, the fact that the spatial origin of (45) cor-
responds to the spatial origin of a worldline above
the event horizon, instead of to the event horizon
itself (as it does for the original near horizon met-
ric), will probably make (46) slightly less convenient
for most calculations than the original near horizon
metric. Nevertheless, taking the time to go through
its derivation provides a very good drill on some of
the basics concepts in general relativity.

PART II: CALCULATING THE HAWKING
TEMPERATURE

In Part II, a calculation of the Hawking temper-
ature is made in the metric variant (46) that was
derived in Part I. The calculation is made using the
tunneling model of Hawking radiation that was men-
tioned earlier. In this approach, the WKB approxi-
mation treats that the tunneling event is an instanta-
neous process (the positive-energy outgoing virtual
photon just happened to be above the event horizon
when the measurement was made), so the action’s
time-contribution is equal to zero

S =

ˆ
pµdx

µ =

ˆ
pidx

i (47)

The outgoing positive-energy virtual photon, or
ingoing negative-energy virtual photon, follows a
lightlike radial geodesic, and is modeled as an s-wave
of energy ±ω,5 tunneling across the spherical surface
at ρ = −κ−1, which corresponds to the event hori-
zon in (46). This process is be described by (47)
as

S± = lim
ε→0

ˆ −κ−1±ε

−κ−1

pρdρ

= lim
ε→0

ˆ −κ−1±ε

−κ−1

ˆ pρ

0

dpρdρ
′ (48)

where the subscript ± distinguishes the cases of
positive-energy outgoing and negative-energy ingo-
ing virtual particles.

5 +ω for outgoing positive-energy virtual photons, and −ω
for ingoing negative energy virtual photons.

The Hamiltonian is defined as the total energy
contained in the spacetime, so it has a scalar value
that is equal to the black hole’s initial rest mass
H = M . Each tunneling event is preceded by pair
creation

M → −ω + ω +M (49)

During each tunneling event, a positive/negative-
energy virtual photon tunnels out-of/into the black
hole. Once the virtual photons are separated across
the event horizon they materialize into real pho-
tons. The positive-energy photon materializes out-
side of the black hole, and travels off to infinity. The
negative-energy photon materializes on a negative-
energy geodesic inside of the black hole, and mani-
fests as a decrease in the black hole’s mass.

The classical Hamilton for this process takes the
form H (pρ, ρ) = T (pρ)+U (ρ). Hamilton’s equation
for the particle’s velocity ρ̇ = ∂H/∂pρ is equal to

ρ̇ =
dT

dpρ
(50)

where dT is a transfer of kinetic energy. In both
outgoing and ingoing cases, this energy transfer de-
creases the black hole’s mass, and transfers the rest
mass lost by the black hole, into the kinetic energy of
the outgoing photon dT = +dω. So we can rewrite
(50) as

dpρ =
dω

ρ̇
(51)

The photons travel along lightlike geodesics, which
are characterized by ds2 = 0. Imposing this condi-
tion on (46), and then solving for ρ̇ gives

ρ̇ = ± (1 + κρ) (52)

where +/− corresponds to the geodesics of outgo-
ing/ingoing virtual photons. Since negative-energy
photons travel in the negative-Schwarzschild-time-
direction inside of the black hole, we need to account
for this by replacing dt→ ±dt, which eliminates the
± sign in (52), giving

ρ̇ = 1 + κρ (53)

This can be used together with (51), to rewrite (48)
as
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S± = lim
ε→0

ˆ −κ−1±ε

−κ−1

ˆ ±ω
0

κ−1dω′

κ−1 + ρ
dρ (54)

Setting εeiφ = 4M + ρ, which gives iεeiφdφ = dρ. It
is explained in Figure 3, that φ is integrated counter-
clockwise/clockwise through an angle of π

2 for out-
going/ingoing virtual photons.

t

r
r < 2M

Ingoing particles

Outgoing particles t

r
2M < r

FIG. 3: The axes of the rt-plane undergo
a counterclockwise rotation through π/2 for
outgoing particles, which corresponds to inte-
gration from 0 to π/2. For ingoing particles,
the axes undergo a clockwise rotation through
π/2, which corresponds to integration from 0
to −π/2.

Making this change of variables in (54) gives

S± =

ˆ ±π/2
0

ˆ ±ω
0

i4Mdω′dφ

= 2πiωM (55)

The total action S = S− + S+ is the sum of the
contributions to the action from ingoing negative-
energy and outgoing positive-energy photons

S = i4πωM (56)

The tunneling rate for the quantum mechanical
WKB approximation, is given by [16]

Γ ∼ e−2Im SQM (57)

In the tunneling model of Hawking radiation, the
Hawking temperature is found by assuming that
the black hole radiates a Boltzmann distribution of
Hawking radiation, which is imposed by setting the
tunneling rate equal to a Boltzmann factor for the
particle’s energy level

Γ ∼ e−ω/TH (58)

Setting the exponents of (57) and (58) equal to
each other gives the Hawking temperature as

TH =
ω

2Im S
(59)

Putting (56) into this equation, and using κ = 1/4M
gives the Hawking temperature for a Schwarzschild
black hole

TH =
κ

2π
(60)

Conclusion for Part II

In Part II, the metric variant (46) that was derived
in Part I was used to calculate the Hawking temper-
ature using the tunneling model of Hawking radia-
tion. The calculation gave us the well-known equa-
tion for the Hawking temperature of a Schwarzschild
black hole, shown in (60), demonstrating that (46)
does what it is supposed to. Calculating the Hawk-
ing temperature in the metric variant is actually
slightly more complicated than the same calculation
when the original near horizon metric is used, in-
stead of its variant that was derived here. That be-
ing said, the calculation of TH made in Part II was
just intended to demonstrate that (46) does what it
is supposed to.

Appendix A: Near horizon approximation
calculations

1. Proper distance from r = 2M to r > 2M

For integration over radial proper distance ds =√
grrdr, we can use the Schwarzschild metric to write

rNH (r) =

ˆ rNH

0

ds

=

ˆ r

2M

√
r′dr′√

r′ − 2M
(A1)

Using r′ = 2M sec2 t, this can be written as

rNH = 4M

ˆ
sec3 tdt (A2)

Applying the identity sec2 t = 1 + tan2 t, this be-
comes

ˆ
sec3 tdt =

ˆ
sec tdt+

ˆ
sec t tan2 tdt (A3)
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The first integral can be solved using l = sec t +
tan t and dl = l sec tdt, to give

ˆ
sec tdt = ln | sec t+ tan t|+ C (A4)

The second integral on the right hand side of (A3)
can be solved using sec t tan t = d sec t/dt, followed
by integration by parts f ′g = (fg)

′ − fg′

ˆ
sec t tan2 tdt = tan t sec t

∣∣∣∣t2
t1

−
ˆ

sec3 tdt (A5)

Putting equations (A4) and (A5) into (A3)

ˆ
sec3 tdt =

1

2

(
ln | sec t+ tan t|+ tan t sec t

∣∣∣∣t2
t1

)
(A6)

Putting this into (A2), and then using sec t =√
r′/2M and tan t =

√
(r′ − 2M) /2M

rNH(r) = 2M

[
ln
(√

r
2M +

√
r

2M − 1
)

+
√

r
2M − 1

√
r

2M

]
(A7)

The first term on the right hand side can be rewrit-
ten as

ln
(√

r
2M +

√
r

2M − 1
)

= ln

(√
1 +

(√
r

2M − 1
)2

+
√

r
2M − 1

)
(A8)

Putting x =
√
r/2M − 1 into sinh−1 x =

ln
(
x+
√

1 + x2
)
, this becomes

ln
(√

r
2M +

√
r

2M − 1
)

= sinh−1
(√

r
2M − 1

)
(A9)

Using this to replace the first term on the right hand
side of (A7) gives

rNH(r) = 2M sinh−1
(√

r
2M − 1

)
+
√
r(r − 2M)

(A10)

Appendix B: Proper acceleration and surface
gravity

1. Proper radial acceleration of an observer
who is radially at rest in the presence of a

Schwarzschild black hole

The 4-acceleration of an object is defined by

a ≡ du

dτ
=
[
∂µu

ν + Γνµαu
α
]
uµeν (B1)

Assuming the object to be at rest with respect to
the global Schwarzschild geometry

uµ =

(
dt

dτ
, 0, 0, 0

)
=
((

1− 2M
r

)−1/2
, 0, 0, 0

)
(B2)

which comes from ut = 1/
√
−gtt since the observer

is at rest, and gµν is the Schwarzschild metric.
∂tu

ν = 0 for all ν in (B1) since uµ does not depend
on t. This, together with the fact that the 4-velocity
is nonzero only in its time-component simplifies (B1)
to

a = Γνtt
(
ut
)2

eν (B3)

The Christoffel symbols can be calculated from the
metric, using

Γνµα =
1

2
gνβ [∂µgαβ + ∂αgβµ − ∂βgµα] (B4)

Setting µ = α = t, using the fact that the metric
is diagonal to eliminate off-diagonal terms, and us-
ing the fact that the metric is time-independent to
eliminate the time derivatives gives

Γνtt = −1

2
gνν∂νgtt (B5)

The Schwarzschild metric’s time-component de-
pends only on r, so we only need to compute one
Christoffel symbol

Γrtt =
M

r2

(
1− 2M

r

)
(B6)

Putting this and (B2) into (B3) gives
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a =
M

r2
er (B7)

whose scalar quantity is defined by a =
√
a · a =√

grra
r. Taking grr from the Schwarzschild metric,

and ar from (B7), the proper acceleration of an ob-
server who is at rest in the Schwarzschild coordinates
is

a (r) =
M

r2
√

1− 2M
r

(B8)

2. Surface gravity κ

Surface gravity κ can be thought of as a
redshifted-to-infinity measure of the proper accelera-
tion that is required for an observer who is located at
the event horizon, to remain radially at rest (which
from (B8), requires an infinite proper acceleration).

We can derive the surface gravity κ = 1/4M for
a Schwarzschild black hole from this interpretation.
Consider an observer of mass m, located at some r >
2M . To remain radially at rest, the observer must be
acted on by a force F (r), directed radially-outward,
that exactly offsets the observer’s acceleration due
to gravity. Over an interval of proper time δτr, the
force does an amount of work

δWr = F (r)δτr

= ma(r)δτr (B9)

to hold the observer in place at constant r. The
proper acceleration provided by F (r) is given by
(B8), and can be substituted into (B9) to give

δWr =
mM

r2
√

1− 2M
r

δτr (B10)

Now suppose that all of this work is transferred into
the energy a single photon, with energy

δωr =
mM

r2
√

1− 2M
r

δτr (B11)

which then travels off to infinity, where it is mea-
sured to have energy ω∞. We can relate ωr to ω∞
by first relating the photon’s period at the two loca-
tions

δτr =
√

1− 2M
r δτ∞ (B12)

This can be inverted to find the relation between the
photon’s energy at the two locations

δωr =
δω∞√
1− 2M

r

(B13)

Setting the right hand sides of (B11) and (B13)
equal to each other, and then multiplying both sides
by
√

1− 2M/r gives

δω∞ =
mM

r2
δτr (B14)

Since δτr is a scalar invariant, we can divide both
sides of (B14) by δτr to get a redshifted-to-infinity
measure of the force that was required for the ob-
server to remain radially at rest

F∞ (r) =
mM

r2
(B15)

Dividing both sides by m gives a redshifted-to-
infinity measure of the proper acceleration that was
required to hold the observer at rest in the presence
of the black hole

κ(r) ≡ M

r2
(B16)

When evaluated at r = 2M , this is equal to the
surface gravity of a Schwarzschild black hole

κ(2M) =
1

4M
(B17)
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