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Abstract:

In this work we further examine possible mathematical structures and physical properties of
Maxwell and Dirac field by formulating the two fields in a six-dimensional spatiotemporal
manifold in which both space and time have three dimensions. We show that although
Maxwell and Dirac field each can be formulated as a single field in a more symmetrical
structure in terms of space and time in the six-dimensional spatiotemporal continuum,
Maxwell and Dirac six-dimensional field can be decoupled into two separate fields that exist
in the Minkowski pseudo-Euclidean spactime and the Euclidean three-dimensional temporal
manifold, respectively. The coexistent temporal elliptic field to Maxwell field in the three-
dimensional temporal manifold is a free field and the coexistent temporal elliptic field to
Dirac field is massless. While Maxwell and Dirac field comply with the pseudo-Euclidean
relativity, both coexistent fields conform to the temporal Euclidean relativity.

1. Introduction

We have shown in our previous work on the nature of Maxwell and Dirac field that the sign
of the time derivative plays an important role in the determination of their mathematical
structures and physical properties when they are formulated as a coupling of two subfields
associated with the positive and negative time derivatives respectively [1]. Since the
inception of the negative time derivative arises from the mathematical formulation of
Maxwell and Dirac field, the subfield associated with the negative time derivative may be
perceived as a physical field that travels backwards in time. Despite the concept of travelling
backwards in time seems unconceivable due mainly to the fact that we are conceivably
composed of matter that involve only in physical processes that progress forward in time, it
has been shown that the concept of progressing backwards in time can be invoked to
formulate physical theories such as the theory of positrons [2]. In a more general framework
we have also shown in our work on temporal dynamics that it is possible to formulate
physical theories in which the temporal continuum possesses a similar structure to the spatial
space in the sense that it may also be considered as a three-dimensional manifold [3]. It could
be that, except for one dimension, all other temporal dimensions are intrinsic and the
dynamical properties of quantum particles that are associated with these intrinsic temporal
dimensions are therefore also intrinsic. It should be mentioned here that intrinsic physical
properties, such as intrinsic energy, can be observable even though their associated intrinsic
dynamics cannot. For example, we have also shown in our work on a formulation of spin



dynamics using Schrodinger wave equation that the intrinsic coordinates that represent the
spin dynamics are two-dimensional therefore it is reasonable to suggest that the two-
dimensional intrinsic coordinates are temporal because the spin dynamics does not depend on
the nature of the coordinate system for its formulation [4]. From the perspective of time as a
three-dimensional manifold, in this work we extend our discussion on temporal dynamics by
formulating Maxwell and Dirac field with three-dimensional time. Essentially, the
formulation is a description of the dynamics of Maxwell and Dirac field in a six-dimensional
spatiotemporal manifold in which both space and time have three dimensions. Since we will
also formulate Maxwell and Dirac field from a system of linear first order partial differential
equations therefore for reference we give an outline of the mathematical framework that is
required for the formulation. The system of linear first order partial differential equations that
we need to use in this work is given as follows
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Equation (1) can be rewritten in a matrix form as
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where ¥ = (Y1, ¥y, .., )T, OY/0x; = (azpl/axl,alpz/axl,.. o, /0x)", A;, o and J
are matrices representing the quantities al], b/ and c”, and k; and k, are undetermined

constants. Now, if we apply the operator 7., A; d/dx; on the left on both sides of Equation
(2) then we obtain
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If we assume further that the coefficients a"] and b; are constants and A;o = g4;, then

Equation (3) can be rewritten in the following form
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In order for the above system of partial differential equations to be applied to physical
phenomena, the matrices A; must be determined. For the case of Maxwell and Dirac field, the
matrices A; must take a form so that Equation (4) reduces to a wave equation
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In fact, we will show later that in order to reduce Equation (4) to Equation (5) we will also
need extra conditions on the components of the wavefuction y in the form of divergences and
commutative relations between spatiotemporal cross derivatives. In this work we only discuss
Maxwell and Dirac field therefore we will set ¢ = 1.

2. Maxwell field with three-dimensional time

In this section we formulate Maxwell field of electromagnetism in a six-dimensional
spatiotemporal manifold in which space and time both have three dimensions. For the time
coordinates the matrices A; are given in terms of the theta matrices 6; which are defined as

follows
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For the space coordinates the matrices A; are given in terms of the gamma matrices y; which
are defined as follows
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We also obtain the following cross commutative relations between the theta and gamma
matrices
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Using the theta and gamma matrices given in Equations (6) and (8), then from Equation (2)
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Now, as shown in our previous work on Dirac negative mass and magnetic monopole that the
magnetic field is associated with the Gaussian curvature in the temporal continuum and the
electric field with the Gaussian curvature of the spatial continuum [5], therefore we identify

B = (Y1, Y5 ¥3), E= s ¥s, W), j1 = U1, J2,j3) and jo = (ja, Js, o), then the system of
equations given in Equations (11-16) can be rewritten in a vector form as
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where V, and V; represent the temporal and spatial differential operators in the temporal and
spatial Euclidean space, respectively. As we have mentioned in the introduction that the
system of equations given in Equations (17) and (18) may contain intrinsic temporal
coordinates that may not be observable in the three-dimensional spatial space. Therefore, in
order to express Equations (17) and (18) in a form that is observable we would need to
introduce a time that behaves as a one-dimensional continuum. For this purpose, we now
show that the above system of equations can be rewritten as two systems of electromagnetic
equations, one in the Minkowski pseudo-Euclidean spacetime and the other in a temporal
Euclidean space. In general, the one-dimensional time that we can introduce is the temporal
arclength defined in terms of the time coordinates (¢, t,, t3) as dt? = dt? + dt2 + dt3. For
Maxwell field equations we also set k; = 0. With the one-dimensional time t that can be
identified as the Minkowski time, we assume that the temporal curl of the field B and E in
Equations (17) and (18) satisfy the following equations
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As we have shown in our work on Maxwell field equations in Euclidean relativity that the
free temporal electromagnetic field given in Equations (19) and (20) satisfy the elliptic
equations [6]
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Therefore the temporal electromagnetic field given in Equations (19-22) conform to the
Euclidean relativity. With the assumed equations given in Equations (19) and (20) then we
obtain Maxwell field equations for the electromagnetic field in the Minkowski pseudo-
Euclidean spacetime as
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The system of equations given in Equations (23) and (24) together with Gauss’s laws that we
will show later as extra conditions to reduce the equation given in Equation (4) to a wave
equation will form the Maxwell field equations for the electromagnetic field in a six-
dimensional spatiotemporal continuum.

Using the commutative relations that are obtained for the theta and gamma matrices given in
Equations (7), (9) and (10) we also obtain the following system of second order partial
differential equations from Equation (4)
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In the system of equations given in Equations (25-30) there are cross derivatives that involve
both space and time. However, these cross derivatives can be removed by imposing the
following conditions
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The divergence conditions given in Equations (32) and (33) can be identified with the
Gauss’s law in the classical electrodynamics. On the other hand, the condition given in
Equation (31) simply states the equivalence between space and time. Using the conditions
given in Equations (31-33) we then obtain
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For the case of the electromagnetic field with three-dimensional time we set k; = 0, then we

obtain the following system of equations
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The system of equations given in Equations (40-45) together with the conditions given in

Equations (32) and (33) can be rewritten in vector form as
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Thus, we have shown that although Maxwell field can be formulated as a single field in a
more symmetrical mathematical structure in terms of space and time in the six-dimensional
spatiotemporal continuum, the six-dimensional field can be decoupled into two separate
fields that exist in two spaces, one of which is the Minkowski pseudo-Euclidean spactime and
the other is the three-dimensional Euclidean temporal manifold. It should be mentioned here
that as in the case of the Minkowski pseudo-Euclidean spacetime, the three-dimensional
Euclidean temporal manifold can be made into a four-dimensional Euclidean temporal
manifold by considering the temporal arclength t as an independent coordinate. The
coexistent temporal elliptic field to Maxwell field is a free field and conforms to the
Euclidean relativity. In the next section we will examine Dirac field also with three-
dimensional time and show that Dirac field can also be decoupled into two separate fields
that exist the Minkowski pseudo-Euclidean spactime and the Euclidean three-dimensional
temporal manifold. The coexistent temporal elliptic field to Dirac field is a massless field and
also complies with the Euclidean relativity.

3. Dirac field with three-dimensional time

In this section we formulate Dirac field in a six-dimensional spatiotemporal continuum in
which both space and time have three dimensions. For the time coordinates the matrices A;
are given in terms of the theta matrices 8; which are defined as follows
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The theta matrices 6; given in Equation (51) satisfy the following relations
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For the space coordinates the matrices A; are given in terms of the gamma matrices y; which
are defined as follows
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The gamma matrices y; satisfy the following relations
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In addition to the relations given in Equations (54) and (57) for the matrices y; and 6; we also
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0 0 0 O - 0 0 O 0 1 0 O
(0 0 0 O _ 0 i 0 O _ -1 0 0 O

01y1+v1 601 = 00 0 0 01y, +y2,0, =2 0 0 i 0 01y3+vy30; =2 0 0 0 -1 (58)
0 0 0 O 0 0 0 —i 0 01 0
i 0 0 0 0 0 0 O 0 —-i 0 O
_ 0 —-i 0 O |0 0 0 O _ -i 0 0 O

Oy1+ v160, =2 0 0 —i 0 0272 + 720, = 00 0 0 O2y3+v3 0, =2 0 0 0 i (59)
0 0 0 i 0 0 0 O 0 0 i O
0 -1 0 O 0 i O 0 0 0 0 O
_ 1 0 0 0 _ i 0 0 O (0 0 0 O

O3y, +y1 03 =2 0 0 o0 1 O3y, +v203=2 00 0 —i O3y3 +y3 03 = 00 0 0 (60)
0 0 -1 0 00 —i O 0 0 0 O

Using the gamma and theta matrices given in Equations (51) and (56), from Equation (2) we
obtain the following system of equations for the wavefunction ¥ = (¥4, 1,, Y3, P,)7
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Similar to the case of Maxwell field, Dirac field in a six-dimensional spatiotemporal manifold
can also be rewritten as a coupling of two fields in the Minkowski pseudo-Euclidean
spactime and the Euclidean four-dimensional temporal manifold respectively. In the
following we let k, = 0 and k; = —im. Using the terms that involve the time derivatives in



Equations (61-64), the temporal field in the Euclidean three-dimensional temporal manifold
is assumed to take the form
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Using Equations (65-68), Equations (61-64) can be rewritten as Dirac equation
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Equations (69-72) can be rewritten as
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Equations (65-68) can also be rewritten in the following form
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It is seen that since 87 = 1 for i = 0,1, 2,3 the temporal Dirac equation given in Equation
(75) for a massless particle also complies with Euclidean relativity.

Now, using the commutative relations for the gamma and theta matrices given in Equations
(54), (57) and (58-60) we obtain the following system of second order partial differential
equations for the wavefunction ¥ = (Y1, 5, ¥3, a7
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In the above systems of equations there are cross derivatives that involve both space and
time. However, in this case the cross derivatives can be removed by simply assuming the
following conditions

0%, 0%,
atian B Otjaxi

for all y, i and j (81)

Then the system of equations given in Equations (77-80) can be reduced to the following
system of equations in the six-dimensional spatiotemporal manifold



0%y, 0%y 0%y 0%y 9Py 9%y
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2, + kakyjy + Ky o, 16t2+6t3+ax1 lax2+6x3 (82)
aleZ alez 021,02 02¢2 627,[12 621/)2
ot = at; ot  0xf Oxj  0xj
, djz3  .0j3 0jy  0jz . 0j3 8j4>
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. dj1 .0j1 0j; 0j;i . 0j1 0j,
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In order to obtain Dirac equation for a free particle we set k, = 0. Then the above system of
equations can be rewritten for the wavefunction ¥ = (1, ¥,, ¥3,9,)T as a six-dimensional
spatiotemporal Klein-Gordon equation as

0%y | 0%y | P Oy 0%y 0%,

—m? 86
o2 Vo2 Tz o a2 oz (86)
A plane wave solution can be found in the form
W, = ei(wat“+k3xﬁ) (87)

where the quantities w, and ks satisfy the following relation
w? + w5 + w3 —k?—ki—ki=m? (88)

It is seen that as in the case of Maxwell field, Dirac field can also be formulated as a single
field in a more symmetrical mathematical structure in terms of space and time in the six-
dimensional spatiotemporal continuum, and the six-dimensional field can also be decoupled
into two separate fields that exist in two spaces, one of which is the Minkowski pseudo-
Euclidean spactime and the other is a Euclidean three-dimensional temporal manifold. The
coexistent temporal elliptic field to Dirac field is a massless field and also complies with the
Euclidean relativity.
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