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The main ideas of the wave-particle non-dualistic interpretation of quantum me-

chanics are elucidated using two well-known examples, viz., (i) a spin-1
2 system in

the Stern-Gerlach experiment and (ii) Young’s double-slit experiment, representing

the cases of observables with discrete and continuous eigenvalues, respectively. It’s

proved that only Born’s rule can arise from quantum formalism as a limiting case

of the relative frequency of detection. Finally, non-duality is used to unambigu-

ously explain Hanbury Brown-Twiss effect, at the level of individual quanta, for the

two-particle coincidence detection.

I. INTRODUCTION

According to Prof. Feynman, the central mystery of quantum mechanics is contained in

the Young’s double-slit experiment which is about the wave-particle duality of a single quan-

tum [1]. Not only light, but all material particles like electrons, protons, atoms, molecules

etc., are known to exhibit wave-particle duality [2–7].

There are various interpretations of quantum formalism, like, the mainstream Copen-

hagen interpretation [8–11], de Broglie-Bohm theory [12, 13], ‘many-worlds’ interpretation

[14–16], spontaneous collapse theories [17, 18], modal interpretation [19], relational interpre-

tations [20], consistent histories [21], transactional interpretation [22–24], QBism [25] etc.

Though, each one of them is interesting by itself, but, none of them achieves the derivation

of Born’s rule as a limiting case of relative frequency of detection (RFD) by making use

of the single-quantum events as it’s done by wave-particle non-dualistic interpretation of

quantum mechanics [26–29].

Hanbury Brown-Twiss (HBT) effect was initially invented to estimate the size of stars

by observing an interference pattern in the intensity correlations of incoherent light [30–37].
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This effect can be explained by using classical electromagnetic theory [30–33] as well as by

the quantum formalism [34, 37]. Later, the same effect is also observed in matter waves [38],

ultra-cold quantum gas [39], bosons and fermions [40], interacting photons [41], twisted light

[42] etc. There are various applications of the HBT effect ranging from condensed matter

and fluid dynamics to nuclear and particle physics [43–46].

The main ideas of the non-dualistic interpretation of quantum mechanics, like the physical

meaning of Schrödinger’s wave function, derivation of Born’s rule as a limiting case of the

RFD using individual quantum events, etc., are presented in the Section-II. The overall phase

associate with state vector is so far overlooked and unused in the entire literature of quantum

mechanics. The non-duality proposes a relation between this phase and the experimental

outcome of a particular eigenstate in a deterministic way; this relation is explicitly presented

in Section-III for the case of an observable with discrete eigenstates by using an example of

a coin tossed in 3D-Euclidean space (3DES), which is later analyzed using a complex vector

space (CVS) and finally mapped into a spin-1
2

system in the Stern-Gerlach experiment (SG)

[1, 47]. The same as in the Section-III is studied in Section-IV but for the case of an

observable with continuous eigenstates by using Young’s double-slit (YDS) experiment as

an example. In the Section-V, an explanation for HBT effect is provided at the level of two

individual quanta and also what’s weird with the transactional interpretation [22–24] in the

same context is discussed. Conclusions and discussions are presented in the Section-VI.

When the article given in the reference [29] was submitted to a research journal for

publication, I received the reviewer’s report as attached in the Appendix. The report shows

how biased and prejudiced the reviewer is, who completely failed to understand the main

idea of non-duality. I did not respond to the questions and doubts raised by the reviewer

because, I felt it’s useless. My reply is also attached in the same appendix.

II. THE NON-DUALISTIC INTERPRETATION OF QUANTUM MECHANICS

Before presenting the main features of the non-duality, a couple of classical prejudices

being entertained in the quantum domain, which are the root cause for believing quantum

mechanics (QM) as strange, weird and counter-intuitive, are given below:

1. Treating wave and particle natures to be complementary to each other which is ac-

tually the case of classical mechanics (CM), instead of combining them into a single
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entity as demanded by the quantum formalism and also as seen in all the quantum

experiments. This does not mean that the position and momentum of a quantum are

not complementary to each other.

2. Though the absolute space can be felt intuitively as nothingness, its true nature is

unavailable to experimental observation independent of the material phenomena hap-

pening in it. Visualizing the quantum phenomena in 3DES rather than in the CVS

as demanded by the heart of the quantum formalism viz., the canonical commutation

relations (CCR). The CCR clearly indicate that the quantum systems live in CVS.

As it’s well-known, the QM is, in principle, applicable to all physical systems ranging

from microscopic to macroscopic ones and hence, obviously it is much more funda-

mental than the CM. Therefore, it’s unavoidable to accept the CVS as fundamental

physical space which anyhow yields the 3DES for macroscopic objects - this aspect

can be shown within the quantum formalism [27, 29] and implies that the QM is just

a CM but, in CVS.

The Wave-Particle Non-Dualistic Interpretation of the Quantum Formalism

1. Instantaneous Resonant Spacial Mode (IRSM): The physical reality of

Schrödinger’s wave function is shown to be an IRSM [27, 29]. For example, consider

the eigenvalue equation for a free particle:

Ĥ|ψ >= E|ψ >, (1)

where, Ĥ is the free particle Hamiltonian operator, |ψ > is the eigenstate and E, the

energy eigenvalue carried by the particle. The moment a particle appears (like a photon

from a light source or an electron from a metal surface), its eigenstate |ψ > also appears

at the same moment. Obviously, the eigenstate also disappears when the particle gets

absorbed. Therefore, the particle (identified by the eigenvalue) and its eigenstate are

in resonance with each other and the same can be said to the position representation,

< r|ψ >, as well; where, |r > is the eigenstate of the position operator, r̂, with

eigenvalue r. In other words, the moment a particle appears, instantaneously its wave

function, < r|ψ >, appears at all the eigenvalues of r̂. The set of all eigenvalues of r̂,

{r}, indeed spans the 3DES and therefore, r (∈ {r}) in < r|ψ > need not be identified
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with the particle coordinate, since the particle is a localized entity. Whenever the

particle is observed, it appears at some position eigenvalue, say rp ∈ {r}, with energy

eigenvalue, E. Therefore, the picture of wave-particle existing within the quantum

formalism is that a quantum is confined to its IRSM, but, free to move akin to the

case of a test particle in the curved space-time of general relativity [48]. The particle

and wave natures always coexist resonantly together as a single physical entity, which

is termed as wave-particle non-duality. Note that, throughout the present article,

Schrödinger’s wave function and IRSM are used synonymously.

2. Inner-Product as an Interaction: The intensity of a classical wave is proportional

to the square of its amplitude. But, such an intensity can’t be claimed for IRSM,

because, it is unlike a propagating classical wave. If the particle is going to end up

on a detector screen, then a dual vector gets excited in the same screen and interacts

according to the inner-product which can be found within the quantum formalism.

Let the IRSM, say |ψ >, gets scattered into some other state, say |ψ′ >, at the screen.

This process can be described by associating an operator, ÔDS = |ψ′ >< ψ|, to the

detector screen:

ÔDS|ψ >=< ψ|ψ > |ψ′ > (2)

Note that, the dual-vector < ψ| is confined only to the detector screen which is ana-

logues to an image formed in a mirror. It’s unlike and having nothing to do with the

‘advanced wave’ advocated in transactional interpretation [22–24] as it can be easily

seen from Eq. (2). Also, it’s easy to check that, the unitary time evolution operator

until the particle interacts with the screen and after that are different though it it-

self is continuous in time; its time derivative will be discontinuous at the moment of

interaction.

Therefore, if the scattered state is discarded or it’s a null-state, then the particle

must have interacted or got absorbed at some location in the region of inner-product,

< ψ|ψ >, respectively. Therefore, the present non-dualistic interpretation will not

support the many worlds interpretation [14–16], for that matter any other interpreta-

tions [12, 13, 17–25] which directly make use of Born’s probability - with an exception

of the mainstream Copenhagen interpretation [8–11].
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3. Derivation of the Born’s Rule Using Individual Quantum Events:

(a) Minimum Phase and Quantum Jump:

Instead of ÔDS, if the IRSM encounters a CVS spanned by discrete orthogonal

eigenstates, |ai >; i = 1, 2, 3, · · · , of an operator, Â:

|ψ >=
∑
i

|ai >< ai|ψ >, (3)

then, the particle enters into one of the eigenstate, say |ap >, which makes the

minimum phase with |ψ >, i.e., phase{< ap|ψ >} < phase{< ai|ψ >}, for all i 6=

p. It’s well-known that any physical system tries to be in a minimum energy state.

When |ψ > undergoes the decomposition as given in Eq. (3), the particle, which

can’t split, enters |ap > as a whole from |ψ >. Only this quantum jump requires

a minimum energy when compared to all other eigenstates, |ai > ; i 6= p. This

minimum energy will be either absorbed from the device of observation or emitted

out depending upon which process really makes the minimum phase. During

the observation, IRSM interacts with its excited dual, < ψ|, in the detector as

mentioned in Eq. (2):

< ψ|ψ >=
∑
i

< ψ|ai >< ai|ψ >
observation−−−−−−→ | < ap|ψ > |2, (4)

and the particle will be naturally found in |ap > with an eigenvalue ap, because,

the remaining orthogonal empty states have nothing to contribute. Note that,

since |ψ > obeys the eigenvalue equation, any change in its eigenvalue due to

observation will assume a new eigenstate with new eigenvalue. Now, the boundary

conditions for this new eigenstate has obviously changed. The initial one being

at the point of interaction and final one depends on where the particle will be

ending up. In other words, the initial eigenstate, |ψ >, disappears and a new

eigenstate, |ψ′ >, appears.

The particle itself contributes a point to the function | < ap|ψ > |2. Note that,

this physical mechanism is indeed in one-to-one correspondence with the ‘wave

function collapse’ advocated in the Copenhagen interpretation [8–10]. In other

words, the eigenvalue equation along with the boundary conditions and the inner-

product interaction are sufficient to provide the underlying physical mechanism



6

behind ‘wave function collapse’. Repeating the detection procedure on several

identical particle states, all with different initial phases, yields various eigenval-

ues, because, different initial phases make the particles to enter into different

eigenstates. Note that, in the case of discrete eigenstates, there will be certain

range for a given initial phase such that all the phases of particle states lying

in that range will be detected in a particular eigenstate, |ap >. By normalizing

the number of particles found in |ap > with respect to the total number of par-

ticles yields the relative frequency of detection (RFD). As it can be easily seen

from Eq. (4), in the limit of infinite number of particles, the RFD coincides with

| < ap|ψ > |2. Therefore,

< ψ|ψ >=
∑
i

< ψ|ai >< ai|ψ >=
∑
i

| < ai|ψ > |2 = 1, (5)

which is the well-known Born’s rule. Actually, how this mechanism of minimum

phase in Eq. (4) works is explicitly explained in Section-III, where, a spin-1
2

system in SG experiment is considered as an example.

(b) Zero-Phase and No Quantum Jump: In the case of an observable with con-

tinuous eigenvalues, there will be always an eigenstate making a phase with |ψ >

which will be exactly the same as the initial phase of |ψ >. Instead of Â in the

Eq. (3), consider the position operator, r̂, with orthogonal eigenstates, |r > and

continuous eigenvalues, r(= {x, y, z}), as an example:

|ψ >=

∫
dr|r >< r|ψ > . (6)

The particle naturally enters into a position eigenstate, say |rp >< rp|ψ >,

without any quantum jump such that its absolute phase is same as that of |ψ >,

i.e., phase{< rp|ψ >} = phase{|ψ >}. Therefore, the interaction of IRSM with

its excited dual, < ψ|, in an apparatus is,

< ψ|ψ >=

∫
dr < ψ|r >< r|ψ > observation−−−−−−→ | < rp|ψ > |2, (7)

because, except the state |rp >< rp|ψ >, the remaining orthogonal ones,

|r >< r|ψ >, are empty. Therefore, quantum mechanics is not about probabil-

ities. It can be described at a single quantum level which, anyhow, statistically

yields Born’s rule and only Born’s rule for a large number of identical particles.
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Therefore, without introducing any additional hidden variables (for example, like

in the Refs. [12, 13]), the unavoidable initial phase associated with any state

vector along with the inner-product interaction available within the quantum

formalism naturally allows one to derive Born’s rule and hence, the Copenhagen

interpretation is completely contained within the present non-dualistic interpre-

tation. Note that, though a single quantum phenomenon can be deterministically

described, the unavailability of the information about the absolute phase of IRSM

due to inner-product forces experiments to observe only RFD. These aspects are

explained in detail in Section-IV, where the classic Young’s double-slit experiment

is considered as an example.

4. Bohr’s Complementarity at a Single-Quantum Level: Suppose that, instead of

Â, the same IRSM, |ψ >, encounters a different observable, B̂, whose CVS is spanned

by the eigenstates, say |bi >:

|ψ >=
∑
i

|bi >< bi|ψ >, (8)

and the particle will be present in some eigenstate, |bp >, which makes a minimum

phase with |ψ > . The inner-product interaction at the detector is,

< ψ|ψ >=
∑
i

< ψ|bi >< bi|ψ >
Detection−−−−−→

at B
| < bp|ψ > |2,

yielding the eigenvalue bp and the particle itself contributes a point to | < bp|ψ > |2.

Therefore, it’s the measuring device, either A or B where the inner-product interaction

occurs, decides which property, either ap or bp, of the quantum to be observed. This is

actually Bohr’s principle of complementarity [49–51], but, at a single-quantum level.

However, notice that, the non-dualistic picture of a particle flying in its own IRSM is

further irreducible and is independent of any measuring device.

III. SPIN-1
2 SYSTEM IN THE STERN-GERLACH EXPERIMENT: AN

EXAMPLE FOR THE OBSERVABLE WITH DISCRETE EIGENVALUES

This section is completely devoted to explain the concept of minimum phase, occurrence

of RFD and the derivation of Born’s rule using a spin-1
2

system as an explicit example.
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In this regard, a generalized representation for the SU(2) algebra is constructed using the

quantum formalism as demanded by the non-dualistic interpretation.

Consider tossing of a coin in 3DES as shown in Fig. (1), which will be later addressed

using the CVS and finally mapped into the case of an electron in SG apparatus [1, 47].

(a). Tossing a Coin in the Euclidean Space

FIG. 1: Schematic Diagram for the Tossing of a Classical Coin: (a) h is the height of the

coin above the ground surface (GS) and is supposed to be less than the radius of the coin (which

is not explicitly shown in the diagram). |g > is a vector parallel to the gravitational field direction

and perpendicular to the GS. |n > is a vector normal to the head-surface passing through the

center-of-mass of the coin. The outcomes, head and tail, are represented by the state vectors |H >

and |T >, respectively, which can be taken anti-parallel to |g > but they are mutually exclusive

with respect to the observation, i.e., < T |H >= 0 (in the space above the GS). (b) α and β are the

angles between |H > &|n > and |T > &|n >, respectively; |α| + |β| = π. If |α| < |β| (|β| < |α|),

then the coin enters into |H > (|T >). The case of |α| = |β| is ruled out for an ideal classical coin.

Using the Newtonian mechanics, it’s possible, in principle, to predict exactly whether

head or tail of the coin will occur on a horizontal flat ground. If there is an ignorance about

some parameters involved in the dynamics of the coin, then probability can be invoked for

the final outcome - provided a large number of coins were tossed.
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Let |n > be a normal vector to the head-surface passing through coin’s center-of-mass

and α be an angle between |n > and a vector, |g >, parallel to the gravitational field. Just

before coin lands, consider its position at a height h ≤ r above the ground surface; here, r is

the radius of the coin. If −π/2 < α < π/2, then head will be the out come. Otherwise, tail

occurs for π/2 < α < 3π/2. Depending on the value of α, coin will jump into either head or

tail state. Upon the outcome, |n > will be pointing either parallel or anti-parallel to |g >.

Note that, from the moment of toss to a point at h above the ground, |n > itself will be

varying from given initial conditions, both in space and time, obeying Newton’s equations

of motion. The detailed dynamics of |n > is immaterial for the probabilistic description,

but only the value of α matters.

(b). Analyzing the Toss of Coin Using Complex Vector Space

Since the coin system described earlier is aimed to map onto spin-1
2

system in SG appa-

ratus, choose eigenvalues +1
2

and −1
2

for the outcomes of head and tail, respectively. Spin

eigenvalues are intrinsic property of an electron but there are no such things for the coin.

Still, one can associate two different numbers for the outcomes of head and tail, respectively.

Also note that, all the vectors considered in this subsection belongs to a CVS.

Let |H > and |T > be the eigenstates for the head and tail, respectively. Upon the

outcome, |n > will be pointing either along |H > or |T > which can also be regarded as

anti-parallel vectors to |g >. Since, head and tail are mutually exclusive with respect to

observation, one needs < T |H >= 0. Only the vector space above the ground is relevant

and it can be taken as a direct sum of |H > and |T > as shown in Fig. (1a). Let α and β

be the angles made by |n > with |H > and |T >, respectively such that |α|+ |β| = π.

In any CVS of any dimensionality, one can always write < a|b >= | < a|b > |.eiθ between

any pair of vectors |a > and |b >; where, | < a|b > | is the absolute value of the complex

number, < a|b >, and θ is the phase angle between the vectors. Hence, one has,

< H|n >= | < H|n > |.eiα ;< T |n >= | < T |n > |.eiβ ; |α|+ |β| = π . (9)

Let Ĉ be an operator associated with the observables of the coin, which can be expressed

as,

Ĉ =
1

2
(|H >< H| − |T >< T |) ; Ĉ|H >=

1

2
|H > ; Ĉ|T >= −1

2
|T >, (10)
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where, < H|H >=< T |T >= 1. By making use of the unit operator, Î = |H >< H|+|T ><

T |, the state, |n >, when subjected to the observation, can be written as,

|n > = |H >< H|n > +|T >< T |n >

= |H > .| < H|n > |.eiα + |T > .| < T |n > |.eiβ. (11)

According to the criterion of the minimum phase, if |α| < |β|, then the coin enters into |H >

and if |α| > |β|, then it enters into |T >. Note that, either α or β will be minimum at a

time because |α|+ |β| = π. As an explicit example, consider the case |α| < |β|; then, upon

observation,

< n|n > observation−−−−−−→ | < H|n > |2 ;

(
observation of the eigenvalue +

1

2

)
. (12)

Consider another tossed coin represented by a state vector |ñ > which is related to the

previous coin as,

|ñ >= eiφ.|n >, (13)

where, φ is the overall phase by which the second coin differs from the first one. Now, one

has,

|ñ >= |H > .| < H|n > |.ei(φ+α) + |T > .| < T |n > |.ei(φ+β). (14)

Depending upon whether |(φ + α)| < |(φ + β)| or |(φ + α)| > |(φ + β)|, the coin will enter

into either |H > or |T >, respectively.

Note in the Eq. (12) that, the absolute length of |n > and hence the value of | < H|n > |

is immaterial in the case of single observation except for the eigenvalue. However, for an

infinitely large number of tosses, the RFD, |<H|n>|
2

<n|n> , must coincide with the probability of

occurrence for heads i.e., 1
2

which fixes | < H|n > | = 1√
2
.

(c). Spin-1
2 System

Consider SGx, SGy and SGz apparatuses [1, 47], where magnetic field directions are along

X, Y and Z axises, respectively. By taking the gravitational and magnetic field directions

to be same and along Z-axis, the states of the tossed coin discussed above can be mapped

into that of an electron’s spin in SGz apparatus as follows:

|H >→ |Sz; ↑> ; |T >→ |Sz; ↓>, (15)
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Ĉ → Ŝz =
1

2
(|Sz; ↑>< Sz; ↑ | − |Sz; ↓>< Sz; ↓ |), (16)

Î → Îz = |Sz; ↑>< Sz; ↑ |+ |Sz; ↓>< Sz; ↓ |, (17)

where, Ŝz is the Z-component of total spin operator, Ŝ, with eigenstates |Sz; ↑> and |Sz; ↓>

corresponding to spin-up and spin-down states, respectively, and having Îz as the unit

operator in its CVS. Consider an initial spin state ‘up along Y’, |Sy; ↑>, subjected to SGz:

By making use of Îz, one has,

|n >→ |Sy; ↑>= |Sz; ↑>< Sz; ↑ |Sy; ↑> +|Sz; ↓>< Sz; ↓ |Sy; ↑> . (18)

Akin to the case of Eq. (11), the above equation can be written:

|Sy; ↑> = |Sz; ↑> .| < Sz; ↑ |Sy; ↑> |.eiα + |Sz; ↓> .| < Sz; ↓ |Sy; ↑> |.eβ

= |Sz; ↑> .R.eiα + |Sz; ↓> .R.eβ, (19)

where, | < Sz; ↑ |Sy; ↑> | = | < Sz; ↓ |Sy; ↑> | = R, < Sz; ↑ |Sy; ↑>= Reiα and

< Sz; ↓ |Sy; ↑>= Reβ; here, R is a positive real number. Depending on whether |α| < |β| or

|α| > |β|, the electron enters into either |Sz; ↑> or |Sz; ↓>, respectively. Let’s suppose that

|α| < |β|. Then the electron will enter into the state |Sz; ↑> and |Sz; ↓> will remain as an

ontological empty state. Therefore, upon observation,

< Sy; ↑ |Sy; ↑>
observation−−−−−−→ | < Sz; ↑ |Sy; ↑> |2 = R2 ;

(
observation of eigenvalue +

1

2

)
(20)

because, |Sz; ↓> has no electron to contribute.

Consider another spin state prepared ‘up along Y’ and represented by a state vector

|S̃y; ↑>, which differs from the previous one by an overall phase as,

|S̃y; ↑>= eiφ.|Sy; ↑> . (21)

The SGz feels |S̃y; ↑> as,

|S̃y; ↑>= |Sz; ↑> .R.ei(α+φ) + |Sz; ↓> .R.e(β+φ). (22)

Depending on whether |(α + φ)| < |(β + φ)| or |(α + φ)| > |(β + φ)|, the electron enters

into either |Sz; ↑> or |Sz; ↓>, respectively. Therefore, it’s sufficient to note that in Eq.

(19), the values of α and β will be different for different ‘up along Y’ spin states of electrons.
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Quantum formalism avoids the possibility |α| = |β|, because, in such situations, it’s sufficient

if the electron stays with the detector for a brief moment. The phases evolving due to time

will drive the spin into any one of the eigenstates (further, the actual state vector of the

electron has contributions from other eigenstates, like space, apart from the spin, whose

overall phases also should be taken into account).

It’s needless to show that Born’s rule emerges out as a limiting case of RFD akin to the

case of the coin described in the previous subsection.

Similar to Eq. (19), let’s write

|Sy; ↓> = |Sz; ↑> .R.eiα
′
+ |Sz; ↓> .R.eiβ

′
, (23)

|Sx; ↑> = |Sz; ↑> .R.eiγ + |Sz; ↓> .R.eδ (24)

and |Sx; ↓> = |Sz; ↑> .R.eiγ
′
+ |Sz; ↓> .R.eiδ

′
. (25)

Now, block the |Sz; ↓> in Eq. (19) and subject the |Sz; ↑> component to SGx having

the unit operator Îx = |Sx; ↑>< Sx; ↑ |+ |Sx; ↓>< Sx; ↓ |:

R.eiα.|Sz; ↑> = R.eiα.|Sx; ↑>< Sx; ↑ |Sz; ↑> +R.eiα.|Sx; ↓>< Sx; ↓ |Sz; ↑>

= R2.ei(α−γ).|Sx; ↑> +R2.ei(α−δ).|Sx; ↓> . (26)

Therefore, depending on whether |(α− γ)| or |(α− δ)| is minimum, which in turn depends

on α, electron will enter into either |Sx; ↑> or |Sx; ↓>, respectively.

According to the requirement of the non-duality to describe a single-quantum behavior,

a generalized representation for the SU(2) algebra respecting the Eqs. (19), (23), (24) and

(25) is explicitly worked out below:

Writing down the other operators,

Ŝx =
1

2
(|Sx; ↑>< Sx; ↑ | − |Sx; ↓>< Sx; ↓ |)

=
R2

2
(Cx|Sz; ↑>< Sz; ↓ |+ C∗x|Sz; ↓>< Sz; ↑ |), (27)

Ŝy =
1

2
(|Sy; ↑>< Sy; ↑ | − |Sy; ↓>< Sy; ↓ |)

=
R2

2
(Cy|Sz; ↑>< Sz; ↓ |+ C∗y |Sz; ↓>< Sz; ↑ |), (28)



13

where, Cx = ei(γ−δ) − ei(γ′−δ′) and Cy = ei(α−β) − ei(α′−β′) and | < Sz; ↑ |Sx; ↑> | = | < Sz; ↓

|Sx; ↑> | = | < Sz; ↑ |Sx; ↓> | = | < Sz; ↓ |Sx; ↓> | = R. It can be shown that,

< Sx; ↓ |Sx; ↑> = 0 =⇒ (γ − γ′)− (δ − δ′) = ±π (29)

< Sy; ↓ |Sy; ↑> = 0 =⇒ (α− α′)− (β − β′) = ±π (30)

The sign ambiguity in the above equations is related to two possible ways of writing the com-

mutation relations viz., [Ŝx , Ŝy] = iŜz or [Ŝy , Ŝx] = iŜz due to the rotational invariance

about Z-axis, which can be fixed using the SU(2) algebra:

[Ŝx , Ŝy] =
R4

4
(Axy|Sz; ↑>< Sz; ↑ |+ A∗xy|Sz; ↓>< Sz; ↓ |) = iŜz, (31)

[Ŝz , Ŝx] =
R2

2
(Cx|Sz; ↑>< Sz; ↓ | − C∗x|Sz; ↓>< Sz; ↑ |) = iŜy, (32)

[Ŝy , Ŝz] =
R2

2
(C∗y |Sz; ↑>< Sz; ↓ | − Cy|Sz; ↓>< Sz; ↑ |) = iŜx, (33)

where, Axy = CxC
∗
y −C∗xCy. The above commutation relations yield Cx = iCy and R4

4
Axy =

i
2
, which result in the following unique relations:

(γ − δ)− (α− β) = (γ′ − δ′)− (α′ − β′) =
π

2
, (34)

and (α− α′)− (β − β′) = +π ; (γ − γ′)− (δ − δ′) = −π ; R =
1√
2
, (35)

which are sufficient to satisfy the other aspects of SU(2) algebra, viz.,

{Ŝi , Ŝj} =
1

2
δij ; Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z =
3

4
Î ; [Ŝ2 , Ŝi] = 0 (36)

where, i and j run over x, y and z and { , } stands for anti-commutator.

It’s straightforward to check the special case by setting α = α′ = γ = γ′ = 0 in Eqs. (34)

and (35) which yields the well-known representation of SU(2) algebra available in any text

book of quantum mechanics [47]. This special case will not admit the concept of minimum

phase and is good only for the probabilistic description i.e., over a large number of quantum

events.
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IV. YOUNG’S DOUBLE-SLIT EXPERIMENT: AN EXAMPLE FOR THE

OBSERVABLE WITH CONTINUOUS EIGENVALUES

In this section, YDS experiment (Fig. 2) is considered as an explicit example for the case

of an observable with continuous eigenvalues to explain the concept of zero-phase, occurrence

of RFD and the derivation of Born’s rule.

FIG. 2: Schematic Sketch of the Young’s Double-Slit Experiment: A source shoots single-

particles, one at a time, towards a double-slit assembly, where 1 and 2 represent two slits. |ψi >

is the initial state vector and the state vectors |ψ1 > and |ψ2 > from 1 and 2 get superposed as

|ψ >≡ |ψ1 > +|ψ2 >. The particle flying in the superposition gets detected by the screen where

the dual < ψ| gets excited and interacts as < ψ|ψ >. D1 and D2 are two detectors which can find

out through which slit any particle is going through. After collecting a large number of quanta,

the resulting particle distribution patterns at the screen, when D1 and D2 are turned off or on,

are given in (i) and (ii), respectively. If the particles are detected by D1 (D2), then the resulting

particle distribution on the screes is given by < ψ′1|ψ′1 > (< ψ′2|ψ′2 >).

A source shoots monochromatic single-particles onto the screen through the YDS assem-

bly. Let’s suppose that every particle is shot only after the registration of the previous one.

If particles are moving in 3DES, then they must leave a classically expected pattern of two

strips on the screen, as some of them pass through slit-1 and the others through slit-2. But,

according to non-duality, particles actually move in their own IRSMs obeying Schrödinger’s

wave equation, resulting in an interference pattern. Let |ψ1 > and |ψ2 > be the sate vectors
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due to the slits 1 and 2, respectively. Then, the superposed state,

|ψ >= |ψ1 > +|ψ2 >, (37)

induces a dual-mode, < ψ|, in the screen and interacts as,

< ψ|ψ >=< ψ1|ψ1 > + < ψ2|ψ2 > + < ψ1|ψ2 > + < ψ2|ψ1 > . (38)

As explained in Eq. (7), upon detection,

< ψ|ψ > =

∫
dr < ψ|r >< r|ψ > observation−−−−−−→ | < rp|ψ > |2,

=⇒ | < rp|ψ > |2 = | < rp|ψ1 > |2 + | < rp|ψ2 > |2

+ < ψ1|rp >< rp|ψ2 > + < ψ2|rp >< rp|ψ1 >, (39)

where, |rp > is the position eigenstate in which the particle is found at a position eigenvalue,

rp, on the screen. Note that, the above inner-product interaction happens instantaneously

the moment a particle appears at source, but, its effect remains unnoticed until the detection

of particle.

In this experiment, < r|ψ > is a free-particle solution of Schrödinger’s wave equation,

(∇2
r + k2) < r|ψ >= 0, (40)

which can be found to be,

< r|ψ >= |A|.ei(ε+p.r/h̄), (41)

where, |A| and ε are constants; p is the momentum of particle and h̄ is the reduced Plank’s

constant. According to the criterion of zero-phase presented in Section-II, the particle will

be found in |rp >, if

phase{|ψ >}|t=ti = phase{< rp|ψ >}|t=ti ,

phase{|ψ >}|t=tf = phase{< rp|ψ >}|t=tf = ε+ p.rp/h̄, (42)

where, ti and tf are the initial time of appearance and final time of detection of the particle,

respectively. It’s shown in [27, 29] that phase{|ψ >}|t=ti and phase{|ψ >}|t=tf are related

to each other by a phase arising due to the trajectory of the particle and hence, the set of

eigenvalues, {rp(t)}, at various times between ti and tf , lies on a classical trajectory con-

necting the initial and final locations. The phase{|ψ >}|t=ti randomly changes for particles

coming out of the source and hence, phase{|ψ >}|t=tf also changes accordingly.



16

Now, a couple of possibilities can be seen from the above equation, viz.,

As the phase{|ψ >}|t=tf randomly changes, then

1. ε can change for a fixed rp which corresponds to the landing of many particles at same

location rp on the screen,

2. ε can remain unchanged, then the particles land at various values of rp on the screen.

In general, both the above two aspects can occur simultaneously. Therefore, after collecting

a large number of detection events, | < rp|ψ > |2 in Eq. (39) can be regarded as a smooth

function of position eigenvalues, rp, which will obviously obeys the following Schrödinger

equation,

(∇2
rp + k2) < rp|ψ >= 0 (43)

Note that, both the Eqs. (40) and (43) describe the same physical situation, but, according

to the non-duality, they have very different physical meaning. In the former case, < r|ψ >

is an IRSM in which the particle flies and depending on its initial phase, the particle will

land on a definite location rp on the screen. The randomness in the landing of particles at

various values of rp is due the random phases of their state vectors generated due to the

nature of source. In the later case, the initial phases have no role to play and < rp|ψ >

is regarded as same for all particles which demands an inference that any given particle

will be simultaneously present at all locations until observed. Upon observation, the wave

function collapses to some position eigenstate randomly. Moreover, this randomness has to

be treated as an intrinsic property of the Nature.

Therefore, depending on the initial phase of IRSM, the particle will pass either through

slit-1 or slit-2. If its momentum changes either due absorption or scattering at the screen,

then the entire IRSM disappears in such way that the particle contributes a point to

< ψ|ψ >. As already mentioned, the next particle appears at the source along with its

IRSM whose absolute phase will be different from the previous one. However, its interaction

region, < ψ|ψ >, is the same as all previous ones. Since, Born’s rule is derived as a limiting

case of RFD, the notion of probability for a single quantum’s single event is not supported by

non-duality. Therefore, Schrödinger’s “cat paradox” [53] simply doesn’t exist within quan-

tum mechanics according to non-dualistic interpretation, though such a physical situation

becomes observable over a large number of ‘cat states’ [54–65]. A further proof is provided
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in reference [28], where, the entanglement swapping, both in space and time, are analyzed

at individual quantum level which is in perfect agreement with the experimental findings.

Since, quantum formalism admits only linear vector spaces, higher order interference effects

which can exist in generalized probabilistic theories [66–70], for a single quantum in YDS

like experiments, are simply ruled out (see Eq. (2) for scattering case and the same for

bound-state will be considered elsewhere) by non-duality.

As mentioned in Section-II, any momentum changing interaction of the particle with

probes of detectors D1 and D2 will result in the disappearance of |ψ >, which had two

origins, one at each slit. A new IRSM, either |ψ′1 > or |ψ′2 >, of new momentum appears

with a single origin where the interaction took place in the vicinity of the respective slit. Its

interaction with the detector screen is either < ψ′1|ψ′1 > or < ψ′2|ψ′2 >:

|ψ > Interaction with−−−−−−−−−−−→
detectors, D1 & D2

|ψ′ >= |ψ′1 > +|ψ′2 > ; < ψ′1|ψ′2 >= 0 (44)

=⇒ < ψ′|ψ′ >=< ψ′1|ψ′1 > + < ψ′2|ψ′2 > (45)

Therefore, in the presence of detectors, clump patters occur and in their absence, the inter-

ference comes back. Also, when the source is emitting a large number of particles at a time,

then the observed intensities on the screen will be that of several superimposed spherical

waves whose origins lie at the regions where the detectors’ probes interacted with the parti-

cles in the vicinity of the slits. This can be confirmed by observing the HBT effect [30, 31]

at the location of the screen.

The existence of single quantum events, as considered by the non-dualistic interpretation,

is clearly against the basic idea of ‘many-worlds’ [14–16] interpretation and there is no

measurement problem in QM. This does not mean that there is no entanglement between

the particle being detected and the measuring instrument. The full fledged explanation of

YDS experiment, where the entanglement is taken into care, will be reported elsewhere.

But, the present conclusions still hold as they are.

V. THE HANBURY-BROWN-TWISS EFFECT

The outline sketch of HBT experimental arrangement is given in Fig. (3). Aim of this

experiment is to estimate the distance of separation, d, between two incoherent particle
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sources, a and b [30–37]. Two independent particle detectors A and B separated by a distance

D register the particle intensities from a and b. A coincidence detector, CD, measures the

correlation between the intensities from A and B. The existence of an interference pattern

in the intensity correlations when measured for various values of D is known as the HBT

effect.

FIG. 3: Schematic Sketch of the HBT Intensity Interferometer: a and b are two particle

sources separated by a distance d and |a > and |b > are the corresponding state vectors associated

with them, respectively. Two particle detctors A and B, separated by a distance D, independently

register the particle intensity, because, < A|B >= 0. CD is a coincidence detector measuring the

correlation between intensities from A and B and hence, with respect to the CD, < A|B >6= 0,

i.e., CD feels both the vector spaces of A and B as a superimposed vector space.
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(a). Explanation of the HBT Effect Using the Non-Dualistic Interpretation

Let Ĥa|a >= E|a > and Ĥb|b >= E|b >; where Ĥa and Ĥb are the Hamiltonian operators

of the particles from a and b with |a > and |b > as their respective eigenstates and E as

energy eigenvalue. One needs two particle eigenstate of eigenvalue 2E for joint-detection to

happen in the CD (notice that, |a > and |b > need not have the same eigenvalues). Such a

state obeys the following eigenvalue equation,

(Ĥa + Ĥb)|a > |b >= 2E|a > |b > . (46)

Let P̂A = |A >< A| and P̂B = |B >< B| be the operators associated with A and B.

Then CD can be described by an operator,

P̂CD ≡ P̂AB = |A >< A| ⊗ |B >< B|. (47)

Since, CD is insensitive to a particular particle from particular source and observes only

energy, one can write down,

|a > |b >= |φ+ >> +|φ− >>; |b > |a >= |φ+ >> −|φ− >>,

=⇒ |φ± >>=
1

2
(|a > |b > ±|b > |a >), (48)

where, |φ+ >> and |φ− >> correspond to symmetric and anti-symmetric two-particle states.

Since they are mutually orthogonal, both particles must be present either in |φ+ >> or

|φ− >> for joint detection to happen. Therefore, the states which contribute to CD for the

coincidence detection is,

|φ̃± >>= P̂CD|φ± >=
1

2
(< A|a >< B|b > |A > |B > ± < B|a >< A|b > |B > |A >),(49)

which interacts with its excited dual in CD as,

<< φ̃±|φ̃± >> =
1

4
(| < A|a > |2| < B|b > |2 + | < B|a > |2| < A|b > |2).||A||2.||B||2

±1

4
< a|B >< b|A >< A|a >< B|b > | < A|B > |2

±1

4
< a|A >< b|B >< A|b >< B|a > | < A|B > |2. (50)

Notice that, if A and B are truly independent, then < A|B >= 0. But, with respect to

the CD, < A|B >6= 0. The above is the RFD at CD. Note that, each |a > and |b > have

influences on both the detectors A and B simultaneously, even though the particle in |a >

or |b > is detected by either A or B.
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(b). Weirdness in the Transactional Interpretation in Explaining HBT Effect

According to Copenhagen Interpretation (CI), a quantum entity propagates as a wave

but behaves like a particle upon observation. Though no mechanism is provided for the wave

collapsing to a particle, but at least, it’s what seems to be happening in any given experiment.

But, the transactional interpretation (TI) [22–24] demands much bigger mechanism than the

wave function collapse demanded by the CI as pointed out below:

According to TI, the detectors A and B receive a half-photon from a and another half-

photon from b and assemble them into one whole photon, one at each detector. When a

photon from the source a (b) divides into two halves, each piece travels different distance

to reach A and B. Therefore, which half of the which photon from a is assembled with

which half of the photon from b is unclear. Further, why and how the detectors are doing to

this assembling job just to fool the observers that the photons can only be detected as an

integer multiple of a whole photon, albeit they are capable of traveling to various detectors

as fractions? Certainly, the physical mechanism behind the process of ‘assembling’ seems to

be much more weirder than the ‘collapse of the wave function’, because it’s easy to explain

the later by using quantum formalism as shown by the non-dualistic interpretation.

The TI contains and majorly depends on the so called ‘offer wave’ (OW), a retarded

wave emitted by an emitter and ‘confirmation wave’ (CW), an advanced wave emitted in

response to OW by an absorber. It’s relativistically invariant, but, what it has to say

about the propagation speeds of the OW and the CW is unclear, because, the process of

‘transaction’ is shown to be atemporal, even when the emitter and absorber are separated

by an astronomical distance! - implying that the moment emitter emits OW, the CW is

already received at the same moment from the absorber which will come into existence only

after billions of years! Though TI is supposed to be ‘time symmetric’ formulation, it treats

emitter and absorber asymmetrically with respect to the arrow of time; otherwise, causality

can not be addressed. Therefore, the causality is just put in by hand into the TI. In a time

symmetric formulation, the absorber can also produce OW and the emitter, a CW - resulting

in a ‘transaction’ in such a way that the absorber first absorbs the photon which will be

emitted by the emitter in the future of billions of years. It’s not at all a simple picture when

compared to Copenhagen interpretation and in particular, to non-dualistic interpretation.

Therefore, the TI itself is a big paradox. So, there is no wonder that it paradoxically



21

explains all quantum paradoxes. Irrespective of its explanation, since it is constructed

entirely based on reproducing Born’s rule, it will somehow come in contact with experiments.

Without accepting Born’s probabilistic interpretation, TI has no meaning. But, Born’s rule

is a consequence of the quantum formalism according to the non-dualistic interpretation.

Further, the non-duality decisively proves that only Born’s rule but none other than Born’s

rule is possible within the quantum formalism, provided, the measurements are made on a

large number of identical systems.

VI. CONCLUSIONS AND DISCUSSIONS

By introducing the concept of minimum phase for the observables with discrete eigen-

values (zero-phase in the case of continuous eigenvalues), the pre-determinism in the exper-

imental outcome of a particular eigenstate is shown to be related to the overall absolute

phase of the state vector. The absolute phase itself is not experimentally observable due

to the inner-product interaction and is like a hidden variable available within the quantum

formalism. This forces experiments to observe only the relative frequency of detection which

in turn, in the limit of infinite number of events, results in Born’s rule. The physical reality

of Schrödinger’s wave function is shown to be an instantaneous resonant spatial mode in

which a quantum flies akin to the case of a test particle in general theory of relativity. This

notion, except for the concept of probability, is consistent with the Born’s Probabilistic In-

terpretation [8]: “The wave function determines only the probability that a particle - which

brings with itself energy and momentum - takes a path; but no energy and no momentum

pertains to the wave”. Finally, the measurement problem doesn’t exist in the non-dualistic

interpretation due to the principle of minimum phase and the inner-product interaction.

There is no distinction between microscopic and macroscopic physical systems, because, the

non-duality treats all of them on equal footing by recognizing them as represented by suit-

able complex vector spaces of the observables prescribed in the quantum formalism. As it

can be shown by using quantum formalism, the complex vector space ‘effectively’ appears

to be 3D-Euclidean for macroscopic objects.

Each initial state prepared in an experiment, like spin-1
2

particles ‘up along Y’ in Stern-

Gerlach apparatus with magnetic field along Z-axis or the monochromatic particle states

in Young’s double-slit experiment, will essentially differ from any other identical state by
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an overall phase which will never contribute to the inner-product interaction and hence

to Born’s rule but responsible for the different experimental outcomes. In other words,

all initial conditions are different which result in different outcomes though they are all

confined to Born’s rule. This situation is in perfect agreement with a philosophical saying,

“It is necessary for the very existence of science that the same conditions always produce

the same result”. ‘...outside the domain of science’ - mentioned in one of the profound

statements by Prof. Dirac [52]: “Questions about what decides whether the photon is to go

through or not and how it changes its direction of polarization when it does go through can

not be investigated by experiment and should be regarded as outside the domain of science”,

is brought inside the domain of science by non-duality. This was shown explicitly for spin-

1
2

system and the will go through for photon’s polarization as well. Towards the end, the

Hanbury Brown-Twiss effect was unambiguously explained using non-duality. Also, how the

transactional interpretation provides a weird explanation for the same effect was pointed out.

In fact, the better name for the non-dualistic interpretation may be the quantum formal-

ism as it is interpretation.

With the tools of probabilities and uncertainties, we will be never able to dig deep into

the fundamental secretes of Nature.
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APPENDIX

Review Report:

The author claims to have provided ’the only physical account of the Born Rule,’ but what

he gives is basically the same as the transactional interpretation (TI). In particular, the dual

states entering in an ad hoc fashion here are already part of TI (where they are physically

motivated advanced states arising in the direct-action theory).

The author is to be commended for his realist approach to the quantum level. But besides

the fact that his ad hoc dual states are already part of TI, his notion of ’minimum phase’ as
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the criterion for measurement outcomes, if I understand what he is proposing, does not work.

For example, an initial spin state of ’up along y’ could be subject to a z-axis measurement, in

which case the amplitude for ’up along z’ is 1/
√

2 and for ’down along ’ it is i/
√

2. According

to this criterion, the result ’up along z’ has the minimum phase, so it should always occur,

which violates the Born Rule. In other cases with equal amplitudes for the outcomes, e.g.

spin ’up along x’ subjected to a z-spin measurement, there is no ’minimum phase’. Another

(less serious) problem is the reliance on non-relativistic quantum theory, in particular wave

functions, as fundamental. There is no position operator at the relativistic level, so no well-

defined position eigenstates |x >. Nature is relativistic; so arguably, wave functions < x|ψ >

are not ontologically fundamental.

Reviewer: “The author claims to have provided ’the only physical account of the Born

Rule,’ but what he gives is basically the same as the transactional interpretation (TI)”.

Author: In my paper, I clearly stated, ‘Although, each one of them is interesting by

itself, none of them gives a derivation for the Born rule using the single-quantum events as

it will be shown in the present article’ (here, ‘them’ standing for various interpretations)-

As it’s very clear that the derivation given as in the present article, i.e., showing Born’s rule

as a limiting case of the relative frequency of detection, is not shown in any of the earlier

interpretations. Anybody, who is familiar with the TI will know that my way of derivation

is completely different from that of TI; in the presentation of entire TI, there are no such

words like ‘relative frequency of detection’. TI postulates retarded and advanced waves only

to cook up the well-known Born’s rule. Can it be considered as a derivation at all?

Reviewer: “In particular, the dual states entering in an ad hoc fashion here are already

part of TI (where they are physically motivated advanced states arising in the direct-action

theory)”.

Author: The above statement of the reviewer is really too much. I am deriving the

inner-product by introducing the dual vector as a consequence of quantum formalism for

the case of a scattered particle at detector screen. The dual vector introduced by me is unlike

the advanced wave of TI propagating in the space-time. It just gets excited in the detector

screen and completely confined only to the screen. It’s analogous to an image in a mirror.

(The advanced states them self are unphysical; there seems to be physical motivation for

this unphysical states! Mirror images are just images. They should not be mistaken to be

existing in the physical space though they are caused by the objects living in the physical
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space).

Reviewer: “The author is to be commended for his realist approach to the quantum level.

But besides the fact that his ad hoc dual states are already part of TI, his notion of ’minimum

phase’ as the criterion for measurement outcomes, if I understand what he is proposing, does

not work”.

Author: As I already described above, the dual vector is absolutely not a part of TI.

Also I am 100% sure that the reviewer was unable to see why the natural notion of ‘minimum

phase’ works because the report came within a day. Moreover, such a biased person towards

a particular interpretation will naturally overlook the whole point in other interpretations. I

even wonder whether TI makes any common sense at all (see Section-V (b), for an account of

new kind of weirdness discovered by TI, though the QM itself is not weird.). See Sections III

and IV where, it’s shown by using explicit calculations for the well-known quantum systems,

spin-1
2

system in Stern-Gerlach apparatus and Yong’s double-slit experiment, that how the

notion of ‘minimum phase’ actually works.

Reviewer: “For example, an initial spin state of ’up along y’ could be subject to a z-axis

measurement, in which case the amplitude for ’up along z’ is 1/
√

2 and for ’down along ’ it

is i/
√

2. According to this criterion, the result ’up along z’ has the minimum phase, so it

should always occur, which violates the Born Rule. In other cases with equal amplitudes for

the outcomes, e.g. spin ’up along x’ subjected to a z-spin measurement, there is no ’minimum

phase’.”

Author: The reviewer failed to understand the fact that in quantum mechanics, all

the initial state vectors of identical particles differ, in general, by overall phases, which

are experimentally unobservable due to the nature of Born’s rule. The reviewer is using a

special case of a more general representation allowed by the quantum formalism to refute the

concept of ‘minimum phase’. The reviewer is reminded of the fact that, his/her special case

is suitable only for the description of a quantum system probabilistically. It’s of no use to

say anything about a single quantum’s single event where, probability is of no use. What’s

wrong with the reviewer’s understanding in the above argument is explained in detail in

Section-III and particularly in the subsection III-(c).

Reviewer: “Another (less serious) problem is the reliance on non-relativistic quantum

theory, in particular wave functions, as fundamental. There is no position operator at the

relativistic level, so no well-defined position eigenstates |x >. Nature is relativistic; so



25

arguably, wave functions < x|ψ > are not ontologically fundamental”.

Author: In my paper, I clearly mentioned, “In the present article, only the time-

independent non-relativistic quantum mechanics is considered, because, its interpretation

naturally goes through time-dependent and relativistic cases”. Many interpretation like

Bohmian mechanics were initially at the non-relativistic level only. Moreover, my claim is

that the same ideas can be carried over to the relativistic cases. Of course, when doing that,

one has to look at the relativistic formalism to interpret in the same way as done for non-

relativistic case. In the relativistic case, it doesn’t matter whether the position eigenstates

|x > is well defined or not, because my interpretation crucially depends on recognizing the

CVS of well-defined Hermitian operators as the fundamental.

Reviewer: “Nature is relativistic; so arguably, wave functions < x|ψ > are not ontolog-

ically fundamental”.

Author: By saying like the above, it’s unfair to keep away the unbelievable success of

Schrödinger’s equation. Further, this statement - < x|ψ > are not ontologically fundamental

- actually belongs to Copenhagen interpretation. I am surprised to hear this from a TI person

because TI is basically proposed against Copenhagen interpretation! Anyhow, whether the

wave function is ontologically fundamental or not is the reviewer’s personal opinion, but

need not be a fact of Nature. But, according to me, since the observed physical effects, like

the interference pattern in Young’s double-slit experiment, are due to the wave function,

then it must be an ontological entity. Further, how relativity disqualifies the ontological

nature of Schrödinger’s wave function is unclear.
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