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Abstract. We present a graph to illustrate a chain of events within the theory of special relativity. This 
spacetime diagram provides both the so-called proper time and calendar time, in addition to one space 
parameter. All parameters of the graph are given in time units, and we also relate the graph to a time 
vector in two dimensions. The graph depicts objects (events) having a piecewise constant velocity. By 
change in the velocity, it is required to ‘restart’ the process by providing new initial conditions. The 
approach is exemplified e.g. by versions of the ‘twin paradox’.  

Keywords: Spacetime diagram, event graph, time vector, internal clock, twin paradox, µ-mesons.  

1 Introduction 
Previously we have introduced a time vector in the theory of special relativity (TSR); cf. Hokstad (2018). 
Here we build on this work and present a graph to describe the movements of an object with piecewise 
constant velocity. In its simplest form, this was also suggested by Epstein (1987). 

This ‘event graph’ is a spacetime diagram, analogous e.g. to the ‘worldline’ of Minkowski; cf. Petkov 
(2012). However, we use the so-called ‘proper time’ and the position (in time units) as the two main 
parameters of the diagram; but also provide the ‘calendar time’.  

We apply the approach to versions of the ‘travelling twin’ example. Further, the case of the µ-mesons 
is used as an illustration; also see Hokstad (2023), focusing on simultaneity in TSR. 

2 Basic notation and the time vector 

We start out from the following basic situation: There is a Reference Frame (RF), denoted K, having 
one space coordinate, x. This RF has synchronized, stationary clocks located at virtually any position. 
Further, there is an object moving at velocity, w, relative to K, along the x-axis. The process is initiated 
by an object starting out (say from the origin of K), when the clock at this position reads t = 0.  

Also (we imagine that) this moving object brings with it a clock, and when the object passes the origin 
at time 0, this clock is synchronized with the clock on K at this position.  

We introduce three fundamental parameters related to the movement of this object. First: 

τ = Clock reading of the clock following the moving object. We would say that this is the ‘internal 
time’ of the object/event, but usually, this is referred to as the ‘proper time’.  

Further, we have two parameters (t, x), which specify an event on the chosen RF, K: 

𝑥 = Position of the moving object relative to K, (when the passing clock reads τ); 

𝑡 = Clock reading of the clock permanently located at position 𝑥 on K, when the moving clock reads 
τ; (this t is usually referred to as ‘calendar time’). 

It is well-known that the proper time, τ is independent of which RF we choose as the basis for our 
observations. In contrast, the (𝑡, 𝑥) parameters, will of course depend on which RF we have chosen for 
describing the observations. Further, 

𝑤 = 𝑥/ 𝑡, i.e. the velocity of the object relative to the RF,  

c = speed of light, 

Then - according to the so-called time dilation in TSR, we have (e.g. Mermin (2005)) that: 
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                                                  𝜏 = ඥ𝑡ଶ − (𝑥/𝑐)ଶ = 𝑡ඥ1 − (𝑤/𝑐)ଶ                                                  (1) 

We proceed to introduce a time vector related to an event (t, x), see Hokstad (2018): 

                                                           𝑡 = ቀ ఛ
௫/௖

ቁ = ቀ
௪/௖

ඥଵି(௪/௖)మ
ቁ 𝑡                                                                           (2) 

The absolute value of this vector equals  

                                                           │𝑡│ = 𝑡 = ඥ𝜏ଶ + (𝑥/𝑐)ଶ                                                           (3) 

We note that all three parameters τ, 𝑡 and 𝑥/𝑐 represent time. In particular, 𝑥/𝑐 equals the time required 
for light to traverse the distance x from the origin to the location of the event. We can also see t as the 
event’s total ‘distance’ (in time) from the ‘initiating event’., where eq. (3) represents a decomposition 
of this t into its two components, 𝜏 and x/c. 

This time vector, (2), actually comprises the information of all the above fundamental parameters of an 
event. Further, we may also define an angle, 𝜑௪ ∈ [−𝜋/2,   𝜋/2] by   

                                                                  sin 𝜑௪ =
௪

௖
=  

௫/௖ 

௧
                                                                 (4)  

3 A simple event graph 

We now introduce a graphical approach to describe the series of events, defined by this moving object. 

3.1 Specification 

Fig. 1 provides a graphical illustration of the four parameters: 𝜏, 𝑥/c, 𝑡 and w, related to a specific event. 
The absolute value (length) of the time vector, 𝑡, provides 𝑡. The slope of the line provides 𝜑௪ and, thus, 
also the velocity, w. Now the two components (abscissa and ordinate) of the time vector are given as, 
see eqs. (1) - (4): 

𝜏 = 𝑡ඥ1 − (𝑤/𝑐)ଶ = 𝑡 cos 𝜑௪  

                                                                    
௫

௖
=

௪௧

௖
= 𝑡 sin 𝜑௪            

  

Figure 1. An ‘event graph’: A chain of events, (t, 𝒙)𝝉ஹ𝟎 on a specific RF; describing an object of 
constant velocity, w relative to this RF.  
 

Thus, by specifying the object’s velocity, w (relative to our RF) and its proper time, τ, the graph will 
directly provide the (development of the) event parameters, (𝑡, 𝑥) relative to the chosen RF.  

Now, in addition to illustrate a specific time vector, this line also illustrates the whole chain of events, 
representing the object’s movement from time 0. We denote this an ‘event graph’.  
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3.2 Examples 

We illustrate the above graph with a couple of standard examples; (also see Annex). 

 

 

 

 

 

 

 

 

 

a) Twin paradox (three event graphs)  b) My-mesons (three event graphs) 

Figure 2.  Examples of event graph, (both in the perspective of the earth). 
 

Example 1. The twin paradox. 
We apply a standard numerical example, as given for instance in Mermin (2005). Here the travelling 

twin leaves the earth in a rocket of velocity, w = 0.6c. This gives ඥ1 − (𝑤/𝑐)ଶ = 0.8. He travels to a 
‘star’ located 3 light years from the earth. This means that 𝑥/𝑐 = 3 years. Further, the RF of the earth 
has a synchronized clock located at the star, and by the arrival of the twin to the star, this clock will now 
read, 

𝑡 = 𝑥/𝑤 = 3c/0.6c = 5 years. 

At this instant the travelling twin’s clock will - according to the TSR, (see equation (1)) – read,  

𝜏 = 𝑡ඥ1 − (𝑤/𝑐)ଶ  =  5 ∙ 0.8 = 4 years. 

Thus, by the arrival of the rocket to the star we have 𝜏 = 4 years, 𝑥/𝑐 = 3 years, 𝑡 = 5 years. Or, 
expressed by the time vector related to this even, (see the blue line OB of Fig. 2.a)): 

𝑡ை஻ሬሬሬሬሬሬ⃗ = ൬
𝜏

𝑥/𝑐
൰ = ൬

4

3
൰ ,   with  │𝑡│ = 𝑡 = 5.  

Here O represents the travelling twin’s start of the travel, and B the event of his arrival to the star. Thus, 
the line OB also represents the twins’ travel to the star. 

In addition, we have in this figure inserted two other event graphs. First, the red line OA, illustrating the 
clock of the brother who remains on the earth, (thus, having x/c ≡ 0); and finally, the line CD, illustrating 
the (imagined) clock permanently situated on the star. 

So, in this illustration, it is essential that all the three event graphs are related to the same RF, (that of 
the earth). In this perspective, all three event chains start simultaneously with t = 0, (at events O and C, 
respectively). 

So, in the perspective of this RF, the figure gives a snapshot of three time vectors, 𝑡ை஺ሬሬሬሬሬሬ⃗ , 𝑡ை஻ሬሬሬሬሬሬ⃗  and 𝑡஼஽ሬሬሬሬሬሬ⃗ , also 
represent three simultaneous (chains of) events. 
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Example 2. The My-mesons. 
For instance, Mermin (2005) refers to this standard example: The µ-mesons are produced by cosmic 
rays in the upper atmosphere. When 'at rest' they have a lifetime of about 2 microseconds. So if their 
internal clocks ran at a rate independent of their speed, about half of them would be gone after they had 
traveled 2.000 feet. Yet about half of the µ-mesons produced in the upper atmosphere (about 100.000 
feet up) manage to make it all the way down to the ground. This is because they travel at a speed so 
close to the speed of light that they can survive for 50 times as long as when they are stationary. 

Describing this phenomenon in the perspective of (the RF of) the earth, the situation is quite similar to 
that of Example 1; see illustration in Fig. 2.b). The creation of the µ-mesons in the upper atmosphere is 
event O, (x/c = τ = 0). The blue line OB represents the movements of the my-mesons, and by the arrival 
to the earth (B), the τ-value of the my-mesons equals (cf. CB) τ = 2∙10-6 sec.  

Further, the line CD is the event graph of a clock located on the earth, giving the duration t ≈ 2∙10-6 ∙50 
= 10-4 sec for the travel of the my-mesons. This is equal to the distance OB.  Further, the distance traveled 
by the µ-mesons, (OC), equals x/c ≈ 10-4 sec. 

This case is interesting, as there are different ways to describe/interpret these results. Mermin (2005) 
says: “The atomic particles can go much further because their internal clocks that govern when they 
decay are running much more slowly in the frame in which they rush along at speed close to c. This is 
a real effect. …. “. The ‘internal clock’ referred here is obviously the imagined clock, following the 
mesons, and reading the ‘proper time’, τ. Thus, I would rather say that these observations show that the 
‘inner clocks’ of the my-mesons are running at the same speed, irrespective of the velocity of the my-
mesons relative to the earth. So rather than describing the apparent slowing of the inner clocks 
(compared to the clocks on the earth) as a ‘true physical phenomenon, I suggest it should be seen as an 
‘observational phenomenon’, caused by the choice of ‘observational RF’; also see Serret (2018). 

4 Generalizations 

We now look at a couple of generalizations of the above approach. 

4.1 An event graph of piecewise constant velocity 

The event graph of Ch. 3 is based on having an event of constant velocity, w. But we can similarly 
illustrate a chain of events for an object having a piecewise constant w, see the example given in Fig. 3. 
In this figure we start with a constant velocity, w > 0, see the line OA. After a certain time, the object 
(in this figure) is brought to rest; that is, the velocity is abruptly changed to w = 𝜑௪  = 0, see event A. 
Now the local clock reads a value equal to the length of OA. Here BC represents the time vector of the 
local clock, and is given the same length as OA. At this change of velocity, we ‘restart’ the process; 
starting with the (t, x) – value of the current event in the relevant RF; (that event is C). Thus, the event 
graph continues from event C; (the τ – value, however, is not affected by this update). 

Following Fig. 3, the object then remains at rest (w =0) for a period, giving the line (CD) parallel to the 
abscissa, τ. Next, the object approaches the origin; i.e. have a negative w, (see line DE). (No update is 
required at event D, as the object has been at the same location in the period CD; and so the change in t 
equals the change in τ.) However, ‘arriving’ at E, a new update is required; imposing a new start at event 
G; (here FG has the same length/duration as DE).  

Thereafter the ‘object’, (or now rather ‘event’), has velocity, w = c, (𝜑௪ = 𝜋/2), and the line (GH) is 
orthogonal to the τ-axis. A new update occurs at H; with HI having the same length as GH; etc. The 
total graph is given by the red vectors.  

Also in this generalized diagram, the length of the graph for events (𝑡, 𝑥)τ≥0 up to a certain τ-value will 
equal the calendar time, 𝑡 of the end event. In the given example of Fig. 3 we have that this time equals  

𝑡 = │𝑡ை஺ሬሬሬሬሬሬ⃗ │ +  │𝑡஼஽ሬሬሬሬሬሬ⃗ │ +  │𝑡஽ாሬሬሬሬሬሬ⃗ │ + │𝑡ீுሬሬሬሬሬሬ⃗ │ + │𝑡ூ௃ሬሬሬሬ⃗ │, 

or t = OA + CD + DE + GH + IJ; which also equals BC + CD + FG +HI + … 
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Figure 3. An event graph illustrating an object’s movement, when the velocity, w is piecewise 
constant. The total length of the (red) graph equals the elapsed (calendar) time, 𝒕 on the RF.  

 

4.2 Extension to three space coordinates   

In the approach, described so far, there is a single space coordinate, 𝑥, only. We could, however, 
introduce three space coordinates (𝑥, 𝑦 , 𝑧) with corresponding velocity coordinates, (wx, wy, wz). For 
simplicity we just consider the case of having a constant velocity throughout; now with a velocity vector  

𝑤ሬሬ⃗  = (wx, wy, wz)T 

So, when we have the calendar time, 𝑡 at the position (𝑥, 𝑦 , 𝑧) on K, it follows that  

(x, y, z)T = 𝑡 ∙ (wx, wy, wz)T 

At this instant the spatial distance from the origin of K equals 

𝑙 = ට𝑥ଶ + 𝑦ଶ + 𝑧ଶ  = 𝑡 ∙ ට𝑤௫
ଶ + 𝑤௬

ଶ + 𝑤௭
ଶ  

The absolute value of the velocity vector, 𝑤ሬሬ⃗  = (wx, wy, wz)T equals 𝑤 = ට𝑤௫
ଶ + 𝑤௬

ଶ + 𝑤௭
ଶ . Thus, w=l/t. 

Now we can apply the results of Section 3.1, by just replacing 𝑥 by 𝑙. In analogy with eq. (4) the event 
graph is still defined by 𝜑௪ , now having 

sin 𝜑௪ = 𝑤/𝑐 =    𝑙/(𝑐𝑡). 

Finally, we note that this graphical approach is somewhat similar to Minkowski’s spacetime diagram 
with three space coordinates, x, y, z, and an imaginary time coordinate, t. The coordinates of his space 
are (x, y, z, i∙ct). As opposed to this, we have transformed the spatial parameters to time, and we have 𝜏 
rather than t as the time coordinate. In his paper, Minkowski (1909) also introduced the spacetime 

distance, given as ඥ𝑐ଶ𝑡ଶ − 𝑥ଶ − 𝑦ଶ − 𝑧ଶ in his four-dimensional space, while we in the current 

approach refer to 𝑡 = ඥ𝜏ଶ + (𝑙/𝑐)ଶ as the total ‘distance in time’ (from an initiating event). 

5 Example: The twin paradox 

We now discuss Example 1 of Section 3.2 in more detail. This travelling twin example goes back to 
Langevin (1911), also discussed for instance by Debs and Redhead (1996) and Schuler and Robert 
(2014). We now exemplify the generalised graph of Section 4.1, by considering the entire travel and 
apply the same numerical values as in Example 1,  
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5.1 The perspective of the earth-based RF, K 

Fig. 4 presents two graphs, illustrating the total chain of events, both that of the travelling twin, and also 
that of the twin remaining on the earth. Both graphs describe the events in the perspective of the earth’s 
RF, K. As seen in Example 1 the travelling twin’s travel to the star is described by the blue line, OB at 
an angle 𝜑௪, where sin 𝜑௪ = 𝑤/𝑐 = 0.6. 

 

Figure 4. Event graphs of the twins in the perspective of the earth-based RF, K. The blue graphs 
describe the travelling twin’s journey. The red line, OA follows the earthbound twin, having 𝑥/c ≡ 0. 

At the event, B, we have 𝜏 = 4, 𝑥/c = 3, 𝑡 = 5. Then the velocity abruptly changes to -w. We perform 
an update, and start the return from the ‘local event’, D. Now the return travel is given by DF and the 
blue graphs illustrate the results that by the return to the earth (where again 𝑥 /c = 0), the returning clock 
has ‘aged’ a value τ = 4 + 4 = 8 years; while it has elapsed a time t = 5 + 5 = 10 years on K, (cf. OB + 
DF).  

The red line, OA illustrates the very simple ‘chain of events’ related to the twin remaining on the earth. 
He is permanently stationed at the origin of K. So, in his case we have w ≡ 0, and thus also 𝜑௪ ≡ 0, 
giving 𝑥 /c ≡ 0 and 𝑡 ≡ 𝜏, (all 𝜏). As we just found by identifying the blue graph: by the return of his twin 
to the earth, it has elapsed a time 𝑡 = 10 years on K, and so the red event graph ends at A where 𝑡 = 𝜏 =

10 years. Thus, the two graphs end with τ = 8 and τ = 10, respectively. And these results are valid for 
any RF.   

5.2 The perspective of the travelling twin KT 

As an exercise we now consider the same two chains of events, but viewed in the perspective of another 
RF. This new RF is denoted KT, with time, tT and position, xT, and it is moving away from the earth at 
velocity, w. Therefore, we let the travelling twin and his rocket be located at the origin of this RF. When 
they arrive to the star, this KT continues its journey away from the earth at the same speed; (as we 
consider RFs of constant velocity, only).  

Fig. 5 provides an illustration. Again, the red line refers to the event chain for the earthbound twin. In 
order to remain at the earth, this twin is moving along the negative 𝑥்/c-axis of KT at velocity -w. This 
graph has an angle 𝜑ି௪ relative to the 𝜏-axis, where sin 𝜑ି௪ = −𝑤/𝑐 = −0.6. This line is valid for the 
entire event chain. So, at the instant when his internal clock reads 𝜏 = 10 years, it follows that the 
parameters on KT for this event equals xT /c = -7.5 years and tT = 12.5 years. Thus, the red line fully 
describes the ‘journey’ of the earthbound twin relative to KT. 

To follow the travelling twin, we look at the blue line in Fig. 5. For the first four years he remains at the 
origin of KT. When 𝜏 = 4, (and thus, xT = 0, tT = 4) there is an abrupt change in his velocity; (but no 
update is required, as xT has been unchanged). For 𝜏 ≥ 4 the blue line illustrates the return of this twin. 
He shall have a velocity w relative to the earth’s RF, K. Further, the speed between K and KT also equals 
w. So now we must apply the rule for adding velocities in TSR, e.g. see Mermin (2005). Thus, the 
returning twin will have the following velocity relative to KT:     
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                                                       𝑢 =
ି௪ି௪

ଵା(ି௪/௖)మ = −
ଶ௪

ଵା(௪/௖)మ                                                           (5) 

Now inserting w/c = 0.6 here, we get u/c = −15/17. So, for the return travel (𝜏 ≥ 4) the blue graph has 

an angle, 𝜑௨ given by sin 𝜑௨ = 𝑢/𝑐 = −15/17, (and further, cos 𝜑௨ = ඥ1 − (𝑢/𝑐)ଶ  = 8/17. This 
fully describes the direction of the blue graph for  𝜏 ≥ 4. 

 

Figure 5. Event graphs of the two twins in the perspective of KT, which is the RF of the travelling twin 
on his travel to the star.  

Further, his journey ends when 𝜏 = 8 (independent of RF). And we find the entire event graph in KT for 
the travelling twin. And, as already observed, the two event chains end when xT /c = -7.5 years on KT; 
(the location on KT where the two twins are reunited). So, now we have fully determined both graphs; 
see Fig.5. In particular, the clock reading on KT when the twins reunite equals tT = 12.5 years; equal to 
the total length of both the red and the blue graph.  

5.3 A symmetric approach 

Finally, we consider an alternative journey, giving a symmetry between the two twins. Now we again 
use K as the RF, cf. Fig. 6. As in Section 5.1 the travelling twin (blue graph) travels to the star and arrives 
there after 4 years (according to his own clock); while the clock of K reads 5 years. In the present 
example he remains there until the brother arrives.  
 

 

Figure 6  Event graphs for the two twins; now meeting at the star.  
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The other twin (red graph) first remains on the earth in 5 years. Then he starts out to the star, with the 
same velocity as the brother; thus, arriving there 4 years later, according to his own clock. But according 
to the stationary clocks on K it has passed 5 years. So, by the reunion, both twins are located at the 
position x/c = 3 light years, and the time on K equals t = 10 years. However, according to their own 
clocks both twins agree that it has passed 4 + 5 = 9 years. 

We note that the first parts of Fig. 6 (of course) is identical to the first part of Fig. 4. 

6 Summary 

We present a graphical approach to describe and investigate the movement of an object, as observed 
within a specific reference frame (RF). The event graph illustrates a total chain of events, provided the 
object has a piecewise constant velocity. It also illustrates all parameters of the events: 

1. The proper time, τ of the moving object, i.e. the reading of its imagined ‘internal clock’.  
2. The calendar time, t as read on the chosen RF, (at the relevant location).  
3. The position x - divided by the speed of light, c; (representing the time required for the light to 

traverse this distance).  

The graph illustrates how the time, t is decomposed into its two components, τ and x/c.  We also observe 
that the event (𝑡, 𝑥) relative to the specified RF is derived from the proper time, τ, together with the 
object’s velocity, w, (which we observe in the graph through an angle 𝜑௪).  

As examples, we make extensive use of the twin paradox; illustrating different ‘perspectives’, i.e. 
choices of RF, and also different strategies for the reunion of the twins. 
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Annex.  Equivalent events. The Lorentz Transformation. 

This case is not really an example of an event graph, as defined above, but is very similar. Here we 
consider a specific event, and illustrate how this event is specified by different RFs, moving relative to 
each other at constant speeds. Thus, we provide an illustration of the Lorentz Transformation, involving 
an arbitrary number of RFs. 
  

 

 

 

 

 

 

 

 

 

Figure 7.  Diagram illustrating the Lorentz transformation (for any number of RFs). 

We start by specifying an event having an ‘internal clock’ reading 𝜏. For simplicity, we let this clock be 
located at the origin of an RF, K, having velocity 0. Further we have, for any w, an RF, Kw, which has 
velocity w relative to K. Furter, let (tw, xw) be the time and space coordinates on Kw for the specified 
event. Thus xw = w tw, and according to standard theory, (see eq. (1)):  

𝜏 = ඥ𝑡௪
ଶ − (𝑥௪/𝑐)ଶ = 𝑡௪ඥ1 − (𝑤/𝑐)ଶ, all w. 

In the illustration of Fig. 7 OA represents the time vector of the ‘internal clock’; located at the origin of 
K = K0 having t0 = τ). Further, the blue vectors represent the time vectors of the same event, relative to 
various RFs. So, OB exemplifies the time vector for this event, as specified in the RF, Kw.  

So given the 𝜏 of the event, we just determine 𝜑௪ from sin 𝜑௪ = 𝑤/𝑐, and then directly observe xw and 
tw from the figure. So, this is similar to Fig. 1, In Fig. 7, however, w is the velocity of the RF relative to 
the ‘internal clock’ of the event, and corresponds to -w in Fig. 1. 

Note that if we have two events (𝑡௪೔
, 𝑥௪೔

), i = 1, 2, corresponding to this 𝜏, it directly follows that  

𝜏 = 𝑡௪೔
ඥ1 − (𝑤௜ /𝑐)ଶ = 𝑡௪೔

cos 𝜑௪೔ , i = 1, 2 

                                                        
௫ೢ೔

௖
=

௪೔௧ೢ೔

௖
= 𝑡௪೔

sin 𝜑௪೔
, i = 1, 2,       

and we get the following relation between the events (𝑡௪భ
, 𝑥௪భ

) and (𝑡௪మ
, 𝑥௪మ

)  

𝑡௪మ
=

ඥଵି(௪భ /௖)మ

ඥଵି(௪మ /௖)మ
𝑡௪భ

  

𝑥௪మ
=  

௪మඥଵି(௪భ /௖)మ

௪భඥଵି(௪మ /௖)మ
𝑥௪భ

,  (𝑥௪భ
= 0 𝑖𝑓 𝑤ଵ = 0). 

So, this represents an alternative formulation of the LT. Now the velocity, v between the two RFs is 
given by a standard formula in TSR, e.g., see Mermin (2005): 𝑣 =

௪భି௪మ

ଵି௪భ௪మ/௖మ .   

 τ  

x /c 

O 
A 

 φw 

 τ  

𝑡௪ 
𝑥௪/𝑐 B 


