
N-SAT in P with Non-Coherent Space

Factorization

F.L.B. Périat

22 August 2019

1 Introduction

We know since Cook that Boolean satisfiability problems with at least three
literals in each clauses are in NP1 and are NP-complete. With proving that
3-SAT (or more) is in P, corollary proves that P = NP2.

2 Definitions and Processing

2.1 Notations

First, when literal of variable a is negative, ā notation will be employed.
Then, or operator will be noted as +, while and won’t be represented by any
symbol (· may be employed in hardly ever cases).
Furthermore, we will use 0 and 1 to represent true and false, respectively, also
in Boole algebra.
At last, for a better understanding, equations in a Boolean ring will be ended
by [2], to differentiate it from Boole algebra and we will use the = relation as
an hypothetical equality.

2.2 De Morgan’s Law Substitution

As we potentially work with conjunctive normal form of SAT problems, the first
operation in this document is applying the De Morgan’s Law on the whole CNF
problem. For example, if we first had something like :

(v1 + v2 + v̄3)(v̄1 + v̄2 + v3) = 1

We obtain, after substitution :

v̄1v̄2v3 + v1v2v̄3 = 0

This is the form we will work with after, called disjunctive form. To be short
and concise will we use functions notation for unspecified sets of one or more
disjunctive clauses, like : f(...), g(...), etc.

1

2.3 Boolean Ring

The not operator on a variable, noted ā, can be equivalently replaced by (1−a)[2]
in Boolean rings.
As the and operator is idempotent, we won’t make any change with Boole
algebra.
or operator won’t be represented by it’s exact form; to simplify equations, we
will let the additive operator as it is. We can allow this because in the disjunctive
form, there won’t be any solution if one additive element equals 1, as in case if
several elements equal 1 (the exact form for a + b would be (a + b− ab)[2]).

2.4 Empty Problem

A problem with no clause, has only one valid solution. In other words, every
combination (of no variable) lets the problem satisfied (is this document we
mean by combination a specific assignment of 0 or 1 for each variables). An
empty problem is, in its disjunctive form : 0, so 0 = 0.

2.5 Trivial Clause

2.5.1 Definition

A clause is called trivial if it contains simultaneously any literal and its negation.
For example clause v̄1v̄2v2 is trivial, because literals v2 and v̄2 are in it.

2.5.2 Lemma

Every Trivial clause can be removed from the problem, without altering the
result, as long as we consider the removed variables contained in the problem.

2.5.3 Proof

A problem with a trivial clause can be represented as:

f(...) + g(...)aā = 0

In the Boolean ring we obtain:

f(...) + g(...)a(1− a) = 0[2]

The part a(1 − a)[2] = a − a = 0, so we find that: f(...) + g(...) · 0 = 0 is
equivalent to f(...) = 0, a problem without trivial clauses. We can have many
trivial clauses in a problem and remove them, since 0 + 0 = 0.
A special case, is when we only have trivial clauses in a problem; we obtain a
empty problem, which is always valid. We only have to consider the solution,
as every combination of the removed variables.

2

2.6 Coherent Space

2.6.1 Definition

If we consider the problem as a set of clauses without any trivial clauses, a
coherent space is a subset of the problem (including the whole problem set
itself), where no variable exists simultaneously in its positive and negative state.
For example : abc+ d̄ac is a coherent space, while āf(...) +ag(...) +h(...) is not.

2.6.2 Lemma

If a coherent space would be a SAT problem, it would always have one obvious
solution.

2.6.3 Proof

If the coherent space is an empty set, as showed before, its obvious solution is
a combination of no variable.
Else if we assign to every variable (each different, so no conflict, hence the name
of coherent space) the state of it’s negation (1 if negative, 0 otherwise), then
the problem will necessarily be satisfied. For example in the last given coherent
space; abc + d̄ac, transformed into a problem : abc + d̄ac = 0, we obtain an
equation without 1 value. As a matter of fact, only (1−a)→ (1−1) = 0[2] and
a→ 0[2] values will never achieve to a 1[2] value, implying 0 = 0[2].

2.7 Factorization into Coherent Space

2.7.1 Definition

When our SAT problem is not a coherent space, we can factorize it into three
subset by one of the variables that exists in the set as positive and negative.
The form of a non-coherent space is :

af(...) + āg(...) + h(...)

Where variable a is not contained in any subsets f ,g or h.

2.7.2 True Subset

If we factorize a literal by itself, we obtain the variable and 1. This 1 value is
called; in this document, a true subset. It is always equal to 1 hence its name.
(If it it was once equal to 0 we would not have any variable, because 0 · a = 0)

2.7.3 Lemma

If we add (+) a true subset to a coherent space (called a lonely true subset), we
obtain a non-coherent space.

3

2.7.4 Proof

The true subset is always true, so we can replace it with true value a+ ā where
a is an arbitrary variable, what add a variable positive and negative states to
the set, so it is not coherent anymore. We will not make any substitution in the
factorization.

2.7.5 Lemma

We can always recursively factorize a set of clauses, so that the leaves of the
obtained tree are either coherent space or non-coherent space within a least one
lonely true subset, but no positive and negative state of any variable.

2.7.6 Proof

If we have to deal with a coherent space or a non-coherent space without any
variable with positive and negative states, we stop factorizing, otherwise, we
choose an arbitrary variable that exist simultaneously positive and negative in
the set : we split the set into three distinct subsets; one subset (called positive
subset) of clauses that were containing the positive literal of the chosen vari-
able, one subset (negative subset) made of the clauses that were containing its
negative state and the last subset is the remaining clauses (without the chosen
variable). The chosen variable will be a node of the tree and nonexistent in the
subsets. The three tree children nodes will be the potential chosen variables
for the subsets factorization, non-coherent spaces with lonely true subsets or by
opposition with non-coherent spaces; coherent spaces.

2.8 Solution Path

2.8.1 Definition

We will see that when we have obtained a tree, after have the multiple subsets
factorizations, we can follow a conditional solution path, which may allow us to
find a combination of the variable which satisfied every clause. But first, let see
a few lemmas.

2.8.2 Lemma

When we factorize a subset, we allow either the positive subset, or the negative
one to be equals to 1. If the subset, is the problem, both can not be equal to 1:
we obtains an and operator between the two subsets relation.

2.8.3 Proof

If the positive or negative subset will be equal to 1, we can assign value 0 or 1,
respectively, to the factorized variable :

f(..)a + g(...)ā = 0

4

where a = 0 if f(...) = 1, else if g(...) = 1 then a = 1. If the subset is the
problem and both f(...) and g(...) are equal to value 1, then we can not find a
solution. Otherwise, the deal will be with the parents nodes.

2.8.4 Lemma

The continual remaining subset has to be equal to 0, in the other case, there is
no solution.

2.8.5 Proof

As we said before, we can only deal with 1 value subsets when the clauses are
factorized. In the case of the remaining of remaining ... of remaining, we have
not removed any literal from this last subset, then if it is equal to 1, nothing
can make it equal to 0.

2.8.6 Lemma

To find a solution for the SAT problem, the continual remaining subset must
have by addition with a leave; a solution. Furthermore, we can not have every
leave owning lonely true subsets, whatever is in the continual remaining.

2.8.7 Proof

At first, if we only have leaves within lonely true subsets, we can forget the
validity of the continual remaining subset : due to the matter of fact that only
1 as leaves, the parents nodes will be equal to 1.
If we now have no solution between the continual remaining subset, we have to
make that last subset equals to 0, to have a solution, but all over leaves will
equal 1 because there is no solution with them, and we find us in the previous
case.

3 Computation and Complexity

There are multiple possibilities of computations and structure, depending on
several conditions, whose would have different time and space complexities in
P. Here we have chosen one which is clear and concise.

3.1 Structure

In our abstract structure, we create a set of clauses, whose are also sets of
literals. Variable represented by integers (called key) from 1 to n, where n is
the number of variables. Positive state of a variable will be the opposite of its
key (-key), since negative literal will be its key itself.

5

3.2 Functions

3.2.1 Solve Coherent Space Complexity

If we have to find the obvious solution of a coherent space, we iterate on the
distinct variables and choose the assignment as in Lemma 1.6.2. This can be
done in time O(n), where n is the size of the coherent space.

3.2.2 Get Factorization Variable Complexity

When we choose a variable for factorization, we can for example take the first
one we find which have simultaneously positive and negative states. For that
computation, let make a set called literals.
Iterating on each literal of the subset, if negative literal is in literals, return
the variable (positive literal) of it, else add it in the set. If no return has been
made, return 0. (meaning we can not factorize). As set insertion complexity is
O(log(x)), where x is the current size of the last set. So Adding a percent of n
literals in the set before a return will make a time complexity of

∫ n

0
log(x)dx =

O(n log(n)).

3.2.3 Factorization Complexity

When we iterate on the clauses set, we search each time if either positive or
negative factorization variable is in them. Searching can be executed in O(log(l))
in a subset of l literals, then for c clauses we obtain O(c log(l)). As we are making
a tree where each node is a factorized variable, we remove a percent of c literals
from clause of l literals, what give us also O(c log(l)). As the number of literals
n is approximately n = c · l; both c and l are fractions of n and to simplify, lets
say that factorization time complexity is O(n log(n))

3.2.4 Global Factorization

In the middle case we get approximately, after a factorization, three subsets
of sizes n

3 of the initial size n. Then, in the worst case, we have to wait that
3d ≈ n, with d the depth of all subsets on the tree. If we call by f complexity
of getting factorization key and factorizing which is O(n log(n)), we have the
global factorization complexity of :

30f + 31f + 32f + ... + 3df = O(f3d)

But since f ≈ log3(n), we obtain O(nf) = O(n2 log(n))

4 Example of Computation

To resolve this 3-SAT conjunctive normal form problem:

(x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z) ∧ (t ∨ x̄ ∨ ȳ) ∧ (t̄ ∨ ȳ ∨ z̄) = 1

6

We first make De Morgan’s law substitution to obtain :

x̄yz + xȳz + xyz̄ + t̄xy + tyz = 0

As we do not have to deal with a coherent space and there is not lonely true
subset, we are going from left to right, to find first variable with positive and
negative states, here : we stop at x because we already met x̄. So x will be the
factorization variable. Then after factorization we find :

x(ȳz + yz̄ + t̄y) + x̄(yz) + (1)tyz = 0

We can factorize the positive subset by the first factorizable variable founded,
here y.

x(y(z̄ + t̄) + ȳ(z)) + x̄(yz) + (1)tyz = 0

The tree would be like :

x̄|x|1

yz ȳ|y

z z̄ + t̄

tyz

We look at the remaining, it is coherent with z leave, so we assign z = 0, then
we follow the solution path, as zȳ = 0 we can assign y = 0. We reiterate,
as zȳx = 0 we can assign x = 1. We have reached the root, that means this
combination is sufficient to satisfied every clauses.

5 Conclusion

With this processing, we can experiment finding a solution, or not in time com-
plexity O(n2 log(n)) which is polynomial, with also a linear auxiliary space com-
plexity, however we found an other computation, harder to explain, that permits
a O(n2) time complexity. We have not proved this was the minimal bound, but
we assuredly proved that N-SAT problems can be solved in polynomial time.

References
1. Richard M. Karp, Reducibility among Combinatorial Problems , dans Com-
plexity of Computer Computations, Springer US, 1972, p. 85–103.
2. Stephen A. Cook, The Complexity of Theorem-Proving Procedures , dans
Conference Record of Third Annual ACM Symposium on Theory of Computing
(STOC), 1971, p. 151-158

7

