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Abstract
This paper proposes mass interaction principle (MIP) as: the particles will be subjected to

the random frictionless quantum Brownian motion by the collision of space time particle (STP)

prevalent in spacetime. The change in the amount of action of the particles during each collision

is an integer multiple of the Planck constant h. The motion of particles under the action of STP

is a quantum Markov process. Under this principle, we infer that the statistical inertial mass of a

particle is a statistical property that characterizes the difficulty of particle diffusion in spacetime.

Starting from this principle, this article has the following six aspects of work: First, we derive the

mass-diffusion coefficient uncertainty and the quantized commutation, and derive the most basic

coordinate-momentum uncertainty and time-energy uncertainty of quantum mechanics, and then

clearly reveal the particle-wave duality, which are properties exhibited by particles collided by STP.

Second, we created the three decompositions of particles velocity. The comprehensive property of

three velocities deduced the equation of motion of the particle as Schrödinger equation, and made a

novel interpretation of Heisenberg’s uncertainty principle and Feynman’s path integral expression.

And reexamine the quantum measurement problem, so that the EPR paradox can be explained in a

self-consistent manner. Third, we reinterpret the physical origin of quantum spins. Each spacetime

random impact not only gives the particle of matter the action of a Planck constant , but also

produces the quantum fluctuation properties of the material particles. Futhermore, the quantum

spin properties of the material particles are also produced, which reveals the statistical quality

of 1/2 spin particles and the coexistence relationship of their spins. The particle spin properties

ultimately reflect the spacetime properties of STP and particles, which leads to an important result

that any spin 1/2 elementary particles will be massive. Fourth, we derive the physical origin of the

special relativity, and prove that the hypothesis of constant speed of light is actually the intrinsic

property of spacetime. This naturally leads to the three basic inferences of the special theory of

relativity, namely, “mass enhancement”, “time dilation” and “length contraction” effects. Fifth, we

can perfectly explain the nature of photons based on the topological and dynamic properties of

STP, thus naturally obtain the complete electromagnetic theory and all important properties of

charge. Sixth, we naturally derive the gravitation from the interaction of the fundamental particles

of microscopic matter, namely the massive fermion and STP. Furthermore, we can judge from

the overall perspective of modern physics that the inertia mass of fermions must be equal to the

gravitational mass. We have obtained the equivalent principle combined with Newton’s universal
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gravitation, from which we can derive all the important contents of general relativity. Both inertial

mass and gravitational mass are no longer the basic physical quantities. The two are indeed

equivalent, which come from the statistical mass of STP collisions. This paper shows that STP can

interact with matter particles in space time. The particles of matter are affected by the impact

of STP and change their motional state. The mass of a particle is a statistical property exhibited

by STP collision. Under the MIP framework of interaction between STP and matter particles, the

relativistic quantum electromagnetic and spin properties of particles are all self-consistent. The

relativistic behavior and quantum behavior of matter particles with statistical mass are all derived

from the collision of STP on matter particles. We have systematically solved all the basic problems

of modern physics with MIP, which is the common origin of special theory of relativity, general

theory of relativity, electromagnetic theory and quantum mechanics.

Keywords: Mass Interaction Principle , Special Relativity, Schrödinger Equation , Quantum
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I. INTRODUCTION

A. Spacetime Fluctuation, STP and MIP

We believe the energy fluctuations of spacetime are universal, which are defined as STP. In

this picture, particles are classified into two groups: one is matter particles which interacting

with STP, another one is massless particles which freely move in spacetime. Matter particles

change their states by all the collisions with STP. The underlying property of mass is a

statistical property emerging from random impacts in spacetime. Different particles have

different effects of impact by STP, which can be defined as some kind of inertia property of

particles. This property corresponds to mass dimension (Following we will prove it happens

to be the inertial mass from Schrödinger’s equation ). Matter particles develop a Brownian

motion due to random impacts from spacetime. We strongly suggest that all the probabilistic

behaviours of quantum mechanics come from the Brownian motion, which is exactly the

origin of quantum nature. In the framework of MIP, the photon represents itself as a Hopf

link exicitation made of the 2+1-dim gauge field and its Hodge dual partner. On the other

hand, under the MIP framework, photons not only exchange electromagnetic interactions,

they also exchange spin information. It just explains that the annihilation condition of

positive and negative electrons is not only the opposite of charge, but also the opposite

of its spin. In modern physics, the spin and charge of matter particles are independent

quantum properties. However, the spin has a magnetic moment and indicates that the

spin and electromagnetic interactions are related. Under the MIP framework, this apparent

contradiction can be self-consistently explained.

We believe the quantum behaviours of matter particle come from spacetime fluctuation.

Since the energy fluctuation of spacetime is quantised, among all the particles in spacetime

which receive quantised energy from STP. The exchange of energy between particle and

spacetime is not strictly random, it leads to a unique Brownian-like motion. Once the time

interval of impact is fixed, the exchange of energy has to be quantised, which indeed is

the quantum nature of particles. Therefore, all quantum nature of particles is a faithful

representation of spacetime quantised fluctuation.

Definition 1:



A Spacetime Fluctuation, STP and MIP 8

Matter particles will perform random fluctuation motion in spacetime because of stochastic

interactions between STP and matter particles, within which the energy exchange can not

be achieved instaneously. For free matter particles, we define the product of exchanged

energy and the corresponding time interval as the change of action in the collision process.

Suppose STP begin to collide with matter particle at time t1 and end it at at time t2 to

exchange energy E. Without the collision of STP, the action of particle at the same interval

will be

S =

ˆ t2

t1

E0dt (1)

With the collision of STP, the action of particle at the same interval will be

S ′ =

ˆ t2

t1

E(t)dt (2)

Therefor the change of action in Definition 1 is

δS = S ′ − S =

ˆ t2

t1

[E(t)− E0]dt ≡
ˆ t2

t1

f(t)dt (3)

By definition, integral function f(t) is a monistic incresing function f(t) with following

property

f(t1) = 0, f(t2) = E (4)

According to Mean value theorems for integrals, there exists one point t∗ at the interval

satisfying ˆ t2

t1

f(t)dt = f(t∗)(t2 − t1) (5)

Setting exchange of energy be E∗ = f(t∗) at this point, we have 0 < E∗ < E. So the exact

formula of the change of action is

δS = E∗δt (6)

where δt ≡ t2− t1. Therefore we are sure that, it is this characteristic exchange energy E(∗)

not the energy of STP itself corresponding to the change of action. With MIP δS = nh,

it’s impossible to interact instantaneously, since the exchange energy E∗ will blow up.

For free matter particle, we define the multiple δE ∗ δt as the variation of action( δS ) of

matter particle. Where the variation of energy is δE, and the time interval in this collision

progress is δt.
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According to the above two fundamental propositions: 1. spacetime fluctuations are

universal; 2. spacetime fluctuations are quantised, we propose a MIP: Any particle with

mass m will involve Brownian-like motions without frictions, due to random impacts from

spacetime. Each impact changes the amount nh (n is any integer)for an action of the particle.

The motion of a particle under the action of STP is a random motion of a quantum Markov

process (quantum Brownian motion).

The MIP is absolutely essential to mass, spin, all quantum properties as well as relativity

properties of matter particles. We will prove two important results. At first, within the

framework of MIP, fundamental results of special and general relativity are natural infer-

ences. Secondly, many important principles of modern quantum mechanics can be derived

from MIP. Within this framework, MIP plays the role of the zeroth interaction, which dic-

tates all quantum behaviours. Moreover, it will be shown that modern quantum field theory

is compatible with MIP in the sense of quantum statistical partition functions.

B. Inertia Mass is a Statistical Property

Until now, our knowledge of mass, a fundamental concept of physics, mainly comes from

Newton’s laws of motion especially the first and second laws. The definition of mass in

physics is a basic property of particles. The amount of matter contained in object is called

the mass of object. The mass is related to the inertial nature of the object’s original motion

state.

The first law states that in an inertial reference frame, an object either remains at rest

or continues to move at a constant speed, unless acted upon by a force. However according

to the MIP, free particle has to do Brownian-like motions in spacetime, which is a Markov

process. The mass of particle, in order to be sensed by spacetime, has to be collided randomly

by STP. Mass cannot be well defined within the interval of two consecutive random collisions.

In other words, mass is not a constant property belonging to the particle itself, but a discrete

statistical property depending on dynamical collisions of spacetime. We will derive from

MIP straightforwardly that mass must be a statistical term which has its own means and

fluctuations.

Moreover, we prove the uncertainty relation asserting a fundamental limit to the precision

regarding mass and diffusion coefficient. This implies that both mass and diffusion coefficient
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of any particle state can not simultaneously be exactly measured. Newton’s Second law states

that in an inertial reference frame, the vector sum of the forces F on an object is equal to

the mass m of that object multiplied by the acceleration of the object. This connects the

concept of mass and inertia and in principle defines a fundamental approach to measure the

mass of any particle experimentally. However, according to the MIP, forces on a particle

are changed constantly by the random impact of STP. Therefore, we are no longer able to

take constant mass for granted. In conclusion, we believe that mass as a statistical property

is much more natural within the framework of modern science, which completely overrules

Newton’s concept of mass based on Mathematical Principles of Natural Philosophy first

published in 1687.

C. Realistic Interpretation of Quantum Mechanics

The main idea of Copenhagen interpretation is that the wave function does not have any

real existence in addition to the abstract concept. In this article we do not deny the internal

consistency of Copenhagen interpretation. We admit that Copenhagen′s quantum mechanics

is a self-consistent theory. Einstein believed that for a complete physical theory, there must

be such a requirement: a complete physical theory should include all of the physical reality,

not merely its probable behaviour. From the materialistic point of view, the physical reality

should be measured in principles , such as the position q and momentum p of particles. In

the Copenhagen interpretation, the particle wave function Ψ(q, t) or the momentum wave

function Ψ(p, t) is taken to be the only description of the physical system, which can not be

called a complete physical theory, at most a phenomelogical effective theory. Therefore, in

this paper, we propose a MIP where the coordinate and momentum of particles are objec-

tive reality irrespective of observations . With the postulation of MIP, quantum behaviour

will emerge from a statistical description of spacetime random impacts on the experimental

scale, including Schrödinger′s equation, Born rule, Heisenberg′s uncertainty principle and

Feynman′s path integral formulation. Thus, we believe that non-relativistic quantum me-

chanics can be constructed under the MIP. Born rule and Heisenberg′s uncertainty relation

are no longer fundamental within our framework.
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D. MIP and Statistical Properties of Spin

In modern quantum field theory, the spin properties of particles reflect the transform

properties of particles under relativistic Lorentz transformation. The spin is a representation

of the Lorentz group. The algebraic representation theory, simplifies the mathematical

definition of spin, however it hides the fundamental physical properties of spin. Within the

framework of MIP, particle spin is no longer an intrinsic property, but a representation of

the interaction of particles and STP. Therefore, it is also a statistical property emerging

from STP. In this paper, we will clarify that when a particle rotates in local spacetime, its

topologically invariant path space happens to be the topological subgroup of the Lorentz

group. The classification of the path spaces with these topological invariants is exactly

the same as the algebraic representation of the Lorentz group. More importantly, through

the Riemann function regulation, we can regorously derive the eigenvalues of various spins.

Therefore, spin is a statistical property within the framework of MIP.

E. MIP and Electromagnetic Theory

Within the framework of MIP, STP is spread over spacetime, and its energy spectrum

distribution is consistent with scalar particles. It can therefore be thought of as an excitation

of a scalar field. The influence of material particles on its spacetime is local, so on the 2+1-

dimensional time-space slice, the influence of material particles on spacetime can be regarded

as a potential energy.

In modern quantum field theory, an important point is that microscopic energy can be

non-conservative, and it can fluctuate to form pairs of virtual positive and negative particles.

Within the framework of MIP, the fluctuation of spacetime energy is itself STP. The number

of STP particles is not conserved locally, but globally, the energy of STP is conserved. So the

picture of STP as a free particle is restored on a large scale. This just shows that STP has

some local symmetry, which is broken at large scale. In essence, when the domain symmetry

of the authority is U(1), STP is the excitation of a complex scalar field.

On the other hand, the spacetime can be regarded as 2+1-dimensional around the space-

time in which the material particles are located. On this 2+1-dimensional spatiotemporal

slice, STP is the excitation of the complex scalar field, which is accompanied by the exci-
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tation of the gauge field. The material particle produces a local non-perturbative potential

energy in the surrounding space and time. The existence of this potential energy can cause

the STP to spontaneously form a stable vortex solution. If the STP is not accompanied by

a gauge field, then the vortex solution will cause the problem of energy divergence in the

vortex center. The gauge field just eliminates the problem of local energy divergence.

The existence of a vortex solution also provides a possibility of duality, namely Hodge

duality. The Hodge duality will extend the dynamics of the 2+1 dimensional gauge field

to the 3+1 dimension. In the sense of Lagrangian, the 3+1-dimensional gauge field just

describes the electromagnetic field theory. That is to say, the 3+1-dimensional equation

of motion is Maxwell’s equation. Therefore, we derive the classical electromagnetic theory

from the vortex dynamics of STP.

In the MIP framework, the photon is essentially a topological excited state of two 2+1-

dimensional gauge fields with their field strengths being Hodge’s dual, and its topological

configuration is a Hopf chain. Physically, photons transfer phase changes of material parti-

cles. Its equation of motion is the Maxwell equation.

On the other hand, the two topological circles of the photon, of which topological con-

figuration Hopf link correspond to the topological subspace of the local spacetime. The

Hopf links just represent the Lorentz representation of spin 1, which is a vector represen-

tation. Therefore, within the framework of MIP, the spin 1 of zero-mass photon is also

self-consistently explained.

Within the framework of MIP, we have obtained five basic characteristics of electromag-

netic interaction: 1. Positive and negative charge and the quantization of charge. 2. The

same charges repell, and the different charges attract. 3. Forces of charge interaction satisfy

the inverse square law of distance. 4. The charge is conserved. 5. The basic charge is

1.6× 10−19C.

F. MIP and Special Relativity

From the MIP point of view, the state change of free material particles can only be

achieved by the impact of STP. We can say that when the microscopic properties of a particle

of matter (such as its phase or spin eigenstate) change, the particle that propagates the

information is a gauge particle. From MIP, we have obtained the classical electromagnetic



G MIP and Newton’s Universal Gravity 13

theory in section 9 of this paper. It is a theory that is invariant under the transformation

of the inertial reference system.

In particular, the speed of light as a constant does not change under the transformation of

inertial reference frame. Therefore, the assumption that the speed of light does not change

is no longer a hypothesis, but a basic law. On the other hand, the interaction of STP on

particles causes the particles to perform random fluctuations. The speed of this kind of

fluctuation movement is very different from the classic speed. It is essentially a relative

speed that is constant under a time reversal. This random Markov fluctuation is not related

to the classical motion and is therefore invariant under the transformation of the inertial

reference frame. Therefore, the equivalence between inertial reference systems is no longer

an assumption, but a natural inference under the MIP framework. We can naturally derive

some basic results from the special theory of relativity. Under the framework of MIP, the

effects of ”mass enhancement”, ”time dilation” and ”length contraction” all have new physical

meanings.

G. MIP and Newton’s Universal Gravity

In the 3+1 dimension Minkowski spacetime, STP is a real scalar field. We consider the

interaction between STP and matter particles. With the tree diagram approximation of

quantum field theory, the interaction among matter particles induced by STP is finally em-

bodied as the inverse square law and proportional to the product of mass of matter particles.

We show that Newton’s theory of gravity is an effective theory within the framework of MIP.

Furthermore, we can judge from the overall perspective of modern physics that the inertia

mass of fermions must be equal to the gravitational mass. We have obtained the equivalent

principle combined with Newton’s universal gravitation, from which we can derive all the

important contents of general relativity. Both inertial mass and gravitational mass are no

longer the basic physical quantities. The two are indeed equivalent, which come from the

statistical mass of STP collisions.
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H. Outline

In summary, MIP provides quantum mechanics, special and general relativity a materi-

alistic basis, where an intuitive physical picture can be constructed. In this picture, mass is

a statistical property which emerges when a large number of STP collisions occur. The spin

represents the statistical properties of the interaction of the particle with the STP around

it. Charges interact with each other through the topological excited state of gauge field in

2+1-dim and its Hodge dual partner, i.e. photon. Within the framework of MIP, Born’s

probability interpretation, Heisenberg’s uncertainty principle no longer are basic principles,

but only the natural consequences of MIP. The main results and conclusions of this paper

are as follows:

In Section 2, we propose MIP and the fundamental definition 1, and obtain the energy

spectrum distribution of the STP.

In Section 3, based on MIP from the general random motion process, we derive the

universal spacetime diffusion coefficients of particles.

In Section 4, within the framework of MIP, we derive the spacetime diffusion coefficient

and introduce a non-relativistic statistical inertial mass. It is especially important that

statistical inertial mass is a measure of how easily particles diffuse in spacetime, which is

therefore a statistical property. It can be inferred that there is an uncertainty relationship

between statistical inertial mass and spacetime diffusion coefficient, The most fundamental

coordinate-momentum uncertainty relationship of quantum mechanics can be derived from

this uncertainty relationship. Therefore, the wave-particle duality and the Heisenberg’s

uncertainty relationship are the characteristics of the STP colliding particles within the

framework of MIP.

In Section 5, we point out that the motion of particles in spacetime is a Markov process,

which will emerge as a quantum wave, which satisfies the Schrödinger equation. Within the

framework of MIP, we reinterpret the Born’s rule.

In Section 6, we reinterpret the Feynman path integral and construct a system of non-

relativistic quantum mechanics from materialist epistemology. We demonstrate the principle

of quantum mechanics and the compatibility of path integrals. Based on the path integral

and MIP, we derive the path integral of the free particle, wave function in the potential field

and the steady state wave function.



A Proposing the MIP 15

Section 7 of this paper provides an explanation of the quantum measurement within the

framework of MIP. The effects of the measurement leading to wavepacket collapse can be

well understood. EPR can also be well explained within the framework of MIP.

In Section 8, the particle will rotate around the spacetime topology subspace under the

action of the STP. The statistical effect of such a rotation is reflected in the particle’s spin.

Within this framework, the classification and origin of spins are related to spacetime.

In Section 9, we consider the 2+1-dimensional dynamics of a complex scalar field. The

existence of matter particles causes the STP to form a vortex structure solution around

the material particles. The existence of this solution extends the 2+1 dimensional gauge

field to the 3+1 dimension and derives Maxwell’s equations. The photon appears as a Hopf

chain solution of two three-dimensional selfdual gauge fields, which is a topological invariant

configuration. We show that the existence of a spacetime ANOZ vortex solution can explain

the origin of the charge and electromagnetic interaction.

In Section 10, we derive three important results of the special theory of relativity from

MIP, which are mass enhancement, time dilation and length contraction. These effects can

be self-consistently explained within the framework of MIP.

In Section 11 , we derive Newtonian gravitational forces between two matter particles

from MIP.

Finally, in Section 12 we summarize and explore the future of research directions.

II. CHAPTER.2. MASS INTERACTION PRINCIPLE

A. Proposing the MIP

Particles moving in spacetime interact with STP. The generation of STP itself should be

regarded as a microscopic random excitation of local spacetime energy. We can assume the

following twoself-consistent ideal STP models. First, the spacetime itself is discrete, and

each of the smallest spacetime units can act on the particle to change the particle’s motion

. However this spacetime unit acts as a random force on the particles, the motion of the

particles in spacetime under the action of STP will also be random. Second, the energy

distribution of STP is Gaussian, therefore, when they were scattering with matter particle,

the force is random.
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Furthermore, we propose in each interaction between matter particle and STP, the ex-

changing action should be nh, with n integer and h the Planck constant. In our MIP frame-

work, there are no instant interactions between matter particle and STP, in other words,

the interaction takes time to transfer the energy. If the scattering STP has an extremely

low energy such that in ∆t, the transfered action is less then h , we conclude that in ∆t,

the STP cannot collide the particle. We argue that such a collision is still in process, the

particle as well as the STP are in a bound state, not a scattering state. This is similar to a

completely inelastic collision in classic mechanics. While in such a process, the conservation

of energy and momentum can not be satisfied simultaneously. Because of conservation of

energy and momentum, the bound state actually is not a stable state. This observation

leads to an important point: there exists a minimal energyEmin in ∆t so that

Emin∆t = const. (7)

In physics , the product of energy and time will have the dimension of action. It is natural

to suggest such a constant with action dimension is the Planck constant, so we have

Emin∆t = nh, n ∈ Z. (8)

At a certain moment, particle can be scattered by many STP with different momenta and

energies. In ∆t, we assume there are effectively N collisions. The state of the motion will

depend on the net effect of the N times collision. This is a principle of superposition. We

can use in total N vectors to superposite whole changes of the state of motion, which means

if at time t the particle was at position ~X(t), with speed ~V0, then at the moment t + ∆t,

its position will be ~x(t + ∆t) = ~X(t) +
∑N

i=1 ∆Xi, and speed~V0 +
∑N

i=1 ∆~Vi. This simple

analysis tells us in ∆t, the ultimate state of motion of the particle can be separated as N

different paths. This is the effect of separation of paths. While the weights of these paths,

aka the probability distribution of universal diffusion, highly rely on the energy distribution

of STP. Collisions by STP with different energies end up with different changes of the state

of motion.
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B. the Nature of Spacetime within the framework of MIP

At the beginning of the 20th century, the null result of the Michaelson-Morley experiment

ended the ether theory. Within the framework of MIP, the concept of spacetime looks very

similar to that of ether, but it is fundamentally different. To clarify this, let us first review

the concept of ether. The ether is a gas medium filled in Newton’s absolute static time

and space. Its definition directly introduces a reference frame of God’s perspective, which

is Newton’s static spacetime system. The earth and this frame of reference are relatively

moving, so they will feel the ether wind blowing, which is the experimental basis of the

Michaelson-Morley experiment. But spacetime is not a gaseous medium filled with absolute

time and space. It is the fluctuation of time and space. From a large scale, the fluctuation of

spacetime does not have significant effects. Spacetime seems to be smooth and differentiable,

and the differential geometry theory of general relativity can effectively describe the physical

properties of large-scale spacetime. However, on the microscopic scale, the fluctuation of

spacetime indicates that spacetime itself does not have continuous property. There is no

absolute static spacetime reference frame in the above discussion, so the STP within the

framework of MIP is not etheric.

The null result of the Michaelson-Morley experiment actually promoted Einstein’s most

important hypothesis of the theory of relativity, which is the constant speed of light. In

the theory of relativity, the constant speed of light is the only absolute assumption, and the

relativity of all other speeds remains.

Within the framework of MIP, the energy fluctuation of spacetime forms STP. If you think

of spacetime as a peaceful lake, then STP is the splash of water on the surface of the lake.

When it falls on the surface of the lake, it will form ripples. Therefore, the emergence of

STP is always accompanied by the spread of ripple. The propagation speed of ripple is the

characteristic propagation speed in spacetime. Forming a STP means that fluctuation of

spacetime will spread to a certain spatial distance within a certain period of time, so the

spacetime around the STP is also changed. We now know that the smallest scale of time is

the Planck scale, and the smallest scale of space is the Planck length. In the Planck time

STP has to spread a Planck length of space, so the propagating speed of STP is the same

as light speed.

From the spacetime view of MIP, any physical observable event in spacetime will inevitably
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accompany the fluctuation of spacetime energy, which will profoundly affect the spacetime

after the event. Under such a view of spacetime, the current spacetime is actually the result

of the joint influences of all events in the history.

C. Energy spectrum of STP

To consider the collision between STP and particle, it will be ambiguous if the energy

spectrum of STP is not clear at first. In this subsection, we deal with this problem.

Let us consider a cubic with volume L3, which we call a system. If there are in total N

systems in spacetime, we can classify the N systems by states. We label a state by j so

that there are Nj systems with energy Ej. The total energy of the ensemble(collection of N

systems) is denoted as E , we have

N =
∑
j

Nj (9)

E =
∑
j

NjEj, (10)

for constant E and N , the possible total number of states in whole spacetime will be Ω =

N !∏
j Nj !

. Physical reality is required by the maximum of Ω. There is a distribution {Nj}

maximizing Ω, so that

ln Ω = N lnN −N −
∑
j

Nj lnNj +
∑
j

Nj · · · (11)

the question is under constraints (9,10), how to maximize ln Ω . With the method of La-

grangian multiplier,

∂ ln Ω

∂Nj

− λ1

∂
∑

j Nj

∂Nj

− λ2

∂
(∑

j NjEj

)
∂Nj

= 0 (12)

we can derive

− lnNj − λ1 − λ2Ej = 1⇒

Nj = e−1−λ1−λ2Ej (13)

hence the probability of being at state j

Pj =
Nj

N
=

e−λ1−λ2Ej∑
j e
−λ1−λ2Ej

=
e−λ2Ej∑
j e
−λ2Ej

≡ e−λ2Ej

Z
(14)
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and the average energy of the ensemble

E =
E
N

=
∑
j

EjPj = − ∂

∂λ2

lnZ (15)

In L3 , suppose there are n~p = 0, 1, 2, · · · STP have momentum ~p, for giving distribution

{n~p}, energy in L3 is

E =
∑
{n~p}

n~pE~p (16)

withE~p = c|~p| = cp. Here STP are massless as proposed. We have

Z =
∑
{n~p}

e−λ2E =
∏
~p

(
1 + e−cλ2p + e−2cλ2p + · · ·

)
=
∏
~p

1

1− e−cλ2p
(17)

and the average energy of a system is

E = − ∂

∂λ2

lnZ =
∂

∂λ2

∑
~p

ln
(
1− e−cλ2p

)
=
∑
~p

pe−cλ2p

1− e−cλ2p
=
∑
~p

cp

ecλ2p − 1
(18)

when L→∞, summation becomes integration as follow∑
~p

L3

8π3

ˆ
d3~p (19)

from which we see

E =
L3

2π2

ˆ
dp

p3

ecλ2p − 1
=
π2L3

30λ4
2

(20)

so the density of STP will be

εST =
π2

30λ4
2

(21)

Recover c and ~ in above equation, we obtain

εST =
π2

30c3~3λ4
2

. (22)

Now consider the physical meaning of λ2, which determines the constraint that representing

energy distribution of STP. While the multiplier λ1 which determines the constraint repre-

sents the number distribution of STP has no affects on the dynamics of STP. This means we
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can classify STP arbitrarily, except to satisfy the total energy constraint. From dimensional

analysis and MIP, we have

λ2 =
g

EST
(23)

where g is a dimensionless coupling constant, and EST is the characteristic energy of STP.

In the limit of extreme relativity, the colliding of STP can not be seen as perturbations, but

strong interactions.

III. RANDOM MOTION AND SPACETIME DIFFUSION COEFFICIENT

Let mST be the statistical mass of the particle . We will prove the spacetime interaction

coefficient of a mST mass particle will be universally given as

< =
h

2mST

. (24)

Within the framework of random motion[1], or Wiener process in mathematics [2], this

spacetime induced random motion is equivalent to the Markov process, moreover, the space-

time interaction coefficient is nothing but the diffusion coeffient [3]. In this section, we will

start our journey from propability theory of random motion[3, 4], and then give a concrete

proof that for the random motion induced by MIP, the spacetime interaction coefficient is

given exactly by (24). The last two subsections discussed two spacetime models in order to

investigate the origin of the spacetime interaction coefficient. From both we obtained the

coefficient reading as < = w`
2
, in which w is the average speed of the particle and ` the mean

free path.

A. Langevin Equation

The space-time background can be seen as a fluctuation environment, and the particles

move in this fluctuation environment. This is a Markov process. The position of the particle

~q is a random quantity. From a strict mathematical point of view, it can be decomposed

into a super random part and a superimposable function

~q(t) = ~q0(t) + ~ω(t) (25)
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where ~q0(t) is the differential part of position and ~ω(t) represents randommotions of particles.

The whole motion of particle can be described by Langevin equation as

δqi(t)

δt
=
dq0,i(t)

dt
+
δωi(t)

δt
= Ui(q(t)) + νi(t) (26)

In spacetime, particles are subjected to the impact of STP. But if some of the impact

is relatively weak, then the change of the state of motion can only be regarded as a per-

turbation. Under perturbation, the velocity of the particles changes which can be seen as

smoothly and continuously. The non-perturbative impacts of STP on the particles instanta-

neously change the motion state of the particles, leading to thecompletely random motion.

Each impact should be treated as a sum of a differential impact and a random impact. A

microscopic impact does not change the classic trajectory of the particle, but it will cause

the trajectory to be superimposed on the motion of an envelope. This is precisely the

“differentiable velocity function” U(q(t)) expressed by the first term in the three velocities

decomposition of the Langevin’s equation. Therefore, the true velocity of the particle V(t)

should contain three contributions, which is

V(t) = v(t) + u(q(t)) + ~ν(t) (27)

Where v(t) is the classic statistical velocity, u(q(t)) is the quantum envelope velocity of

the particle, and ~ν(t) is the diffusion velocity representing random motion. U(q(t)) denotes

the union of the first and the second term in eq.(27)

U(q(t)) = v(t) + u(q(t)) (28)

.

For a Markov process, the average contribution of white noise vanishes. However, because

of its Gaussian nature, its variation is not zero. We have

〈νi〉ν = 0, 〈νi(t)νj(t′)〉ν = Ωδi,jδ(t− t′), t ≥ t′ (29)

here the δi,j in the later equation can be obtained from the spacetime homogeneous property,

while δ(t− t′) determined from the Markov property. For a Markov process, only conditions

at the very moment determine the dynamics of the system, and all information from future

or past are irrelevant. We can write down the basic correlation function by introducing a
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probability measure [dρ(ν)],which is given as

[dρ(ν)] :=

(√
1

2πΩδ(t− t′)

)D

[dν] exp

(
− 1

2Ω

ˆ
dt
∑
i

ν2
i

)
(30)

It is easy to see that

〈νi(t)〉ν ≡
w
νi(t)[dρ(ν)] = 0 (31)

〈νi(t)νj(t′)〉ν ≡
w
νi(t)νj(t

′)[dρ[ν]] = Ωδi,jδ(t− t′) (32)

Here Ω describes the strength of spacetime interaction on the particle. Notice δ(t− t′) has

the inverse dimension of time t , as
∞w

0

δ(t− t′)dt = 1.

However, from the definition of measure (30), we can see, νi have the unit of m/s, so Ω will

have the unit of m2/s. From previous analysis, each collision leads to a change of an action

h. h has the unit of angular momentum, kg ·m2/s. From this we can define a quantity with

mass unit, it is

mST ≡
h

Ω
. (33)

The mass mST has the meaning such that it is the mass collided by STP and is a statis-

tical property. Accordingly, the collision parameter Ω = h
mST

reflects a physical realistic

viewpoint: an object in our real nature, the larger its mass means the smaller its quantum

effect.

Langevin equation generates a timedependent probability such that

P[q, t; q′, t′] = 〈
D∏
i=1

δ[qi(t)− q′i(t′)]〉ν , t ≥ t′ (34)

which means for an operator O[q], its average value at time t will be:

〈O[q(t)]〉ν ≡
w

P[q, t; q′, t′]O[q]dq (35)

Using the probability distribution (34), one can immediately verify equation (35). Actually,

the distribution (34) can be seen as an evolution process, which says

P[q, t; q′, t′] =

¨
q(t)e−(t−t′)H(p,q)q′(t′)dDp

here the evolution Hamiltonian is the famous Fokk-Planck Hamiltonian, as we will derive

its formalism in next subsection.
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B. Fokk-Planck Equation

Given the Langevin equation (26), we can derive the corresponding Fokk-Planck equation,

as well as the Fokk-Planck Hamiltonian [3].

We consider the time segment from t to t+ ε, ε→ 0, and have the Langevin equation as:

qi(t+ ε)− qi(t) = εUi(q(t)) +

t+εw

t

νi(τ)dτ +O(ε2) (36)

its related propability distribution is

P[q, t+ ε; q′, t] = 〈δ(q− q(t+ ε))〉ν (37)

According MIP, everytime the STP collided with the particle, the action of particle will

change nh, n ∈ Z. To obtain the Fokk-Planck equation, we define following discreterization

ν̄i ≡
1√
ε

t+εw

t

νi(τ)dτ

so that the discrete Langevin equation is

qi(t+ ε)− qi(t) = −1

2
εfi(q(t)) +

√
εν̄i +O(ε2) (38)

Notice here the time has been discreterized as

(t− t′)/ε ∈ Z+.

Now the Gaussian distribution and the property of Markov progcess determins the average

value of discrete white noises νi, and we have

〈ν̄i〉ν = 0, 〈ν̄i(t)ν̄j(t′)〉ν =
~

mST

δi,jδt,t′ (39)

When ε→ 0, the Fourier transformation of the probability distribution (37) is

P̃[p, t+ ε; q′, t] =
w
e−ip·qP[q, t+ ε; q′, t]dDq (40)

= 〈e−ip·q(t+ε)〉ν

= 〈e−ip·(q(t)+ε
dq(t)
dt

+O(ε2)〉ν

= 〈exp(−ip · (q′(t)− ε/2f(q′)))〉ν

×

〈
exp

[
−ip �

t+εw

t

ν(τ)dτ

]〉
ν

×
〈
exp

(
O(ε2)

)〉
ν

= exp [−ip � (q′ − εf(q′)/2)]

×

〈
exp

[
−ip �

t+εw

t

ν(τ)dτ

]〉
ν
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Notice that the last average value can be evaluated out by Gaussian integration, which reads,

(√
h

2π

)D w
[dν] exp

(
−mST

2h

w
dt

D∑
i

ν2
i

)
(41)

× exp

[
−ip �

t+εw

t

ν(τ)dτ

]

=

(√
h

2π

)D w
[dν]

× exp

(
−mST

2h

w
dt
∑
i

ν2
i − ip �

t+εw

t

ν(τ)dτ

)

=

(√
h

2π

)D w
[dν] exp

(
−mST

2h

w
dt
∑
i

ν2
i − i

√
εp � ν̄

)

× exp

(
+ε

h

2mST

p � p− ε h

2mST

p � p

)
=

(√
h

2π

)D w
[dN

(
νi +

ih

2mST

√
εpi

)
]

× exp

(
−mST

2h

w
dt

D∑
i=1

(
νi +
√
ε
ih

2mST

pi

)2

−ε h

2mST

p � p

)
= exp (−εhp � p/2mST )

here we obtain the probability distribution under Fourier transformation ,

P̃[p, t+ ε; q′, t] = e−εh/2mSTp·p+iεp�f(q′)/2−ip·q′ (42)

for ε→ 0, expanding (42) will end up with

P̃[p, t+ ε; q′, t] = e−ip·q
′
(1− εHFP (p,q′) +O(ε2)).

Here we obtained the Fokk-Planck Hamiltonian

HFP (p,q) = − h

2mST

p · p− ip · f(q)/2 (43)

From which we can read off the diffusion coefficient induced by collisions between STP and

the particle, is exactly < = h/2mST . Later we will see in deriving the Schrödinger equation

of free particle in spacetime, the spacetime mass mST = 2πm will be identified as the inertial

mass, in the framework of non-relativistic quantum mechanics.
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C. From Discrete Spacetime to the Spacetime Diffusion Coefficient

Beginning with MIP, we want to investigate the origin of spacetime interaction coefficient.

Within the framework of discrete spacetime, spacetime diffusion coefficient < = h
2mST

should

be derived in terms of parameters of discrete spacetime. Let us consider the simplest discrete

model (see Fig.1), where the length union of discrete space is `. P (j, t) is the probability of

a particle at lattice site j at time t.

Figure 1: Random jumping model on one dimensional lattice

Because of the discrete nature of the space, all jumpings can only happen between nearest

pair of positions. Given the rate of jumping between the nearest neighbour ζ and the isotropy

of frictionless space, the evolution of probability should be

∂tP (j, t) = ζ(
1

2
P (j − 1, t) +

1

2
P (j + 1, t)− P (j, t)) (44)

the first two terms of RHS of (44) describe the fact that jumping forward and backward

from neighbors j − 1 and j + 1 positions respectively, have the same probability, which is

1/2, the third term remarks the probability from j position to neighbors. Introducing the

fundamental spacing of the lattice `, the eq.(44) goes to

∂tP (j, t) =
ζ`2

2
(
P (j+1,t)−P (j,t)

`
− P (j,t)−P (j−1,t)

`

`
) (45)

In the continum limit of spacetime, which says `→ 0, and ζ →∞, but keeping the quantity

ζ`2 unchanged, the probability P (j, t) now becomes the probability density ρ(x, t), and the

RHS of (44) becomes the definition of second derivative. Thus we have

∂tρ(x, t) =
ζ`2

2
∂2
xρ(x, t). (46)

It is straightforward to generalise above equation to three dimension case, we have,

∂tρ(~r, t) =
ζ`2

2
∇2ρ(~r, t) (47)

Comparing with diffusion equation in Einstein’s paper[6]

∂tρ(~r, t) = <∇2ρ(~r, t) (48)
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the microscopic origin of spacetime diffusion coefficient will be

< =
ζ`2

2
(49)

Furthermore, we can also discrete time with union τ = `
w
, where w is the average speed of

particle. With ζ = 1
τ
, we obtain

< =
w`

2
(50)

Combining the microscopic structure of discrete spacetime with the MIP, we have

< =
w`

2
=

h

2mST

(51)

D. From Spacetime Scattering to the Spacetime Diffusion Coefficient

Particles will be scattered randomly from the STP with the speed of light, which leads

to the probability distribution of speed f(~v), the number of partials within v → v + dv is

f(v)d3~v. Therefore, all the particles cross the section area dA during time dt will be inside

the cylinder (see Fig.2).

Figure 2: Probability distribution of spacetime scattering

dA

θ

v dt

The volume of this cylinder is

V = vdt cos θdA (52)

in which the number of particles is

N = f(~v)d3~vvdt cos θdA (53)

Because of the isotropy of space, we have f(~v) = f(v). From left to right, the number of
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particle cross the unit area per unit time is

Φ =
w

vz>0

N

dAdt

=

π
2w

0

dθ cos θ sin θ

2πw

0

dϕ

+∞w

0

f(v)v3dv

= π

+∞w

0

f(v)v3dv (54)

where vz > 0 means 0 < θ < π
2
. The average speed reads

w =

r +∞
0

f(v)vd3v
r +∞

0
f(v)d3v

=
4π

ρ

+∞w

0

f(v)v3dv (55)

where the density of particle number is ρ =
r +∞

0
f(v)d3v. Correspondingly, the number of

particle cross the unit area per unit time will be

Φ =
1

4
ρw (56)

Let mean free path of particles be `, i.e. the average distance traveled by the particle between

successive impacts from spacetime. The net flux Jz through the z plane will be (see Fig.3)

Figure 3: mean free path and scattering flux

z-l z+lz

ρ v
4
1（z-l） ρ v

4
1（z+l）

Jz =
1

4
ρ(z − `)w − 1

4
ρ(z + `)w = −1

2
`w∂zρ (57)

With the equation of continuity

∂tρ+∇ · ~J = 0 (58)

and the isotropy of space, we have

∂tρ =
1

2
`w∇2ρ (59)
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Combining the kinetics of spacetime scattering with quantum nature induced by STP, we

obtain

< =
w`

2
=

h

2mST

(60)

which is consistent with eq.(51).

• Statistical mass of fundamental particles

Let’s consider the electron at first. The mass of an electron is me = 9.104 × 10−31kg . So

its static energy is

Ee = mec
2 = 9.104× 10−31 × 9× 1018J = 8.1936× 10−12J

This energy, according to MIP, comes from "effective" collisions between STP and the elec-

tron. In our MIP theory, the electron is not a point-like particle. It is finite size, statistically.

Because of symmetry, its shape is a ball with a sphere boundary. The effective collisions

are considered as the number of STP which coming into and going out cross the sphere.

Assume every effective collision gives energy, which numerically equals to Planck constant.

Hence the times of effective collisons (TEC) can be calculated as follow

Ne = Ee/h = 1.2347× 1020[s−1]

The statistical mass of electron can be written in form of TEC

me =
h

c2
Ne (61)

The ratio of mass and TEC is

kst ≡
h

c2
= 7.37× 10−51kg · s (62)

It has the unit of [mass] · [time]. The fluctuation of the density of STP, around the electron,

denoted as ∆ρest, can be written as

∆ρest ≡ ρe − ρ0 =
mec

2

4
3
πr3h

(63)

For proton, it is easy to calculate exactly the same as the electron, we have

Np =
mp

kst
= 1.6726× 10−27/7.37× 10−51 ' 2.227× 1023[s−1] (64)

The radius of proton is

rp ' 8.735× 10−16m (65)

from which we obtain the mean free path of a proton in the STP sea around it.

lst = 3

√
4

3
πr3

p/Np ' 2.3× 10−23m
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IV. MASS-DIFFUSION UNCERTAINTY RELATION

We now consider the motion status of particle under impacts of STP collisions. The most

important proposition of Copenhagen interperitation of quantum mechanics is the wave-

particle duality. This allows one using the superposition rule of plane waves to describe the

state of a particle. The kernel of the wave transformation from frequency space to time

space will be the factor exp(ipx/~). In fact it introduces the quantized operator formalism

~p = −i~~∇. Because of the duality, physical quantities of the particle can also be derived

from wave, which implies some quantities can be described in phase space as eigenvalues

of special operators. However, under the framework of MIP, we need to emphrase again

that the wave-like property of the particle is an emergent property due to collision of STP,

therefore it is not intrinsic. We can not borrow the quantization hypothesis directly. We

consider the action of the particle

S[φ(t, x), ∂φ(t, x), ν̄(t, x)] (66)

= S0[φ(t, x), ∂φ(t, x)] +
∞∑
I=1

SI [ν̄(t, x)]

where φ(t, x) describing the classical trajectory of the particle, and S0 is the related classical

action. SI [ν̄(t, x)] is the contribution of I − th collision between STP and the particle. It

does not depend on the classical trajectory at all, which only depends on the fluctuation of

STP. The MIP said this term should contribute integer number of h , that is SI = nh.

The partition function of the particle now is

Z =
w

[dφ(t, x)] exp(− i
~
S[φ(t, x), ∂φ(t, x), ν̄(t, x)]) (67)

hence

exp

(
− i
~
SI [ν̄]

)
= exp

(
− i
~
nh

)
= e−i2πn = 1 (68)

from which we see the introducing of MIP does not change the classical partition function,

therefore physical quantity derived from classical action will not be affected.

A. Classical Theory of Phase Space for Mass and Diffusion Coefficient

We have claimed and proven that particle mass is a statistical property describing the

diffusion ability of the particle in spacetime, ,which shows that mass and diffusion coefficient
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are indeed statistical properties, under continuous interaction of STP. However, MIP itself

describes a special Markov process, which possesses the intrinsic characteristic property of

being quantized.

Classically, given the position and momutum of a particle, one can describe how the

particle moves in spacetime. However, if the mass of a particle is a statistical quantity, the

momumtum at a fixed position in spacetime will be in principle ill-defined.

The way out is to introduce the dynamic point of view. We define on each point in

spacetime canonical pair (mST ,<). They satisfy the classic Poisson relation

{<,mST}P.B. = 1 (69)

in which the Poisson braket reads

{f, g}P.B. :=
D∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
while (qi, pi) are a pair of canonical position and momumtum. It is obvious to see if we

choose the canonical coordinate be <, and momentum be mST , we can immidiately recover

the Poisson relation (69).

B. Mass-Diffusion Uncertainty

Under the framework of MIP, for a matter particle, its mass and spacetime diffusion

coefficient are not only be classical statistical conjugated quantity to each other, but also

satisfy the uncertanty relation

∆mST∆< ≥ h/2 (70)

The existence of such an uncertainty relation is natural from the viewpoint of MIP. When

we measure the mass of a particle, we can neither seperate out the impacts of STP, nor

perform measurement during a period of collision between STP and the particle. This rules

out the instant measurement for the mass as well as the spacetime diffusion coefficient. A

measurement cannot be done without collision of STP. As proposed in MIP, each collision

between STP and the particle will change the action of particle at least one unit of h, which

means the phase volume defined by mass and spacetime diffusion coefficient will change at

least one unit of h.
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The uncertainty between mass and spacetime diffusion coefficient implies one can not

measure them for the same particle simultaneously. Then a realistic measurement method

will be the insimultaneous measurement. However, this method will introduce the different

time deviation, defined as

η := lim
ε→0

mST (t+ iε)<(t)−<(t+ iε)mST (t) (71)

where η describes the different time deviation. Notice here the time interval is imaginary.

That is because we have integrated out the self-dynamics of STP and they only play as a

background in the case of considering the dynamics of the particle. The collision progress is

actually a transmition of energy between STP and the particle, so for the particle, spacetime

background served as a themal base and the collision provides an effective temperature.

When ε → 0, the RHS of above equation can be defined as the commutation relation

between mass and spacetime diffusion coefficient. We rewrite the RHS of above equation as

lim
ε→0

e−Hε/~mST (t)eHε/~<(t)− e−Hε/~<(t)eHε/~mST (t)
 (72)

Here the H is defined on the phase space (mST , <), so one can not simply move toward

the left side of mST (t) or the right side of <(t), from Baker-Hausdorff-Campell formula, one

extracts the above equation as

ε
∂mST (t)

∂t
+O(ε2) = −εi

~
[H,mST ] (73)

− ε2

2~2
[H, [H,mST ]] + · · ·

ε
∂<(t)

∂t
+O(ε2) = −εi

~
[H,<] (74)

− ε2

2~2
[H, [H,<]] + · · ·

It is obvious that Heisenberg equation is satisfied under perturbative collision.

i~
∂mST (t)

∂t
= [H, mST ], i~

∂<(t)

∂t
= [H, <] (75)

For the statistical inertia mass and diffusion coefficient, the evolution factor is determined

by Hε. The physical meaning is that in time interval iε the energy transmitted from STP to

the particle. This meets the description of MIP. So we can rewrite the action as a compact

form of phase space volumn

SI = <̂m̂ST
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The kernel relating the cannonical position space and the cannonical momumtum space

reads

m̂ exp

(
− i
~
SI [ν̄]

)
= mST exp

(
− i
~
SI [ν̄]

)
, (76)

<̂ exp

(
− i
~
SI [ν̄]

)
= < exp

(
− i
~
SI [ν̄]

)
(77)

Mathematically, the unique representation of spacetime diffusion coefficient is an differential

operator, as

<̂ = i~
∂

∂mST

, (78)

from which the equation (77) will be satisfied immediately, as

<̂ exp

(
− i
~
<mST

)
= i~

∂

∂mST

[
exp

(
− i
~
<mST

)]
(79)

= < exp

(
− i
~
<mST

)
from which we obtain the critical commutation relation

[<̂, m̂] = i~ (80)

To calculate the uncertainty of <̂, m̂ , denoted as ∆<̂,∆m̂, we introduce an arbitrary real

parameter ξ as well as an auxillary integral:

I(ξ) =
w
|ξ∆<̂Ψ− i∆m̂Ψ|2dτ ≥ 0 (81)

here , Ψ is a othogonal normalized wavefunction. Expand the RHS as

I(ξ) =
w (

ξ2|∆<̂Ψ|2 + |∆m̂Ψ|2
)
dτ

− iξ
w

Ψ∗
(

∆<̂∆m̂−∆m̂∆<̂
)
dτ (82)

Since

∆<̂∆m̂−∆m̂∆<̂ = [∆<̂,∆m̂]

=
[(
<̂ − 〈<̂〉

)
, m̂
]
−
[(
<̂ − 〈<̂〉

)
, 〈m̂〉

]
=
[
<̂, m̂

]
= i~ (83)

The auxillary integral I(ξ) now writes:

I(ξ) =
w (

ξ2|∆<̂Ψ|2 + ξ~ + |∆m̂Ψ|2
)
dτ

= ξ2〈∆<̂2〉+ ξ~ + 〈∆m̂2〉 ≥ 0 (84)

〈∆<̂2〉 ≡〈<̂2〉 − 〈<̂〉2, 〈∆m̂2〉 ≡ 〈m̂2〉 − 〈m̂〉2 (85)
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where 〈Ô〉 expresses the mean value under the othogonal narmalized wavefunction basis,

〈Ô〉 ≡
w

Ψ∗ÔΨdτ (86)

Using quadratic partition , the inequality (84) can be written as

I(ξ) =

ξ√〈∆<̂2〉+
~
2

1√
〈∆<̂2〉

2

+

(
〈∆m̂2〉 − ~2

4

1

〈∆<̂2〉

)
≥ 0 (87)

Hence

〈∆<̂2〉 · 〈∆m̂2〉 ≥ ~2

4
(88)

because of mST = 2πm , we arrive the desired result

∆mST∆< ≥ h/2 (89)

C. Energy-Time Uncertainty Relation

A massive particle moves in spacetime, which is represented not only by its momentum

and position, but also by its energy and time. According to MIP, every impact of STP will

change the action of particle by the amount of nh. As we all known, partition function is

determined by energy distribution of the STP not by constraints of particle number.

We need to investigate commutation algebra of energy-time uncertainty relation based

on the framework of MIP. Supposing the state function of particle is Ψ(~x, t), then EtΨ(~x, t)

and tEΨ(~x, t) have totally different physical meanings. From MIP, the motion of particle is

a Markov process. It is impossible to define the exact state Ψ(~x, t), since it is a probability

function. Fundamentally, time t is a relative quantity, which depends on the zero point of

time. However, the absolute zero point of time cannot be well defined. For the same reason,

energy E is a relative quantity, which also depends on the zero point of energy. Due to the

random impact of STP, the absolute zero point of energy cannot be well defined either. The

background noise of STP is stochastic. Under MIP, time and energy both are not exactly

well defined. All we can say is their probabilistic distribution. Simultaneously observing

time and energy of the particle will lead to the covariance

σ(E, t) =< (E − Ē)(t− t̄) > (90)
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which is the average value of the change of action between particle and STP. In the interval

∆t = t− t̄, the change of energy is ∆E = E− Ē. The average value of the product is ∆S as

σ(E, t) =< ∆S > (91)

For any random impact, we have ∆S = nh, n ∈ Z. The regularisation of ζ function leads

to

σ(E, t) =< ∆S >= ζ(0)h =
1

2
h (92)

which is the very uncertainty relation of energy and time. Therefore, the energy and time

are statistical quantities, which corresponds to infinite matrixes or a operator. Within this

context, energy-time uncertainty relation can be interpreted as non-commutate matrixes.

However, this regularisation scheme cannot reveal the physical origin of energy-time un-

certainty relation. We need a more detailed physical interpretation. When no collision

between STP and matter particle happens, the particle will move with uniform velocity.

After one collision, the particle will acquire an energy ∆E. This energy will feedback to the

particle in two different ways. Firstly, the velocity of particle has changed, so its momentum

changes correspondingly. Secondly, the mass of particle has changed, so the uncertainty of

energy corresponds to the uncertainty of statistical mass. Assuming the status function of

the particle depends on time and position as

Ψ(~x, t) ∈ C∞(~x, t) (93)

here the C∞(~x, t) is the set of smooth function in spacetime. As a status function, the

normalizable property is very important. If the status function is a decay or increasing

function, the normalizability can not be guaranteed. In other words, the particle can not be

killed or created in spacetime when there are no interactions. Therefore, we can only expect

the status function is an oscillation function as

Ψ(~x, t+ ∆t) = Ψ(~x, t) exp(− i
~
H∆t) (94)

= Ψ(~x, t)−Ψ(~x, t)
iH∆t

~
+ · · ·

Here H is the Hamiltonian of the particle in spacetime. Accordingly, we have

Ψ(~x, t+ ∆t) = Ψ(~x, t) + ∆t
∂

∂t
Ψ(~x, t) + ... (95)
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and we obtain the equivalent relation

∂

∂t
≡ − i

~
H (96)

as known as
∂Ψ(~x, t)

∂t
=
−i
~
HΨ(~x, t) . (97)

hence we deduce that

∂(tΨ(~x, t))

∂t
= Ψ(~x, t) + t

∂(Ψ(~x, t))

∂t

= Ψ(~x, t)− i

~
tHΨ(~x, t)

= − i
~
H(tΨ(~x, t)) (98)

hence

(Ht− tH)Ψ(~x, t) = i~Ψ(~x, t) (99)

Finally, we obtain the energy-time uncertainty

[H, t] = i~ (100)

as expected.

D. Position-Momentum Uncertainty Relation

Extending the definition of commutation relation, and recall m = mST/2π, we consider

the position-momentum commutator

[x, p] =
1

2π
x(t+ iε)mST (t)

∂x(t)

∂t
(101)

− 1

2π
mST (t+ iε)

∂x(t+ iε)

∂t
x(t)

= i
ε

2π

[
mST

(
∂x(t)

∂t

)2

−∂mST (t)

∂t
v(t)x(t)−mST

∂2x(t)

∂t2
x(t)

]
Define

aST (t) :=
∂2x(t)

∂t2
(102)
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It is the instantaneous accelaration induced by the collison between STP and the particle.

From which we can define the instantaneous "spacetime" force as

FST (t) = maST (t) = m
∂2x(t)

∂t2
(103)

The statistical average of eq.(101) is

[x, p] = m〈v(t)2〉iε− 〈∂m(t)

∂t
v(t)x(t)〉iε− 〈FST (t)x(t)〉iε (104)

The physical meaning of the third term in above equation is clear, it reflects the mean work

done by STP acting on the particle. Obviously, this mean work is zero. To understand the

first two terms in eq.(104), we should consider the Markov process in detail. From Langevin

equation Eq. (26), the classic speed can be expressed as

u(t) = U(x(t)) (105)

The fluctuation speed induced by collision between STP and the particle is

v(t) = ν(t) (106)

Therefore we could naturally deduce that

〈x(t)v(t)〉 = 〈−1

2

w
f(x(t))dtν(t)〉ν (107)

=
w
−1

2

w
f(x(t))dtν(t)

(√
1

2πΩδ(t− t′)

)D

× exp

(
− 1

2Ω

w
dt
∑
i

ν2
i

)
[dν]

= 0

Notice in deriving the second step, we have used the property of Gaussian integral, which

leads to the result that the second term of eq. (104) will also have vanishing contribution.

Under discretization of the spacetime fluctuation, the mean speed is
t+εw

t

ν(τ)dτ/ε = ν̄/
√
ε

Therefore

〈ν2〉 = 〈ν̄2〉/ε =
h

mST ε
(108)

Substituting this into the first term of Eq. (104),

[x, p] = iεm〈ν2〉 = iεm
h

mST ε
= i~ (109)

we obtain the fundamental position-momentum uncertainty in quantum mechanics.
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E. Mass Measurement and Neutrino Oscillation

In previous subsections, we derived the mass-diffusion uncertainty relation. We now

discuss a possible important application of this .

In mordern physics, neutrino oscillation is provided as a longstanding puzzle for high

energy physics. The current explaination is that neutrinos have a very strange property

that they can not be eienstate of mass and flavor simultaneously. However, in the progress

of nuclear reaction, neutrinos are all considered as a flavor eigenstate, which means they

have definitive flavors. This leads to a strange result that we can not detect the mass of

neutrinos. In this article, we will argue that the neutrino oscillation actually reflects the

inertia mass is a statistical property. The mass of neutrinos is so small that the statistical

deviation is comparable to the mass, so the mass can not be measured accurately.

Because of mass-diffusion uncertanty, we can calculate the effect of spacetime diffusion

directly, when given the mass differences between various neutrinos. Experimently, physcists

now can measure the differences indirectly. The mass square differences are between 2.6 ×

10−3eV 2 and 7.58 × 10−5eV 2. This gives a perfect testing arena for the mass-diffusion

uncertainty.From the mass-diffusion uncertainty relation,

∆m∆< ≥ ~/2 (110)

the diffusion coefficient reads

∆< ≥ ~/2∆m =
6.626× 10−34 × 9× 1016

4× 3.1416× 0.05× 1.6× 10−19
(111)

= 1186.4[m2/s]

The physical meaning of this calculation is significant,. Every second the neutrino propagates

with a growing diffusion cone, with the bottom of the cone, increasing its area to 1186.4m2.

If a neutrino goes from sun to earth, its diffusion radius will be about 307 meters.

F. Neutrino Diffusion Experiment

Since sun cannot be seen as point-like source for neutrino ejection, we could design an

ideal experiment in labratory, as shown in Fig.4

Electron neutrinos came from reactor and were screened by screening matter, except those

moving strictly toward x-direction. According to MIP and due to diffusion of neutrino, after



A Decompositions of the Real Velocity 38

Neutrino
Source

Screening Matter

Screening Matter

d

Detector

Figure 4: Ideal experiment for neutrino diffusion in lab.

propagating distance d, dectectors at distance d will detect neutrinos in a disk region with

equal probability. The disk area can be calculated as

δr '
√

∆R
d

cπ
(112)

If d ' 100km , δr ' 0.3548m, the disk is macro significant detectable.

V. RANDOM MOTION OF FREE PARTICLE UNDER MIP

A. Decompositions of the Real Velocity

In modern quantum mechanics, particles do not have trajectories of motions, so their

velocities are not well defined. Within the framework of MIP, the real velocity of the particles

must be discussed in detail. Under the impact of STP, the velocity of the particle not only

contains the classical velocity, but also the results of random mechanical interactions. It

is especially important that the particles are subjected to the impact of the STP, and the

change of action is quantized. Therefore, the real velocity of the particles should reflect the

classical, random and quantum properties.

Within the framework of MIP, the motion of particles is a frictionless quantum Brownian

motion. However, it should be noted that the impact of STP is not completely random.

The exchanged action that each particle is subjected to STP is an integer multiple of the

Planck constant h. Therefore, the movement of particles in spacetime cannot be a problem

of random mechanics completely. It is the quantization of randomized motions. The cor-

responding theoretical system is a quantum Markov process. If there is no STP and other

external forces, the motion of the free particles satisfies Newtonian mechanics. Its velocity

is the classic velocity.

Within the framework of MIP, for the real velocity of motion of free particles ~V (~x, t), we can
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first isolate the classical statistical velocity of the particle ~v(~x, t). In the context of space-

time, it is a simple mean of the statistics of the impact of STP as Gaussian noise. Since the

simple mean contribution of Gaussian noise is zero, the classical statistical velocity of the

particle and the classical velocity under Newtonian mechanics are exactly equal. Second,

after separating the classical statistical velocity ~v(~x, t), we will consider a random motion.

This random motion is driven by the impact of STP, and we note it with the random motion

velocity ~W (~x, t). In Appendix B of this paper, we prove that any random function can be

decomposed into a random function and a superposition of differentiable functions. Ran-

dom motion under the framework of MIP also follows this important principle. Therefore,

in general, we can decompose the random motion velocity ~W (~x, t) as follow

~W (~x, t) = ~u(~x, t) + ~ν(t) (113)

Where ~u(~x, t) is defined as the quantum envelope velocity of the particle. For free particles,

< ~u(~x, t) >ν= 0. It corresponds to the perturbation part of the random motion. It reflects

the physical fact that the impact of STP is random, but it is a small perturbation to the

current motion of the particle. These impacts are "differential impacts" of STP on the

particles. Under the action of the pertubation of space-time, the motion of particles is not

an unpredictable random motion. It allows the motion state of particles to be described by

a differentiable function and describes the corresponding motion state . The equation is a

non-random partial differential equation. And ~ν(t) represents the non-microscopic impact

of the particle by STP, which is a non-perturbative effect on the velocity of the particle

motion. We define it as the velocity of fluctuation. Because of the existence of such random

impact, the state function that we finally describe the equation of motion of the particle will

not be an accurate description. It can only be a probabilistic description on the background

of this fluctuation.

We will see that in the framework of MIP, quantum envelope motion reflects the wave-

particle duality of particles. Considering the impact between STP and particle, the amount

of exchange action is nh. For particles with a statistical mass of m0, the characteristic time

of this collision is

tc =
nh

m0c2
(114)

The so-called quantum envelope motion is essentially the differentiable part of the fluctuation

motion.
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The above discussion is based on the classification of particles by the impact of STP. From

the above analysis we can see that there is actually another mathematical classification for

the velocity of the particles, and we decompose the velocity of the particle into a differentiable

part and a non-differentiable part. The differentiable part of the real motion velocity of a

particle can be defined as:
~U(~x, t) = ~v(~x, t) + ~u(~x, t) (115)

It is a superposition of classic statistical velocity ~v(~x, t) and quantum envelope velocity

~u(~x, t). We call this differentiable velocity “statistical average velocity”. Although math-

ematically it is a differentiable function, it is quite different from the classical velocity.

Because there is a quantum envelope velocity ~u(~x, t), it is a representation of the Markov

process formed by the impact of STP. Therefore, the decomposition of the velocity of the

particles caused by the collision of STP can be written in three parts in principle[49]:

~V (~x, t) = ~u(~x, t) + ~v(~x, t) + ~ν(t) (116)

Since a Markov process will still be a Markov process under time reversal, the quantum

envelope velocity ~u(~x, t) is invariant under time reversal as

T : ~u(~x, t)→ ~̃u(~x, t) = ~u(~x, t) (117)

However, the classical statistical velocity ~v(~x, t) is changed by the time reversal, that is,

T : ~v(~x, t)→ ~̃u(~x, t) = −~v(~x, t) (118)

With above properties of time reversal, we can have a well defined limit ~u = 0 as Newtonian

mechanics with

~v =
1

2
(~U − ~̃U) (119)

~u =
1

2
(~U + ~̃U) (120)

Where ~̃U is the time reversal of the statistical average velocity ~U . In the following, the

physical quantities with time reversal are marked with tilde.

The non-differentiable part is the fluctuation velocity ~ν(t) for the random “non-

differentiable impact”of the particle. It causes the particle’s velocity to deviate from the

classical statistical mean, so it will be physically reflected as a random diffusion behavior of
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the particle in spacetime. Based on this, we named it the “diffusion velocity” of particles in

space and time.

In the following subsections, we will see that the decomposition of the above two velocities

is a very important theoretical basis for deriving the equation of motion of particles, that

is, the Schrödinger equation in quantum mechanics and an in-depth understanding of its

physical meaning.

B. From MIP to Schrödinger Equation

Without the interaction of spacetime, the velocity of particle ~v has to be the derivative

~v = d~x
dt
. Contrasting from usual Markov process, spacetime random motion is frictionless,

otherwise the quantum effect of a particle will decay as time going, which is obviously not

the case. According to the MIP, the coordinate of a free particle is a stochastic process

~x(t), in which the velocity ~V can not be expressed in terms of d~x
dt
. The velocity ~V should

be a statistical average corresponding to a distribution δ~x = ~x(t+ 1
ω

)− ~x(t), at the limit of

spacetime collision frequency ω going to infinity. In Einstein’s theory on Brownian motion,

δ~x is a Gaussian distribution with zero mean and variance proportional to 1
ω
[6]. However,

Einstein’s theory cannot be correct at the limit of spacetime collision frequency ω going to

infinity[19, 20]. Therefore, we will construct the operator D as following, which plays the

same role as d
dt

in Newtonian Mechanics. For any physical function f(~x, t), we have

ω(f(~x(t+
1

ω
), t+

1

ω
)− f(~x(t), t))

= [∂t +
∑
i

ω(xi(t+
1

ω
)− xi(t))∂i

+
∑
ij

ω

2
(xi(t+

1

ω
)− xi(t))(xj(t+

1

ω
)− xj(t))∂i∂j

+
∑
i

(xi(t+
1

ω
)− xi(t))∂i∂t +

1

2ω
∂2
t ]f(~x(t), t) (121)

At the limit of spacetime collision frequency ω going to infinity, in terms of statistical average

< ... > for δx, we can define the operator D as

Df(x(t), t) = lim
ω→+∞

ω〈f(~x(t+
1

ω
), t+

1

ω
)− f(~x(t), t)〉ν (122)

= (∂t +
∑
i

Ui∂i +
∑
ij

<ij∂i∂j)f(~x(t), t) (123)
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where we used

~U = lim
ω→+∞

ω〈δ~x〉ν (124)

it relates to the descreterization of Lagevin equation

xi(t+ ε)− xi(t) = εUi(x(t)) +
√
εν̄i +O(ε2) (125)

here

ε =
1

ω
(126)

In eq.(122) , we used the following deduced result

lim
ω→+∞

ω〈δxiδxj〉ν
2

= lim
ε→0+

1

2ε
〈(xi(t+ ε)− xi(t))(xj(t+ ε)− xj(t))〉ν

= lim
ε→0+

1

2ε

[
〈ε2Ui(x(t))Uj(x(t))〉ν + ε〈ν̄iν̄j〉ν + ε

3
2 〈(Uiν̄j + Uj ν̄i)〉ν

]
=

h

2mST

δi,j (127)

Because of the isotropy of space, the MIP coefficient will be

<ij =
~

2mij

= <δij (128)

which is consistent with Eq.51 and 60. The operator D and its time reversal D̃ are

D = ∂t + ~U · ∇+ <∇2 (129)

D̃ = −∂t + ~̃U · ∇+ <∇2 (130)

Therefore, the statistical average velocity of particle ~V can be written as

~U = D~x (131)

~̃U = D̃~x (132)

Correspondingly, its classical statistical velocity and quantum envelope velocity are

~v = D−~x (133)

~u = D+~x (134)

with

D− =
1

2
(D − D̃) (135)

D+ =
1

2
(D + D̃) (136)
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We define the statical average acceleration of particles as

~a = D~U = (D+ +D−)(~v + ~u) (137)

= D+~u+D−~v +D−~u+D+~v

Under time reversal, it acts as

~̃a = D̃ ~̃U = (D+ −D−)(−~v + ~u) (138)

= D+~u+D−~v −D−~u−D+~v

Define the classical average acceleration as

~ac =
1

2
(~a+ ~̃a) = D+~u+D−~v, (139)

obviously it is invariant under time reversal. The average acceleration of a free particle must

be zero, which can be written as

D+~v +D−~u = 0. (140)

However, the average acceleration of quantum envelope motion can not simply be zero,

D+~u+D−v 6= 0 (141)

At classical and low speed case, the average acceleration of quantum envelope motion does

not relate to classical statistical velocity, therefore we can have

D−~v −D+~u = 0. (142)

These conditions are equivalent to the coupled non-linear partial differential equations as

following

∂~u

∂t
= −<∇2~v −∇(~u · ~v) (143)

∂~v

∂t
= −(~v · ∇)~v + (~u · ∇)~u+ <∇2~u (144)

Random motions of free particles due to the random impacts of STP satisfy the Markov

property, one can make predictions for the future of the process based solely on its present

state just as well as one could know the process’s full history. This is the simplest situation

for random motions, the free particle does not involve any external potential. Now, we have
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an initial value problem, which is to solve ~u(~x, t) and ~v(~x, t)given ~u(~x, 0) = ~u0(~x), ~v(~x, 0) =

~v0(~x). In order to solve the coupled non-linear partial differential equations, we have to

linearise it firstly. Let Ψ = eR+iI , where

∇R =
1

2<
~u (145)

∇I =
1

2<
~v (146)

We can obtain
∂Ψ

∂t
= i<∇2Ψ (147)

According to the MIP, the universal spacetime diffusion coefficient is the MIP coefficient

< = ~
2mST

. Substituting to the last equation, we will get the equation of motion of free

particles as

i
∂Ψ

∂t
= − ~∇2

2mST

Ψ (148)

which is the Schrödinger equation essentially. From this emergent Schrödinger equation, we

can deduce a series of quantum behaviours. It’s important to remark that the spacetime

mass mST in the Schrödinger equation of free particles coincides with the inertial mass m of

free particles. Since we only discuss non-relativistic quantum mechanics in the followings,

we don’t need to distinguish mST from m any more. From |Ψ|2 = e2R and ∇R = 1
2<~u, we

have

~u = <∇|Ψ|
2

|Ψ|2
(149)

which leads to Born rule ρ = |Ψ|2 . ρ(x, t) is the probabilistic density of particles in coordi-

nate x at time t. The Born rule is a law of quantum mechanics which gives the probability

that a measurement on a quantum system will yield a given result, which became a funda-

mental ingredient of Copenhagen interpretation. In this paper, we attempt to suggest an

interpretation of Born rule according to the MIP, which can provide a realistic point of view

for wave function. Emerging from random impacts of spacetime, it’s absolutely necessary

that wave function is complex. If wave function were a real sine or cosine function[25],

according to ρ = |Ψ|2, the probabilistic density of a free particle with definite momentum

would oscillate periodically which violates the isotropy of physical space.
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C. Physical Meanings of Potential Functions R and I

Substituting Ψ = eR+iI into ∂Ψ
∂t

= i<∇2Ψ, we equalise the real and imaginary part

separately as

∂tR = −<(2∇R · ∇I +∇2I) (150)

∂tI = <[(∇R)2 − (∇I)2 +∇2R] (151)

Combining with previous result ρ = |Ψ|2 = e2R, we have

∂tρ = 2ρ∂tR (152)

∇ρ = 2ρ∇R (153)

The differential equation of potential R can be turned into

∂tρ = −2<∇ · (ρ∇I) (154)

With ∇I = 1
2<~v, the differential equation of potential R is equivalent to the equation of

continuity

∂tρ+∇ · (ρ~v) = 0 (155)

Noticing that the classical momentum of particle is m~v = ~∇I, we find that the differential

equation of potential I goes to

∂t(~I) +
(∇(~I))2

2m
− ~<[(∇R)2 +∇2R] = 0 (156)

Comparing with the Hamilton-Jacobi equation from classical mechanics [26, 27] as

∂tS +
(∇S)2

2m
+ V (x) = 0 (157)

which is particularly useful in identifying conserved quantities for mechanical systems. There

are two crucial remarks: Firstly, potential function I is proportional to the Hamilton-Jacobi

function S as S = ~I. Secondly, for a free particle, the influence of spacetime can be summed

up to the spacetime potential

VST = −~<[(∇R)2 +∇2R] (158)

where the spacetime potential VST will play the same role of potential V in the Hamilton-

Jacobi equation. The spacetime potential VST vanishes in the classical limit ~ = 0, which
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is equivalent to V = 0 for free particles in classical mechanics. The quantum effect, which

corresponding to nonzero ~, now is the natural result of the existence of the spacetime

potential VST , induced by MIP. In principal, the moving of free particle can be described

precisely by the spacetime potential VST as

m
d2~x

dt2
= −∇VST = ~<∇[(∇R)2 +∇2R] (159)

This equation indicates that free particle moves not along straight line within interactions

of SPT. It is affected by a space-time potential VST . The interactions between SPT and

particle give the statistcal mass to particle.

D. Space-time Random Motion of Charged Particles in Electromagnetic Field

According to the MIP, in case of low speed, electromagnetic field only serves as an external

potential, which itself is not affected by random impacts of spacetime. In a electromagnetic

field ( ~E, ~B), the charged particle will experience a Lorentz force ~F = e( ~E+~v× ~B). Therefore,

the average acceleration of charged particles will be

~a = e( ~E + ~v × ~B)/m (160)

where m is the inertial mass of charged particle and e is the charge. Based on the spacetime

principle, we are able to derive the equation of motion of charged particle in electromagnetic

field, which is finally shown to be Schrödinger equation in electromegnatic field, which is

i~∂tΨ =
1

2m
(−i~∇− e

c
~A)2Ψ + eφΨ (161)

where the electromagnetic potential and the electromagnetic field are connected by

~B = ∇× ~A, ~E = −∂t ~A−∇φ. (162)

We do not have average acceleration in absence of electromagnetic field. However, this is not

the case when the particle have non-zero electric charge, moving in external electromagnetic

field. Identifying the velocity in the Lorentz force as the classical velocity of random motion

of particle in spacetime, we have

∂t~v = e( ~E + ~v × ~B)/m− (~v · ∇)~v + (~u · ∇)~u+ <∇2~u (163)
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In the electromagnetic field, the equation of motion of charged particle becomes coupled

non-linear partial differential equations as following

∂~u

∂t
= −<∇(∇ · ~v)−∇(~u · ~v) (164)

∂~v

∂t
= e( ~E + ~v × ~B)/m− (~v · ∇)~v

+(~u · ∇)~u+ <∇2~u (165)

In order to solve the coupled non-linear partial differential equations, we have to linearise it

firstly. Let Ψ = eR+iI and notice that the canonical momentum of charged particle [28] is

~p = m~v + e ~A/c, we suppose

∇R =
1

2<
~u (166)

∇I =
1

2<
(~v +

e ~A

mc
) (167)

In order to prove Eq.(161), we expand the first term of right side of Eq.(161) as

1

2m
(−i~∇− e

c
~A)2Ψ = −~2∇2

2m
Ψ +

e2A2

2mc2
Ψ (168)

+
i~e
2mc

(∇ · ~A)Ψ +
i~e
mc

~A · (∇Ψ)

Substituting Ψ = eR+iI , it leads to

− ~2

2m
[∇2R + i∇2I + (∇R + i∇I)2]Ψ +

e2A2

2mc2
Ψ

+
i~e
2mc

(∇ · ~A)Ψ +
i~e
mc

( ~A · (∇R + i∇I))Ψ (169)

With vector formulas

∇( ~A · ~B) = ~A× (∇× ~B) + ~B × (∇× ~A)

+( ~A · ∇) ~B + ( ~B · ∇) ~A (170)

∇(∇ · ~A) = ∇× (∇× ~A) +∇2 ~A (171)

and Eq.(166), we will obtain

∇× ~u = 0 (172)

∇× (~v +
e ~A

mc
) = 0 (173)
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Straightforwardly, we have

i~(∂tR + i∂tI) = − ~2

2m
[∇2R + i∇2I

+(∇R + i∇I)2] +
e2A2

2mc2
(174)

+
i~e
2mc

(∇ · ~A) +
i~e
mc

( ~A · (∇R + i∇I)) + eφ

Now, let’s prove that the real and imaginary parts are separately equaled as

∂tI =
~

2m
(∇2R + (∇R)2 − (∇I)2)

− e
2 ~A2

2mc2
+

e

mc
( ~A · (∇I))− eφ

~
(175)

∂tR = − ~
2m

(∇2I + 2(∇R) · (∇I))

+
e

2mc
(∇ · ~A) +

e

mc
~A · (∇R) (176)

Taking the gradient from both sides and the definitions ~B = ∇ × ~A, ~E = −∂t ~A − ∇φ, we

have reproduced the Eq.(164). Therefore, we have proved that both sides of Eq.(164) are

at most different from a zero gradient function. It’s important to notice that the choices of

electromagnetic potentials are not completely determined. It allows a gauge transformation

[29]

~A′ = ~A+∇Λ (177)

φ′ = φ− ∂tΛ (178)

For any function Λ(~x, t), the electromagnetic field is invariant. Therefore, the corresponding

wave function cannot change essentially, at most changing a local phase factor. Given

ψ′ = ψe
ieΛ
~c , Schrödinger equation of charged particle in electromagnetic field is invariant,

i.e., U(1) gauge symmetry. By choosing the function Λ(~x, t) properly, we are able to eliminate

the redundant zero gradient function. So we have proved Eq.(161) at the end.

E. Stationary Schrödinger Equation from MIP

Compare to the definition of classical statistical velocity as in eq.(146), it is easy to see

that for the ground state, the classical statistical velocity is zero. Moreover, we can prove

for all stationary states, their classical statistical velocities are zero. For a stationary state
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has exact energy E, the Schrödinger equation is

[−~2∇2

2m
+ Vc(~x)]Ψ = EΨ (179)

its conjugation reads

[−~2∇2

2m
+ Vc(~x)]Ψ∗ = EΨ∗ (180)

here Vc(~x) is classical external potential. Add the above two equations, the new real wave

function has to satisfy the Schrödinger equation with same eigen-energy E.

Corresponding to the classical velocity from Eq.(146), it is easy to show that the classi-

cal velocity of particles must be zero in stationary states. Within the framework of MIP,

we should interpret the stationary states from quantum mechanics as a spacetime random

motion with zero classical velocity. Once we have all the stationary states, we will get

the general solution by linear superposition. Therefore, we are going to derive stationary

Schrödinger equation from classical velocity ~v = 0, which can provide a clear physical picture

of MIP. Moreover, when ~|v| is large and close to velocity of light c, the generalisation of this

framework is clear and will be explained in our further work.

The trajectory of random motion of particle can be understood as the superposition of clas-

sical path and fluctuated path. During time interval 4t, there are two contributions to the

trajectory as

δ~x = ~u(~x, t)4t+4~x (181)

of which distribution satisfies ϕ(4~x) = ϕ(−4~x) and
ˆ
ϕ(4~x)d(4~x) = 1

. The spacetime coefficient reads

< =
1

24t

ˆ
(4~x)2ϕ(4~x)d(4~x) (182)

The probabilistic density ρ(x, t) evolves as

ρ(~x, t+4t) =

ˆ
ρ(x− δ~x, t)ϕ(4~x))d(4~x) (183)

Expanding Taylor series of both sides, we have

∂tρ = −∇ · (ρ~u) + <∇2ρ (184)
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which is consistent with Fokker-Planck equation. In any external potential V (~x), there

are two contributions to the changing of average velocity. One is from random impacts of

spacetime, another one is from acceleration provided by external potential. Therefore, the

average velocity will evolve during time interval 4t as

~u(~x, t+4t) =´
(~u(~x− δ~x, t)− 4t∇V (~x−δ~x)

m
)ρ(x− δ~x, t)ϕ(4~x))d(4~x)´

ρ(x− δ~x, t)ϕ(4~x))d(4~x)
(185)

the denominator of eq. 185 is the normalisation factor of the probability distribution. Ex-

panding Taylor series of both sides, we obtain

m
d~u

dt
= −∇V + <m(

∇2(ρ~u)

ρ
− ~u∇

2ρ

ρ
) (186)

From this we can see the acceleration of the quantum envelope velocity ~u, whose dynamics

are rooted in the joint contribution of the classical potential and the quantum potential. For

the physical state with certain energy, the three-velocity decomposition ~V (~x, t) = ~u(~x, t) +

~v(~x, t) + ~ν(t) has clear physical meaning. The quantum envelope velocity ~u(~x, t) and the

classical statistical velocity ~v(~x, t) are both velocity fields, which are functions of space-

time coordinates. The classical statistical velocity field of a physical state with certain

energy is zero, which can be used as a new interpretation of the steady state of quantum

mechanics. The dynamic mechanism of the quantum envelope velocity field ~u(~x, t) has two

contributions, the classical external potential field where the particle is located and the

quantum potential field generated by the random collision of time-space. The diffusion

velocity ~ν(~x, t) is the background of space-time fluctuations, evenly distributed in space,

and satisfies the properties of Brownian motion in time, which is the intrinsic property of

space-time. The sum of these three velocities is the real velocity of the objective reality

of the particles required by materialism. See appendix B where we proved these.With the

condition of stationary state ∂tρ = 0, it goes to

~u = <∇ρ
ρ

(187)

∂t~u = 0 (188)

It’s important to notice that
d~u

dt
= ∂t~u+ (~u · ∇)~u (189)
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The average velocity ~u is not zero in the stationary state, which exactly cancle out its

fluctuation velocity. Therefore, given the condition of stationary state, we are able to get

−2m<2∇2√ρ
√
ρ

+ V (x) = Const. (190)

We can prove this constant is exactly the average energy of particle

E =

ˆ
ρ(

1

2
mu2 + V )d3x (191)

Now, we have derived

−2m<2∇2√ρ
√
ρ

+ V (x) = E (192)

ψ =
√
ρe−iEt/~ (193)

Let < = ~
2m

once again, we arrive at the stationary Schrödinger equation

−~2∇2

2m
ψ + V ψ = Eψ (194)

F. Ground States of Hydrogen Atoms in MIP

In the hydrogen atom system, we can take ~A = 0 and φ = − e
4πε0r

. The stationary solution

of the equation (161) satisfies

EΨ =
1

2m
(−i~∇)2Ψ− e2

4πε0r
Ψ (195)

The lowest energy stationary state solution (ground state wave function) is Ψ(r, θ, ϕ) =

1√
πa3
e−r/a, where a = 5× 10−11m is the Bohr radius of the hydrogen atom. Using the wave

function of the ground state of a hydrogen atom, we can get its quantum envelope velocity

as

~u = 2<∇R = − ~
ma

r̂ = − c

137
r̂ (196)

Where c is the velocity of light in vacuum, r̂ is the unit vector r̂ = ~r
r
. Similarly we can get

its classic average velocity

~v = 2<∇I = 0 (197)

Its spacetime fluctuation rate is satisfied

< νi >= 0, < νi(t)νj(t
′) >= <δijδ(tt′) (198)
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Then the electron in the ground state of the hydrogen atom has its coordinate ~X(t) as a

random variable, and its real velocity ~V satisfies the following microscopic dynamic equa-

tions.
d ~X(t)

dt
= ~V (t) = ~u+ ~v + ~ν = − c

137
r̂ + ~ν(t) (199)

This is the real equation of motion of the ground state electrons of a hydrogen atom in the

context of MIP. The quantum envelope velocity always points to the center of hydrogen

atom. The closer to the center, the greater the repulsive force generated by the spacetime

potential. Because this envelope velocity is balanced out by the combination of the classical

Coulomb potential and the spacetime potential, the hydrogen atom can be stabilized on the

ground state.

According to MIP, the real motion of electrons in the ground state of hydrogen atoms,

we can calculate the average kinetic energy of electrons as

< K >=
m

2
< ~V (t)2 >=

m

2
(
c

137
)2 +

m

2
< ~ν(t)2 > (200)

The average of the square of the spacetime fluctuation is

< ~ν(t)2 >= </T (201)

Where T is the cumulative interaction time of the electrons. The ground state of a hydrogen

atom can exist forever, that is, T tends to infinity, and thus we can obtain the average kinetic

energy of the ground state electron as

< K >=
m

2
< ~V (t)2 >=

m

2
(
c

137
)2 (202)

We can calculate the average potential energy of the electron as

< U(r) >=< − e2

4πε0r
>=< − e2

4πε0a
> (203)

Where a is the Bohr radius and ε0 is the vacuum permittivity. The average energy of the

ground state electrons is the sum of the average kinetic energy and the average potential

energy. Substituting the standard values of physical constants, we can get the numerical

result of the average energy of the ground state electrons as

E =< K > + < U >= −13.6ev (204)
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We have reached the same conclusion as quantum mechanics through the microscopic equa-

tion of motion of MIP. It can be seen that quantum mechanics only reflects the statistical

average nature of the real motion process and does not reflect all the physics under the

framework of MIP.

1. Deriving the amount of elementary charge from MIP

According to MIP, the interaction between particles and STP (the basic definition of the

action is the product of momentum and displacement)

Nh =

˛
pdq (205)

For example, the simplest uniform circular motion is
˛
pdq = 2πmvr (206)

Consider the electrons inside the hydrogen atom. STP collisions provide random Brownian

motion, and attraction from proton provides centripetal force with equilibrium conditions

e2

4πε0r2
=
mv2

r
(207)

The amount of charge can be solved as

e = nh

√
ε0
mπr

(208)

The exact value of the electronic charge can be accurately obtained. We know that in MIP,

the exchange action is nh, where n can be any integer.

We only need to make a hypothesis that the orbit of the electron is determined by the

quantum number n of STP interaction. The proof of this hypothesis is shown in the next

section. That is, when n = 1, the electron falls on the Bohr’s orbit (r = 0.53 × 10−10m).

When n = 2, the electrons fall on the second orbit (by analogy). You can get important

results (all values below are with international units)

h = 6.62× 10−34,m = 9.11× 10−31, ε0 = 8.85× 10−12

After substituting, we obtain the amount of charge as

e = 1.6× 10−19C (209)
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2. Quantum number n of STP determining the orbit of hydrogen atoms

What we want to prove is that when the electrons are in Bohr’s orbit (r = a), the amount

of exchange action of STP is just a Planck constant, ie

h = 2πmva (210)

Using the ground state wave function of the hydrogen atom derived above

ψ =
1√
πa3

e−r/a (211)

The average value of the momentum can be found as

Mv = p = |
ˆ
ψ∗(−i~∇)ψdτ | = ~

a
(212)

The integral volume element is dτ = r2sinθdθdϕdr and h = 2πmva.

3. Generalisation to Hydrogen-like atoms

The exchanged action between particles and STP

nh =

˛
pdq (213)

In uniform circular motion ˛
pdq = 2πmvr (214)

An electron in a hydrogen-like atom with a positively charged nucleus. STP collisions provide

random Brownian motion, and the attraction of the nucleus provides centripetal force with

equilibrium conditions
Ze2

4πε0r2
=
mv2

r
(215)

The amount of charge can be solved as

e = nh

√
ε0

Zmπr
(216)

The Bohr-like orbital electron corresponding to n = 1 has a Bohr radius of r = a/Z, from

which the elementary charge can be derived as

e = 1.6× 10−19C (217)
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Starting from MIP, we have made a thorough study of free matter particles and obtained

the most important conclusions of quantum mechanics. Furthermore, the most fundamental

cause of atomic stability is explained by MIP, and from the first principle we calculate the

basic physical quantity of electron charge unit. It can be seen that the random collision of

STP does not only provide chaotic background noise , but also the stability of all matter

in a seemingly chaotic background. At the most profound level, materialism interpret the

physical world and the contradictions are unified.

VI. QUANTUM MEASUREMENT IN MIP

A. General Principle

There are fundamental distinctions on quantum measurement between MIP and Copen-

hagen interpretation. Within the framework of MIP, since matter particle is collided ran-

domly by STP. Any measurement related to position and momentum can not be done in a

time interval between two collisions, therefore any this kind of measurement cannot lead to

precise result, which means we cannot make errors as small as possible in principle. There-

fore, incommutable observables can not only be measured precisely at the same time, but also

cannot be measured precisely separately. Theoretically, all measure values means statistical

average, which include intrinsic uncertainty from spacetime besides normal measurement er-

rors. For examples, the momentum uncertainty from MIP is due to the statistical properties

of fluctuated mass. As a statistical mass, the minimum fluctuation is 4mst , which roughly

is one part per million of electron mass. The position intrinsic uncertainty 4Xst from MIP

is the mean free path between two consecutive collision by STP.

When the spacetime sensible mass is equivalent to the statistical inertial mass, the equa-

tion of motion will be determined by Schrödinger equation. In other words, moving matter

particle and propagational wave are unified in spacetime. If we want to measure a matter

particle, we need apparatus to interact with particle somehow. However, every such mea-

surement has to interrupt the random motion of particle. Therefore, measurement means

the end of a Markov process. When the measurement is finished, a new Markov process will

begin. For the moving matter particle, the phases of wave functions before and after mea-

surements is completely irrelevant, which cannot interfere each other. Under this framework,
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it’s unnecessary to introduce hypothesises of wave function collapse or multi universe.

B. EPR Paradox in MIP

In a 1935 paper[35], Einstein with Podolsky and Rosen considered an experiment in

which two particles that move along the x-axis with coordinates x1 and x2 and momenta

p1 and p2 were somehow produced in an eigenstate of the observables X = x1 − x2 and

P = p1 + p2 ( these two observables commute [X,P ] = 0 ).It’s easy to understand that the

measurement of the position of particle 1 can interfere with its momentum, so that after the

second measurement the momentum of particle 1 no longer has a definite value. However

two particles are far apart, how can the second measurement interfere with the momentum

of particle 2? And if it does not, then after both measurements particle 2 must have both

definite position and momentum, contradicting the quantum uncertainty principle. If it

does, there exist some “spooky” interaction between two far apart particles, contradicting

the locality principle in the special theory of relativity. The orthodox interpretation

of quantum mechanics suppose that the second measurement which gives particle 1 a

definite position, prevents particle 2 from having a definite momentum, even though the

two particles are far apart. The states of the two particles are so call quantum entanglement.

Let’s investigate the experimental process in detailed and estimate every uncertainty

relations. Suppose two particles that are originally bound in some sort of unstable molecule

at rest fly apart freely in opposite directions, with equal and opposite momenta until their

separation becomes macroscopically large. Their separation will evolve as

x1 − x2 = x10 − x20 + (p1 − p2)t/m (218)

where x10, x20 are initial positions of two particles. It’s noticed that under MIP, every

massive particle is collided randomly by STP, the initial separation of two particle cannot

be measured precisely. There exists intrinsic uncertainty 4Xst = 4|x10 − x20| as the mean

free path between two consecutive collision by STP. According to the uncertainty relation

derived from MIP, the momentum difference at least has intrinsic uncertainty as 4Pst =

4|p1 − p2| ≥ ~
4Xst , because of the commutation [x1 − x2, p1 − p2] = 2i~. Therefore the
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uncertainty of separation will be

4|x1 − x2| = 4Xst +
~t

4Xstm
(219)

Its minimum is at 4Xst =
√

~t
m
, leading to

4|x1 − x2| ≥ 2

√
~t
m

(220)

Similarly, the total momentum P is not strictly zero under MIP, which includes at least the

intrinsic uncertainty due to

4P = 4mstv (221)

where 4mstis the fluctuation of statistical mass, according to MIP, roughly as one part per

million of electron mass. Perform EPR experiment after the second measurement of particle

1, the uncertainty of particle 2 at least will be

4p24x2 = 2

√
~t
m
4mstv (222)

More importantly , does the intrinsic uncertainty of particle 2 given by MIP contradict the

uncertainty relation given by quantum mechanics? If

4p24x2 ≤
~
2

(223)

it still contradicts uncertainty relation of quantum mechanics, which means that we will

observe the quantum entanglement experimentally, because we have to suppose the “spooky”

interaction between two far apart particles to satisfy uncertainty relation. Therefore, we

obtain the key criterion of quantum entanglement (momentum-position type) as

4m2
st

m2
≤ λd

16πL
(224)

where λd = h
mv

is de Broglie′s wavelength and L is the separation of two particles. So we

can conclude that there is a characteristic separation of quantum entanglement as

L∗ =
λd

16π
(
m

4mst

)2 (225)

When the separation of two particles is larger than L∗, the inequality of (8) cannot be satis-

fied which means we are no longer able to determine the existence of quantum entanglement

from experimental results. The reason is that the intrinsic uncertainty of particle 2 given
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by MIP has already satisfy uncertainty relation of quantum mechanics automatically. We

cannot deduce the existence of ’spooky’ interaction in this scenario. For two electrons mov-

ing at the speed of 0.01c, the corresponding characteristic separation will be L∗ ≈ 1m. For

two atoms moving at the speed of 0.01c, the corresponding characteristic separation will be

L∗ ≈ 106m.

VII. FROM MIP TO PATH INTEGRAL

The path integral representation of quantum mechanics is a generalization and formu-

lation method for quantum physics, which extends from the principle of action in classical

mechanics. It replaces a single path in classical mechanics with a quantum amplitude that

includes the sum or functional integral of all paths between two points. The path integral

expression was theoretically published by theoretical physicist Richard Feynman in 1948

[39]. Prior to this, Dirac’s 1933 paper[40], had major ideas and some early results. The

main advantages of the path integral expression is that it treats spacetime equally, so it is

easy to generalize to the theory of relativity, which is widely used in modern quantum field

theory. However, the basic assumptions of MIP tell us that the effect of each STP colliding

on particles can be seen as an independent path. The weight of each independent path is

related to the distribution of energy. This is essentially a process of path integration. To

understand this concept more clearly, we consider a simple process as follows. Assuming that

the effect of random motion of particles over time ∆t is from point A to point B. According

to MIP, in this process, the change of the action can only be h, 2h, 3h, ..., but the paths are

different corresponding to each specific action change. For example, the smallest amount of

action change is one h, corresponding to a linear motion from A to B, and the 2h change

corresponds to the movement of the polyline, during which the particle is struck twice by

STP, and so on. In this picture, the so-called infrared effect is naturally ruled out, that is,

the process of less than one h in ∆t. The effect of infinity is also ruled out because the

instantaneous velocity has certain upper bound which is the speed of light. This suggests

that such a path integral effect is a finite summation rather than an infinite, so there is no

need to introduce a so-called renormalization procedure. We see that under the framework

of MIP, the quantum properties of particles are rooted in nature as the statistical description

of their random motion.
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A. Path Integral of Free Particle and Spacetime Interaction Coefficient

We had argued the real velocity of free particle in space-time satisfies the decomposition

as
~V (~x, t) = ~v(~x, t) + ~u(~x, t) + ~ν(t) (226)

in which there are two kinetic arguments, they are classical statistical velocity ~v and quantum

envelope velocity ~u.

There are two kinetic variables with random motion particle in spacetime, which are

classical speed ~v and fluctuated speed ~u. The corresponding kinetic equations are

∂~u

∂t
= −<∇(∇ · ~v)−∇(~u · ~v) (227)

∂~v

∂t
= −(~v · ∇)~v + (~u · ∇)~u+ <∇2~u (228)

Setting Ψ = eR+iI , we are able to linearise as

∇R =
1

2<
~u (229)

∇I =
1

2<
~v (230)

which leads to
∂Ψ

∂t
= i<∇2Ψ (231)

During an infinite small time interval ε, the solution can be written in terms of integrals as

Ψ(x, t+ ε) =
w
G(x, y, ε)Ψ(y, t)dy (232)

which represents the superposition of all the possible paths from y to x. The critical ob-

servation of Feynman is the weight factor G(x, y, ε) will be proportional to eiS(x,y,ε)/~, where

S(x, y, ε) is the classical action of particle as

S(x, y, ε) =
w
L(x, y, ε)dt =

w
(K − U)dt = (K̄ − Ū)ε (233)

K̄ and Ū are average kinetic energy and potential energy separately. In order to show the

equivalence between path integral formulation and the spacetime interacting picture, we

should derive our basic kinetic equations from the postulation of path integral G(x, y, ε) =

AeiS(x,y,ε)/~. For a free particle in spacetime, one has Ū = 0,L̄ = m
2

(x−y
ε

)2 and S = m(x−y)2

2ε
,

which leads to

Ψ(x, t+ ε) = A
w
e
im(x−y)2

2~ε Ψ(y, t)dy (234)
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Setting y − x = ξ and α = − im
2~ε , it can be written in terms of

Ψ(x, t+ ε) = A
w
e−αξ

2

Ψ(x+ ξ, t)dξ (235)

= A
w
e−αξ

2

(Ψ(x, t) + ξ
∂Ψ

∂x
+

1

2
ξ2∂

2Ψ

∂x2
+O(ξ4))dξ

With the properties of Gaussian integral
w
e−αξ

2

dξ =

√
π

α
(236)

w
e−αξ

2

ξdξ = 0 (237)
w
e−αξ

2

ξ2dξ =
1

2α

√
π

α
(238)

we can obtain

Ψ(x, t+ ε) = A(

√
π

α
Ψ(x, t) +

1

4α

√
π

α

∂2Ψ

∂x2
+O(α−

5
2 )) (239)

Setting A =
√

α
π
, we have

Ψ(x, t+ ε)−Ψ(x, t) = ε∂tΨ(x, t) =
1

4α

∂2Ψ

∂x2
(240)

From this integral, We observed that the most important contribution comes from y − x =

ξ ∝
√
ε, where the speed of particle is y−x

ε
∝
√

~
mε

, we see here when ε → 0, the speed

divergent in order
√

1/ε. The paths involved are, therefore continuous but possess no

derivative, which are of a type familiar from study of stochastic process. With the isotropy

of space, we have

∂tΨ(~x, t) =
1

4αε
∇2Ψ(~x, t) (241)

Corresponding to the Eq. (231), if one requires the equivalence between path integral

formulation and MIP, there must be

i< =
1

4αε
(242)

< =
1

4iαε
=

1

4i(− im
2~ε)ε

=
~

2m
(243)

Notice that < is only an arbitrary parameter in the Eq.(143). The consistency between

path integral and MIP requires < = ~
2m

. An arbitrary finite time interval ∆t, can be cut

into infinitely many pieces of infnitesimal time interval ε. And in each ε, the collisions

leads to many different paths, one can pick one path and consectively another along the

time direction, this will end up a path in ∆t, sum over all possible paths in ∆t gives an
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integration over path space, which is the celebrated historical summation or path integral.

The method here can be straightforwardly generalised to the particle in the external potential

as in following section.

B. Path Integral of Particle in an External Potential and Spacetime Interaction

Coefficient

In an external potential U , one has Ū = U(x+y
2

) and L̄ = m
2

(x−y
ε

)2, which leads to the

action

S =
m(x− y)2

2ε
− U(

x+ y

2
)ε (244)

According to the path integral formulation, it must satisfy

Ψ(x, t+ ε) = A
w
e
im(x−y)2

2~ε − iU(
x+y

2 )ε

~ Ψ(y, t)dy (245)

= A
w
e
im(x−y)2

2~ε (1−
iU(x+y

2
)ε

~
)Ψ(y, t)dy

To the lowest order of ε, it shows

U(
x+ y

2
)ε = U(x+

ξ

2
)ε = U(x)ε (246)

Ψ(x, t+ ε) = A
w
e−αξ

2

(1− iU(x)ε

~
)Ψ(x+ ξ, t)dξ (247)

From the properties of Gaussian integral in the previous section, we obtain

Ψ(x, t+ ε) = A(1− iU(x)ε

~
)

√
π

α
Ψ(x, t) + A

1

4α

√
π

α

∂2Ψ

∂x2
(248)

Setting A =
√

α
π
, ε→ 0, we have

∂tΨ(~x, t) =
1

4αε
∇2Ψ(~x, t) +

1

i~
UΨ(~x, t) (249)

To be consistent with the case of free particle, let’s take < = ~
2m

which leads to

∂tΨ(~x, t) = i<∇2Ψ(~x, t) +
1

i~
UΨ(~x, t) (250)

Therefore we have derived the equation of motion from MIP.
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VIII. SPIN WITHIN THE FRAMEWORK OF MIP

A. MIP and Spin 1/2

According to the MIP, let us consider the movement of a free particle in a closed path.

The total amount of STP collision exchanged action in this process is
˛
~p · d~l =

∑
nh = ζ(0)h = −h/2 (251)

The particle’s momentum ~p consists of classical momentum and fluctuation momentum. The

average contribution of the Brownian movement is zero, that is
˛
~v · d~l = −2π< (252)

Where ~v is the classic statistical velocity of the particle. The wave function emerges from

the particle collision of STP is Ψ = eiIeR, where I is the phase of the particle wave function

and the classical statistical velocity of the particle is ∇I = ~v
2< . Substituting the equation

into (252), we get ˛
∇I · d~l = Ii − If = −π (253)

Where Ii is the phase of the particle’s starting point and If is the phase back to the starting

point. When the movement of a closed path is completed, the wave function of the particle is

changed from Ψi to Ψf = −Ψi, therefor the spin of massive particles are constrained by the

MIP. Its spin can only be 1/2, belonging to the fermion. Physically, the potential function R

characterizes the fluctuation motion of particles caused by STP collisions, corresponding to

statistical mass. The potential function I characterizes the nature of the particle’s rotation

in spacetime, corresponding to the spin of the particle. The mass and spin are combined by

the potential functions R and I to fully describe the motion properties of the particles in

spacetime.

According to quantum mechanics, when a particle of spin 1/2 rotates the θ angle around

the z-axis, its wave function becomes

eiSzθ/~Ψ = eiSzθ/~(αΨ+ + βΨ−) = eiθ/2αΨ+ + e−iθ/2βΨ− (254)

The particle rotation θ = 2π is taken into the above formula as

eiSz2π/~Ψ = −(αΨ+ + βΨ−) = −Ψ (255)



A MIP and Spin 1/2 63

That is, the wave function of the particle changes from Ψi to Ψf = −Ψi. It can be seen

that under the MIP framework, we obtain the same statistical properties as the 1/2 spin

wave function of quantum mechanics. In the framework of MIP, mass is no longer a classic

concept. At the same time, the linear velocity of the particle surface is no longer a classic

concept. Therefore, Pauli’s criticism based on the classical mechanical angular momentum

formula is irrelevant in the MIP framework. Particles do not have mass properties when

they are not impacted by STP. Subjected to STP impact, its mass is not evenly distributed,

but a statistical attribute.

According to the MIP, each random collision of STP will give the electrons Planck con-

stant multiples action. The statistical effect of multiple impacts on the one hand produces

the quantum wave function of the electron translation, and on the other hand, the quantum

spin property of the electron rotation.

In the picture of MIP, let us consider two identical free particles. Without loss of gen-

erality, let each particle have only two possible states as |k1 > and |k2 >. Regardless of

the random collision of STP, the total possible state of the two-particle system. There are

four types: |k1 >|k2 >,|k2 >|k1 >,|k1 >|k1 >,|k2 >|k2 >. Two identical free particles have

the same mass, considering STP random collision, |k1 >|k2 > and |k2 >|k1 > states will be

absolutely indistinguishable, describing the same physical state. Considering the following

process, STP collides particle 1 to particle 2 and particle 2 to particle 1. Taking the second

particle as the frame of reference, this process is equivalent to particle 1 rotating around

particle 2 by 2π. According to the equation (255), The wave function of this two-particle

system will obtain a negative sign. So for any state x and y we have

|x > |y >= −|y > |x > (256)

Thus, |x >|x >=0 is obtained, indicating that two identical fermions cannot be in the same

quantum state, which is the Pauli exclusion principle. The wave function of the identical

particle system with spin 1/2 must satisfy antisymmetry, which is an extremely important

axiom of quantum mechanics. If the sign of the wave function of any two particles is changed,

then the wave function is completely antisymmetric. This means that the two fermions can

never occupy the same state in the same system. Since the identical particles are randomly

impacted by STP, they cannot be distinguished as the classic particles which can be tracked

by the mark, therefore they are absolutely indistinguishable. If the two fermions are in
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exactly the same state, then the value of the wave function should not change after exchange.

The only way out is that the value of the wave function is zero, that is, the probability is

zero. It must be emphasized that this important logic of quantum mechanics is a natural

inference of MIP.

For two identical bosons, without random collisions of STP, there are three possible

states: |k1 >|k1 >,|k2 >|k2 >,|k1 >|k2 > +|k2 >|k1 >. Furthermore, from the extension

of two particles to the multi-particle system, it can be seen that under the framework of

MIP, the essential difference between the Bose-Einstein distribution and the Fermi-Dirac

distribution is naturally interpreted.

The main focus of this paper is to clarify the physical nature of single particles subjected

to random collisions with STP. However from the above discussion, the theoretical framework

of this paper can be extended to multi-particle systems to describe the quantum statistical

behavior of multi-particle systems.

In modern quantum physics, spin is interpreted as the intrinsic property of particles. On

the other hand, from the point of view of group theory, it is also seen as a representation

of the Lorentz group. For example, a particle with spin 1/2 corresponds to the minimal

representation of the Lorentz group, and a particle with a spin of 1 corresponds to the

vector representation of the Lorentz group. These two expressions are actually incompatible.

Because it is the representation of the Lorentz group, which means that the particles present

in the spacetime, and can not be said to be intrinsic. On the other hand, if the spin of a

particle is not intrinsic, then under the framework of the perturbation theory of modern

quantum physics, the state of motion can always change due to perturbations. Since the

spin does not change with the state of motion, it cannot be a motional property under the

framework of perturbation theories.

B. Statistical Properties of Spin

In the framework of the MIP, the spin of the particles needs to be reconsidered. We believe

that the motion of particles in spacetime will be impacted by STP anytime and anywhere,

and its motion can be described by the statistical wave function introduced in this paper.

It should be noted that our statistical wave function does not contain a relativistic effect.

The spin as a representation of the Lorentz group is obviously a relativistic property. In
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the framework of modern quantum physics, the behavior of relativistic particles and non-

relativistic particles is quite different. However, under the framework of MIP, the statistical

movement velocity of particles and the fluctuation velocity of particles are mathematically

independent, and in fact are physically inseparable. The latter is accompanied by the former.

So it is impossible to split the two movements. Therefore, under the framework of MIP, non-

relativistic statistical movements are naturally accompanied by relativistic behavior. This

explains precisely that the particle has a "inner spin", and this "inner spin" is the property

of the relativistic Lorentz transformation. Therefore, under the framework of MIP, the

classical, quantum and relativistic behavior of particles is always perfectly unified.

C. Spin Dynamics in MIP

We now consider the dynamics of spin under the MIP framework. Considering the sta-

tistical behavior of particles, their fluctuation motion is generally considered to have no

statistical average effect. The general behavior here does not include non-perturbative fluc-

tuations, however non-perturbative fluctuations bring new effects. We can classify the fluc-

tuations of particles as the perturbation fluctuation, which corresponds to the tiny Lorentz

transformation of the particle. The other type is non-perturbative fluctuations, which reflect

the topological properties of the Lorentz group. It requires a topological subgroup of the

Lorentz group for further classification.

1. Topological Subgroup of Lorentz Group

Lorentz group SO(3, 1)’s complex algebra so(3, 1)C can be equivalent to the direct product

of two su(2), ie

so(3, 1)C ' su(2)L ⊗ su(2)R (257)

But each su(2) Lie algebra has a sub Lie algebra of u(1), so the maximal ring of the Lie

algebra of the Lorentz group is u(1)L ⊗ u(1)R which is topologically equivalent to a torus.

It can be seen that the topology subgroup of the Lorentz group is U(1)L⊗U(1)R which can

be used to classify the non-perturbative fluctuations described above.
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2. Topological Classifications of Non-Perturbative Fluctuations

With the first order homotopy group

π1(U(1)L ⊗ U(1)R) = Z⊕ Z (258)

two integers can be used to classify all the closed paths of the Lorentz group that are not

toplogically equivalent. For example, (1, 0) means a path around U(1)L without a path

around U(1)R. And (1, 1) It means a path around each of U(1)L and U(1)R.

3. Non-Perturbative Path and Statistical Origins of Spin

Non-pertubative paths are a very special class of extreme relativistic paths that corre-

spond to the topology of spacetime. Considering that if the relativistic non-perturbative

path of a particle is a path around the left-hand topological subgroup U(1)L, then forming

this path requires the particle to undergo a statistically infinite number of STP collision.

Each collision will increase or decrease the particle’s action by a Planck constant of h. Then

the total amount of exchanged action between the particle and the STP will be

ϕ =

˛
p · dl =

∞∑
n=1

1× h = −1

2
h (259)

This contribution to the statistical wave function of the particle is significant because the

wave function of the particle is in fact a partition function of the particle state. So this

path-dependent statistical phase will transform the wave function Ψ into

Ψ× eiϕ/~ = Ψ× e−iπ = −Ψ (260)

which shows that the particles of the (1, 0) path classification will statistically equivalent to

a spin 1/2 particle.

Similarly, it can be proved that the particles of the (0,1)-path also statistically equivalent

to a spin 1/2 particle. In order to distinguish between these two topological properties, one

is the left-handed spin 1/2 fermion, and the other is the right-handed spin 1/2 fermion.

For the particle represented by the path (1, 1),

ϕ =

˛
L+R

p · dl =
∞∑
n=1

1× h+
∞∑
n=1

1× h = −h (261)
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Its wave function remains unchanged under the phase transformation, which actually depicts

a particle with a spin of 1.

From this classification, the non-perturbative path corresponding to the particles of any

spin can be derived. Since it is a topological property, it will not change under the local

Lorentz transformation, which coincides with the nature of the spin exactly.

IX. ELECTROMAGNETISM: AN MIP APPROACH

A. Essential Properties of Electronic Charge In Modern Physics

In framework of modern physic, fundamental matter particles are all electric charged.

The fundamental electric charge is defined as the amount of charge of an electron or a

positron.

For electric charge [50], there are five fundamental properties. Firstly, there are only two

kinds of charges, as known as the positive and negative charges. The characteristic quantum

numbers of positron and electron are 1 and -1. Secondly, same charges repel each other,

different charges attract each other.Thirdly, the interaction between charges is known as

the Coulomb force, obeys the inverse square law. Electron and positron can annihilation

each other, emit photons.Forthly, in an isolated system, the algebraic amount of charges are

conserved. Finally, the amount of fundamental charge is 1.6× 10−19C.

Dynamics of STP revisited

Since there are no interactions between STP, the differential dynamics of STP is discribed

by a massless free scale field theory, its Lagrangian is:

LST = ∂µφ∂
µφ . (262)

The dynamic equation is the 3+1 dimentional Klein-Gordon equation,

∂µ∂
µφ = 0, (263)

the solution of above equation is a wave solution, it can be written as follow

φ(~x, t) =
∑

E2=
∑3
i=1 p

2
i

f(E, ~p) exp(iEt− i~p · ~x), (264)
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in which f(E, ~p) is an analytic function in momentum space.

Now let us consider putting a particle into space-time. The impact of introducing the

matter particle into space-time scalar field, is somehow like dropping a cobble into the water

surface of a peaceful lake, leads to the ripple effect. Compare to the fluctuation of space-time,

the matter particle introduces a non-perturbative effect, which will bring into the space-time

a strong potential. The reason that the matter particle results a strong potential is as follows

Any perturbative disturbance will be get drowned out by the fluctuation of microscopic

space-time energy fluctuation. In general, strong perturbation will lead to nonlinear effects,

especially non-perturbative soliton effect. The soliton effect is steady and relatively large

than STP. We know STP are local excitation of space-time energy, obviously, a cluster of

STP describes a “huge” excitation of space-time energy. So it is nature to introduce solitons

into space-time field since a local non-perturbative energy disturbance leads a local space-

time soliton, discribing a cluster effect of STP.

B. 2+1-dim Complex Scalar Space-time field

In modern quantum field theory, the microscopic energy can be non-conserved locally,

which is saying the vacuum can excit any pair of virtual conjugated particles. In framework

of MIP, the fluctuations of space-time energy are STP. The non-conservation nature of local

space-time energy is saying the number of STP are locally non-conserved. However, in a

global viewpoint, the energy of STP are conserved.

In framework of MIP, we introduce a local companion for STP field, which is a local field

that can interact with STP. Howerver, in global, the companion field will decouple with the

STP field. The existence of the local companion field also implies in local there is a kind of

local symmetry, which is broken in global. In fact, when the local symmetry is U(1) , STP

are excitations of a complex scalar field.

In framework of MIP, matter particle experiences quantum Brownian motion, which

essentially is a Markov progress. This implies the past and future of the matter particle

are causual irrelated. So at an arbitrary point of time, one can cut the slice vertical to the

direction of the velocity of the matter particle, as known as the normal slice. The dynamics

of matter particle on normal slice is a 2+1-dim dynamics. The whole 3+1-dim dynamics

could be extented from the dynamics on slices. Notice there are two kinds of dynamics on
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the 2+1-dim normal slice, one for matter particle, the other for STP, respectively.

We now consider the 2+1 dimensional dynamics of STP. As is stated above, the matter

particle drops a cobble into the STP lake and results a period potential. We denote the

potential as V (φ, φ∗), thus the Lagrangian of complex STP field now becomes

LST = −1

2
∂jφ∂

jφ∗ + V (φ, φ∗), j = 0, 1, 2. (265)

C. Abrikosov-Nielsen-Olesen-Zumino Vortex

In 2+1 dimension, the famous non-pertubative solution for a complex scalar field is the

Abrikosov-Nielsen-Olesen-Zumino(ANOZ) vortex solution [44][45]. The Lagrangian sup-

ports the ANOZ vortex is

L = −∂jφ∗∂jφ−
λ

2

(
φ∗φ− F 2

)2 (266)

The minimum of the potential is obvious, it is

φ = F · eiϕ

which is a cycle with radius F . Notice this configuration is compatible with the “ripple”

effect of matter particle acting on STP field. It also introduces a symmetry U(1) . Since

this U(1) now is a local symmetry, it implies there should be a gauge field companion with

the STP field. The soliton solution is obtained when introducing the boundary condition at

infinity, that is

|x| → ∞ : ~φ→ F
~x

|x|
, φ→ Feiϕ. (267)

However, the soliton solition suffers an energy divergence because

E =
w
d2x

(
~∂φ∗~∂φ+ V (φ, φ∗)

)
(268)

goes to infinity. One can check this as follows

|x| → ∞ : ∂iφj →
F

|x|

(
δij −

xixj
|x|2

)
2∑

i,j=1

(∂iφj)
2 → F 2

|x|2

w
d2x~∂φ∗~∂φ → 2π

∞w

0

d|x|F
2

|x|
: Log divergent. (269)
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We saw the energy of the vortex is divergent at spatial infinity, this is unphysical since it

implies there is an infinity energy source at spatial infinity. To avoid this divergence, the

way out is to introduce a gauge vector field to smear the infinity energy on whole 2+1-dim

normal slice. In fact, the local non-conservation of space-time energy implies we need a

companion field for STP field in the first place. Here it is clear that the field is a gauge

field. To do so, we need introduce the covariant derivative for STP field, instead of original

derivative, as well as a kinetic term for the gauge field. Now the Lagrangian is

L = −1

2
Dµφ

∗Dµφ− 1

4
FµνF

µν − V (φ, φ∗) (270)

Dµφ = ∂µ − igAµ (271)

The complex STP field degenerates into a real scalar field. This is because the energy

non-conservation is recovered in global. The complexity of the STP field reflects the local

property of STP. At spatial infinity,

φ→ Feiϕ|ϕ=0 = F (272)

the gradient of STP field is

~∂φ = (∂rφ~er + ∂ϕφ~eϕ)ϕ=0 = iF/r (273)

and the gauge field becomes pure gauge field (with vanishing field strength), that is

~A→ 1

ig
φ−1~∂φ (274)

In form of polar coordinates,

Ar = 0, Aϕ =
1

gr
(275)

In general, we can not let a complex scalar field directly equals to a real scalar field at

an arbitrary spatial point. However, we can let them equals to each other up to a gauge

transformation, say

φ→ ΩF, Ω(~x) = eiϕ(~x) (276)

and then we have
~A→ − 1

ig
Ω~∂Ω−1 (277)

Actually, under this general configuration, the divergence of energy will be strictly vanished,

as
~Dφ→

(
~∂Ω + Ω(~∂Ω−1)Ω

)
F = Ω~∂(Ω−1Ω)F = 0 (278)
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In terms of component, the gauge field reads

Ai = −1

g
εij
xj
r2

(279)

From the Stokes theorem, we have

Φ ≡
˛
C=n·∂Σ

~Ad~x =
w

Σ

~Bd~σ =
2πn

g
≡ gm (280)

here we recognize the famous Dirac quantization condition [43] for electronic charges, say

g · gm = 2πn, n ∈ Z (281)

This implies if there was an ANOZ vortex solution, the electronic charge is quantized. When

n is a negative integer, it describes an opposite spinning vortex solution and also describes

a negative charge. In modern physics, there should be a Dirc monople to support the Dirac

quantization condition of charges. In framework of MIP, the only origin of quantized charge

is the STP field.

D. From 2+1-d to 3+1-d

In 3+1 Minkowski space-time, the local space-time symmetry is Lorentz symmetry, de-

noted by SO(3, 1). In Lie group theory, SO(3, 1) is algebraic isomorphism to SU(2)×SU(2)

, that is

so(3, 1) ∼= su(2)× su(2) ∼= so(3)× so(3). (282)

In fact, this isomorphism reveals locally, the 3+1-dim space-time equals to cross extension

of two 2+1-dim space-time.

Now we consider how this local extension of dimension can be done from Lie algebra.

Notice the six generator of Lorentz group can be written explicityly as

Ki ≡ L0i = t∂i − xi∂t i, j, k ∈ [1, 2, 3] (283)

Rk = εijkLij = εijkxi∂j (284)

The two algebra su(2) are isomorphic to so(3) , in terms of derivative, they are

Sa = εabcra∂rb (285)

S̃a = εabcla∂lb (286)
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in which there are six degrees of freedom, in the meaning of linear space, they are

r1, r2, r3, l1, l2, l3

Though the Lie algebras of SO(3, 1) and SU(2)× SU(2) is isomorphic to each other, from

the viewpoint of degree of freedom, they are not the same. Notice there is a hidden duality,

which maps 2-dim surface to 1+1-dim surface and vice versa, as follows

? : e0 ⊗ ei → ε jk
0i ej ⊗ ek

? : ej ⊗ ek → ε0ijke0 ⊗ ei (287)

This duality is actually the Hodge duality in differential geometry. It implies extension rules

should be followed when extending a theory from 2+1-dim to 3+1-dim.

In conclude, we know the rule guiding the extension from 2+1-dim to 3+1-dim is Hodge

duality. In the vortex situation considered at hand, the Hodge duality actually corresponds

to a resolving of singularity. The vortex has a singular tube which shrinks to a point when

goes to its center. If one wants to resolving the singularity, the general way in differential

topology is to introduce a finite size sphere instead of the singularity. The resolving operation

can be done by two steps: cut the vortex tube at a finite size, which will be a circle, then

rotate the circle into a sphere. This rotation was been done in 3+1-dim and is the physical

saying of the Hodge duality.

E. The Origin of Photon from ANOZ Vortex

In discussion of ANOZ Vortex, we obtained the gauge constraint and the quantization

condition of electric charge, however, we didn’t obtain the dynamics of the vortex. Because

vortex is not a fundamental excitation, its dynamics can not be analytically achieved from

fundamental SPTs. So in order to obtain the vortex dynamics. We need to introduce the

Lagrangian for vortices.

1. Dynamics on normal slice

For the kinetic part of SPTs field, say,

Lφ =
1

2
~Diφ

∗ ~Diφ =
1

2
|(∂i − igAi)φ|2 (288)
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in this subsection, i, j, k, l,m, n = 0, 1, 2 label indices on the 2+1-dim normal slice. We only

consider the excitations nearby the vortex potential, which is φ = Feiϕ. The above STP

field kinetic Lagrangian can be written as

Lφ =
1

2
F 2 (∂iϕ− gAi)2 (289)

After a simple square matching operation, we arrive a linear form

Lφ = − 1

2F 2
ξiξi + ξi(∂

iϕ− gAi) (290)

here ξi is a static auxillary field. Notice that for vortex solution, the phase angle field ϕ is

singular at the vortex center, we now separate the phase angle into two parts, one is smooth

and the other is for vortex, say,

ϕ = ϕ0 + ϕvortex (291)

The smooth part does not have a significant effect on what we concerned, we integral it out

and it results a constraint equation for the auxillary field,

∂iξ
i = 0 (292)

This reveals the auxillary field is a 2+1-dim sourceless field, and it can be rewritten as a

pure curl as

ξi = εijk∂jak (293)

On the other hand, the equation of motion of auxillary field ξ can also be obtained from

Euler-Lagrange equation, it reads

ξi = F 2(∂iϕ− gAi) (294)

The above two equations define a hidden duality as follow

F 2(∂iϕ− gAi) = εijk∂jak (295)

Substitute it into equation (290), we obtain

Lφ =
1

2F 2
ξiξi =

1

2F 2
εijk∂jakεimn∂

man

=
1

2F 2
f jkfjk (296)
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here

fjk = ∂jak − ∂kaj (297)

is the field strength of a field. Here we saw the dynamics of the STP field on normal slice

is fully equivalent to a vector field a . Recall the kinetic term of gauge field A , we obtain a

effective Lagrangian on normal slice

Ltotal = LA + Lφ = − 1

4g2
F jkFjk +

1

2F 2
f jkfjk (298)

2. The Hodge duality

Notice in the dynamics of 2+1-dim vortex, the singularity of the phase angle is essential,

which results that the corresponding gauge field A is also singular at the center of the vortex.

This singularity could be resolved in higher dimension, for example, in 3+1-dim space-time,

we can extend the 2+1-dim Hodge duality (295) to 3+1-dim. This 3+1-dim Hodge duality

reflects the local duality of 3+1-dim Lorentz group, as revealed in last subsection. In 3+1-

dim, the complex SPTs field becomes real because the phase angle is fixed to zero and has

no dynamics at all, leads a free STP scalar field in 3+1-dim. Actually, in 3+1-dim, we can

define the Hodge duality of a field as:

F ′αβ =
√

2gF iεαβijf
ij (299)

from which we has defined a gauge field A′ , its field strength is

F ′αβ = ∂αA′β − ∂βA′α (300)

It is an extension of a field in 3+1-dim and on any 2+1-dim sub-manifold of the 3+1-dim

space-time, its dynamics is equivalent to field a . In total, we know

Ltotal = − 1

4g2
F jkFjk −

1

4g2
F ′αβF ′αβ (301)

Actually, in 3+1-dim, the two parts of above Lagrangian can be written as a single term

when defined a new field Ã satisfying

1

g
F̃ij = Fij,

1

g
F̃αβ = F ′αβ (302)
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Notice the above equations are six equations, which are

∂0Ã1 − ∂1Ã0 = g(∂0A1 − ∂1A0) (303)

∂0Ã2 − ∂2Ã0 = g(∂0A2 − ∂2A0) (304)

∂1Ã2 − ∂2Ã1 = g(∂1A2 − ∂2A1) (305)

∂0Ã3 − ∂3Ã0 = g(∂0A
′
3 − ∂3A

′
0) (306)

∂1Ã3 − ∂3Ã1 = g(∂1A
′
3 − ∂3A

′
1) (307)

∂2Ã3 − ∂3Ã2 = g(∂2A
′
3 − ∂3A

′
2) (308)

On 0-1-2 normal slice, we can assume

Ã0|Σ=(t,x1,x2) = gA0, Ã1|Σ=(t,x1,x2) = gA1, Ã2|Σ=(t,x1,x2) = gA2 (309)

here Ãi|Σ=(t,x1,x2) denotes the reduced field of the four dimensional gauge field Ã onto normal

slice Σ = (t, x1, x2, 0). Hence from eq.(306-308) we see, the constraint equations require that

on x3 direction, Ã0, Ã1, Ã2 should coincide with A′0, A′1, A′2 ,

Ai(0, 0, 0, x3) = A′i(0, 0, 0, x3), i = 0, 1, 2 (310)

then we obtain

Ã3(t, x1, x2, x3) = gA′3(t, x1, x2, x3) (311)

Actually, the A′3 is a new component of the gauge field results from the Hodge duality, it

is unique up to a pure gauge with vanishing field strength. Now we see how to extend the

gauge field on 2+1-dim to 3+1-dim guiding by the Hodge duality. A simple extension is

Ãi(t, x1, x2, x3) = g(Ai(t, x1, x2, 0) + A′i(0, 0, 0, x3)), i = 0, 1, 2 (312)

Ãi(t, x1, x2, x3) = gA′3(t, x1, x2, x3) (313)

Under this extension, we arrive a simple Lagrangian

Leff3+1d = −1

4
F̃µνF̃

µν , µ, ν = 0, 1, 2, 3 (314)

it is the famous Lagrangian for 3+1-dim gauge field, the field strength is the same as Maxwell

field strength. In three dimensional form, the field strength can be written as electric and

magnetic field strengths as

Ei = F̃0i, Bi = εijkF̃
jk, i, j, k = 1, 2, 3 (315)
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In above derivation, we saw that the dynamic effects of STP ANOZ vortex and 3+1-dim

electromagnetic field are completely equivalent. This reveals an important assertion: pho-

tons are companion particles of STP vortices. In 3+1-dim space-time, Maxwell field strength

is a derived result because of vanishing of the ANOZ vortex singularity.

In conclusion, when introducing the third spatial dimension, the singularity of ANOZ

vortex is vanished. Meanwhile the equation of motion for ANOZ vortices is equivalent to

3+1-dim Maxwell equations, they are

~∇ · ~E = 0 (316)

~∇ · ~B = 0 (317)

~∇× ~E = −∂
~B

∂t
(318)

~∇× ~B =
∂ ~E

∂t
(319)

Here what we obtained is the source-free Maxwell equations because we didn’t consider

the effect of matter particles, which will couple to gauge field as will considered in next

subsection.

F. The Coulomb Force

We now consider the force between two matter particles. In hydrodynamics, two vortices

will repel each other if their handing of spins are the same, and will attract each other if

their handing of spins are different. This is a nature derivation from Bernoulli principle.

There are only two kinds of charity for 2+1-dim vortices, left and right, respectively.

More than two decades ago, people had already found the correspondence between equa-

tions of motions of hydrodynamics and Maxwell eletromagenetism [46]. This correspondence

was supported by [47] with a detailed derivation. The correspondence between hydrodynam-

ics and eletromagnetism is much more like a coincidence in previous researches. However, in

framework of the STP vortex, the fluid-eletromagnetism correspondence now has a concrete

theoretic origin.

In previous subsections, we only considered dynamics of STP and gauge fields, leaving

the matter particle as a source of potential. It is nature to consider the interaction between

matter field and gauge field as well. To do so, we introduce the matter field in Lagrangian
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as follow

Ltotal = −1

4
F̃µνF̃

µν − iψ̄γµD̃µψ +mψ̄ψ (320)

D̃µ ≡ ∂µ + ieÃµ (321)

This interaction can be understood as an effective representation of the collision between

matter particle and STP vortices, though their are no terms representing vortices in the

Lagrangian. This is because the dynamics of vortices now is equivalent to gauge field in

3+1-dim. Other collisions between matter particle and STP are not considered in this

section, as we will see, they also play important roles in deriving gravity between matter

particles.

In global, the STP and gauge field are decoupled, hence all local dynamics have been

reduced to gauge field dynamics in 3+1-dim space-time. Notice the Lagrangian we obtained

above is the same as that in famous QED [15]. Under standard calculation, the interaction

between matter particles will be the Coulomb interaction. However, in framework of MIP,

the gauge field is not originated from matter field, but from STP vortices. This is an essential

difference between modern quantum field theory and the MIP proposed in this article.

Define the four dimensional current as

jµ ≡ iψ̄γµψ (322)

we can explicitly see the minimal couple between gauge field Ã and the electronic current j.

The equation of motions now becomes the famous sourced Maxwell equation, as known as

~∇ · ~E = j0 (323)

~∇ · ~B = 0 (324)

~∇× ~E = −∂
~B

∂t
(325)

~∇× ~B = ~j +
∂ ~E

∂t
(326)

G. Another Derivation of EoM of Photons

In framework of MIP, we had obtained four properties of charges, they are: 1. There

are only two kinds of charges corresponding to left and right chiralities of STP vortices.
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Figure 5: Photon as a topolotical excitation: a Hopf link

Same charges repel each other while different ones attract each other. 2. The charges are

quantized guiding by the Dirac quantization condition derived from STP vortex. 3. Force

between charges are mediated by photons. 4. The force between charges is the Coulomb

force.

Based on calculations in previous subsections and discussion of the Hodge duality, we

know some properties of phtons in frame work of MIP. At first, it companies with the non-

pertubative solition solution, as known as the vortex solution. Secondly, it is a gauge field in

2+1-dim normal slice on which another effective auxillary gauge field lives as well. Thirdly,

the 3+1-dim Hodge duality acts on the effective auxillary gauge field does not only resolve

the phase singularity of the STP vortex, it introduces the dual part of 2+1-dim gauge field.

So the 2+1-dim gauge field and its Hodge dual merged into a 3+1-dim gauge field, which is

the photon field, which means on 3+1-dim space-time, the photon field can be understood

as toplogical excitations of 2+1-dim gauge field, the topological configuration is known as

the Hopf link excitation. We now clarify the conclusion in detail since it is very important

to understand the spin of photon, which has a zero mass.

In framework of STP vortex, the vortex tube is made of two fields, one is the STP field

φ , whose gradient defines the flow direction of the vortex, the other is 2+1-dim gauge

field A whose field strength characterizes the spinning direction of the vortex. So in this

picture, A describes the rotation and φ the flowing. Under the Hodge duality, the dynamics

of the soliton part of STP field is equivalent to another gauge field A′ , which is Hodge

dual to A. Topologically, the vortex tube reprensents a Wilson loop, its Hodge duality

is t’Hooft loop. Put them together forms a famous topological object, the Hopf link, as

shown in fig.IX G. The Hopf link is obvious a non-local object. The topological stability
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of the Hopf link protects it from pertubative destruction, so it can propagate in space-time

without dissipation unless it meets another vortex. This is very similar to what happens

in electromegnatic interaction, where photons propagates the interaction between charges.

We had seen the equation of motion of the Ã, aka the joint representation of A and A′ , is

nothing but the Maxwell equations. The Ã field is an effective representation of the Hopf

link.

There are two circles in a Hopf link, they wind the topological subgroup (mathematically,

the minimal torus) of Lorentz group separately. As we knew in previous section, they are left

and right hand topological circles, each corresponds to a spinor fiber. However, in physics,

there are no purely topological objects. So we need to consider the dynamics of the Hopf

link, say, the effect resulted from deformation of either circle.

Consider an arbitrary deformation on one of the two circles, it will affect the whole Hopf

link and defines a self isomorphism as follow

A : ΛL ⊗ ΛR → ΛL ⊗ ΛR (327)

here A denotes the self isomorphism on ΛL⊗ΛR, ΛL and ΛR are left and right spinor firbers

respectively. In appendix E, we proved that such a self isomorphism should be a vector map.

Relatively, all derivatives should be changed into covariant derivatives, as

∂µ → Dµ = ∂µ + igAµ (328)

This leads to non-trivial local transmition that

[Dµ, Dν ] = DµDν −DνDµ = ig(∂µAν − ∂νAµ). (329)

This reflects the local homomorphism deformation. The strength of the deformation is

described by the coefficient g, which relates to charge of matter particle. So we could propose

an assertion: the amount of electric charge reflects the strength of local deformation of local

space-time. The RHS of above equation is nothing but a field strength of four dimensional

gauge field

Fµν = ∂µAν − ∂νAµ (330)
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Since

Dµ[Dµ, Dν ] = ig∂µ(∂µAν − ∂νAµ)− g2Aµ(∂µAν − ∂νAµ)

= −ig�Aν + ig∂ν(∂
µAµ)− g2∂µ(AµAν) + g2(∂µA

µ)Aν

=
1

2
g2∂ν(AµA

µ) (331)

under Lorentz gauge ∂µAµ = 0,the above equation only have pure derivation contributions,

with vanishing contributions for no-boundary free field. So this equation can be simply

written as

DµFµν = 0 (332)

In three dimensional form, it can be written as

~∇ · ~E = 0 (333)

∂tE − ~∇× ~B = 0 (334)

In another way, because the Hopf link configuration is unchanged under left-right flop sym-

metry, this leads to a electromagnetic duality for field strength Fµν . The left-right flop

symmetry actually means a flop between pair of indices (0, i)↔ (j, k) , this can be achieved

by introducing the Levi-Cevita connection

ε0ijk : (0, i)→ (j, k) (335)

thus for the field strength Fµν , we have the following dual relation

F̃αβ ≡
1

2
εµναβF

µν (336)

The Levi-Cevita connection flip electric and magnetic fields in three dimensions, and the

above dual relation reads
~E → ~B, ~B → − ~E (337)

The dual equation in four dimensional is written as

DµF̃
µν = 0 (338)

In three dimension, it becomes two equations

~∇ · ~B = 0 (339)

∂t ~B − ~∇× ~E = 0 (340)
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electron positron

Figure 6: Photons deliver the interaction between electron and positron

Equations (333,334,339,340) are Maxwell equations for source-free electromagnetic fields,

which proves in 3+1-dim, the Hopf link transforms the local deformation just the same as

photon propagates in space-time.

The figure fig.IX G shows how a deformation propagates from an electron to a positron,

where red upper arrows denote left topological circles and blue downer arrows denote right

topological circles.

H. Photon and vortex tube

We had already known that in framework of MIP, the spins of matter particles are

originated from collisions between them and STP along topological circles in local space-

time. Now we knew the photon could be represented as a Hopf link, which also is winding

topological circles in 3+1-dim local space-time. So it is possible the spin of photons are also

originated from STP.

In case of matter particles, for examples, electron and positron, their spins are sourced

from local winding along left and right topological circles U(1)L and U(1)R in local space-

time, respectively. At arbitrary moment, electron or positron has a phase angle ϕL or ϕR.

These two phase angles are undetermined. It means electron or positron has a local phase

angle symmetry, which is U(1) symmetry. Because it is deduced from local space-time

symmetry, it is a gauge symmetry.

Let us choose the phase angle be θ . The identical principle for fundamental particles

requests the following equqtions

ψ → ψe−iϕL ≡ ψe−iφ, ψ̄ → ψ̄e−iϕR ≡ ψeiφ (341)

from which we know

ϕL = −ϕR = φ (342)

It means the gauge group U(1) is the diagonal subgroup of U(1)L ×U(1)R , with transition
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matrix be -1. This perspective could be extend to higher dimensional transition matrices,

which will leads to non-Abelian gauge groups, for example, SU(2) or SU(3) .

In this picture, photon is represented as a Hopf link of 2+1-dim gauge fields, it is massless.

However, it carries the information of collisions between matter particle and STP vortices.

So it will also record the motion of the matter particle, as well as its spin. Since it is a (1, 1)

representation of the topological subgroup of Lorentz group. Therefore, from the Hopf link

proposition, we obtained photon has spin 1, and massless, and satisfies Maxwell equations.

It actually explains how a massless photon has non-zero spin.

I. Conclusion of the section

In this section, from the MIP picture, we explained the origin of electromagnetic inter-

action in detail. In framework of MIP, the 3+1-dim electromagnetic field represents itself

as a Hopf link exicitation made of 2+1-dim gauge field and its Hodge dual partner. It is a

topological state. From this topological configuration, we obtained the Maxwell equations

in two different ways, also from which, we explained why massless photons have spin 1. In

this section, we studied four properties of electric charges, say, positive and negative, quan-

tization, repelling and attracting , Coulomb inverse square law ,and equations of motions of

photons, which propagates the Coulomb interaction between charged particles. In addition,

together with the charge amount calculated in section 5, we obtained all five properties of

the electric charge.

There is one additional expression for the STP vortex configuration.In this section, we

only considered the non-pertubative potential came from matter particle. However, a non-

pertubative disturbance of space-time energy does not only have such a single origin in our

universe. In early universe, the disturbance is very large and STP vortices could also be gen-

erated as well as its partner field, the photon field. It implies in early time, the universe was

dominated by radiation, which is coincide with observations in cosmology. Another example

for non-pertubative potential is black holes, near the horizon of a black hole, the space-time

energy disturbance is quite large, and it will also generate electromagnetic radiation. This

kind of radiation has a completely different origin comparing with Hawking radiation. This

may offers quite a lot of new perspectives on black hole and cosmology researches.
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X. MIP AND SPECIAL RELATIVITY

Under the framework of MIP, STP itself has no self-interaction. The speed of STP is

constant at vst. The effect of STP on particles is a stochastic dynamics problem, which

makes the particle’s time derivative d~x/dt not well defined. Under this framework, the

classical speed of particles only has clear meaning under statistical average. Because any

experimental results can’t isolate the effect of STP which are generated at the time that

cannot be accurately known, it can’t be determined from the beginning that the initial

velocity of the particles is the classic speed in textbooks. This is actually just an ideal

concept, and there is actually no such so-called classic speed. In the framework of MIP,

the so-called "classic speed" only has a statistical meaning, which actually represents the

statistical average speed of particles in spacetime. In the following, when we say classical

speed, the actual meaning refers to the statistical average speed of the particles.

A. Equivalence between Inertial Reference Systems

Under the MIP framework, the real moving speed of a material particle is

~V = ~v + ~u+ ~ν (343)

The quantum envelope velocity of free material particles can be obtained by combining the

wave function corresponding to the particle of matter, ψ = ei(~p·~x−Et)/~

~u = 2<∇R = 0 (344)

Classic statistical speed of matter particles

~v = 2<∇I =
~p

m
(345)

From the three-speed decomposition process, we know that the classic statistical speed ~v

and the fluctuation speed ~ν are independent, so the fluctuation speed of ~ν is completely

caused by STP collision as

~ν = f({~vst}) (346)

Where {~vst} is the speed of all STP and satisfies f(0) = 0, from which we infer the

STP speed ~vst. The classic statistical speed of material particles, ~v, is also independent.



B STP Collision and Particle Mass 84

Regardless of the classical velocity at which the free matter particles move, the STP velocity

~vst is a constant, so equivalence between the inertial reference systems is no longer a basic

assumption, but a natural results of our theory.

The interaction of STP on particles causes the particles to perform random fluctua-

tions. The speed of fluctuational movement is very different from that of the classic speed.

It is essentially a relative speed that is constant under time reversal. In the Appendix B,

we prove that this random Markov fluctuation is not related to the classical motion, so

it is also invariant under the transformation of the inertial reference system. From this

perspective, the equivalence between inertial reference systems is a natural inference under

the MIP framework.

B. STP Collision and Particle Mass

In a random process in which particles are collided by STP, the instantaneous velocity of

the particle is equal to its classical statistical speed ~v, the fluctuation velocity is ~ν, and the

quantum envelope velocity is ~u overlay, ie the eq.(343) . We know that under time reversal

T (T : (t, ~x)→ (−t, ~x)), there is

T : ~v ⇒ −~v, T : ~u⇒ ~u, T : ~ν ⇒ ~ν (347)

This is because for a continuous time Markov process under time reversal, it is still a Markov

process. The quantum envelope velocity ~u and the fluctuation velocity caused by the STP

collision ~ν are actually the consequences of the STP collision on the particles. Both the

quantum envelope velocity and the fluctuation velocity are independent of the classical

statistical velocity under the time inversion transform. Therefore, we can always consider

the scenario where the particles with zero classic velocity are collided by STP. At this point,

the relative speed of STP to particles is vst and will always be vst.

Because of STP, absolutely free particles do not exist. We refer to particles whose classical

statistical speed is constant as "free particles." For free particles, the quantum envelope

velocity is ~u = 0, and ~ν is a random variable. As can be seen from the probability distribution

of ~ν, ~ν has nothing to do with the classic statistical speed ~v. The true speed of such free
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particles is ~V which consists of two parts that are independent of each other, namely

~V = ~v + ~ν (348)

When the particle’s classic speed ~v changes, ~ν does not change. It shows that the STP

background does not change with the change of the classical speed of the particles themselves.

This is actually the equivalence of the inertial reference system.

On the other hand, we already know that the statistical mass of a particle actually

induced by impact of STP. The more particles are hit by STP per unit time, the greater the

statistical mass of the particles.

First let’s consider the static mass of the particles. Particles in spacetime are always

subject to random collisions of STP. We know that the mass of a particle reflects the sta-

tistical properties of the motion which manifests in STP impacts. This does not mean that

there is no statistical mass in the reference frame where the particle’s classical velocity is

zero. Because in the stationary reference frame, the motion of the particle is still a random

quantum Brownian motion, except that its statistical position is at the origin. Therefore,

when considering the motion of particles, we should first separate the mass in the stationary

reference frame and then consider the change in the number of relative collisions due to

motion. If the stationary particles are subjected to N0 in the z direction in the z direction

unit time, and the moving particles are subjected to N collisions in z direction per unit

time. . At this point, the number of impacts on the particle in the same time period on the

x − y plane still appears to be N0, so the mass is not a scalar property. But in fact, if we

want to guarantee the principle of relativity is right, then the number of collisions in any

direction will increase relatively.

m = m0N/N0 (349)

Where N is the number of times which the particle is hit by STP per unit time observed by

the laboratory observer, and m0 is the static mass of the particle.

C. Time Dilation Effect

From the relative speed constant assumption, the distribution of STP under the reference

system transformation will not change. If the distribution of the STP is uniform and isotropic

in the rest frame , then because the speed of STP relative to the particle does not change,



C Time Dilation Effect 86

H
L

Figure 7: Collision between STP with matter particle.

in the frame of relative velocity ~v . The distribution of STP is still uniform and isotropicl.

It should be noted, however, that the time costs for the same collision process in different

reference frames are different. This can be explained by the following explanation.

In the rest frame, the STP is at a constant speed vst , moving toward the particle from

the distance H . After time t , it will collide with the particle, so the time

t = H/vst. (350)

However, in the moving frame with constant velocity v, after time t′. The distance

between the time and space will be L. And the distance from the particle is
√
L2 −H2 ,

Then t′ = L/vst , the following formula pops

L

vst
=

√
L2 −H2

v
(351)

hence

t′ =
√
t′2 − t2vst

v
⇒ T = t′

√
1− v2

v2
st

(352)

As long as the speed of STP vst equal to the speed of light c , the above equation returns to

the relativity of simultaneousity in special relativity. Because of zero static mass of photon

, the STP and photons have no interaction. On the other hand, due to the isotropy of STP,

there can always exist STP moving parallel to the photon, so there are no relative movement

between such STP and the photon. Hence the speed of light should be essentially equal to

the speed of STP, that is c = vst, which is a rigorous conclusion. and is the physical origin

of the axiom of invariance of speed of light in special relativity.
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Figure 8: Flux of STP cross a disk.

D. Relativistic Mass Effect

Now we consider the expression of the particle mass under the frame transformation. Due

to the homogeneity and isotropy of STP distribution, we can assume the density of the STP

is ρ0, and in moving frame with constant velocity v, the particle moves along the horizontal

direction .

Then in the rest frame, the number of STP passing through the disc on the vertical

direction is

N0 = ρ0πr
2vst∆t (353)

The mass of the particle is

mst = kstρ0πr
2vst∆t (354)

where kst is the propotional coefficient. In the moving frame with constant velocity v, the

number of STP passing through the same disc is

N = ρ0πr
2vst∆t

′ (355)

Notice that in moving frame, the time interval ∆t′ is coincident with that in rest frame.

The time dilation is universal along all directions, not only along the moving direction.

Therefore, numbers of collisions on three spatial directions are uniformal N .

Since

∆t′ = ∆t/
√

1− v2/v2
st (356)

we have

m′st = kstN = kstρ0πr
2vst∆t

′ = mst/
√

1− v2/v2
st (357)

When vst = c, it is the same expression of relativistic mass as in special relativity.
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E. Length Contraction Effect

Next, we consider the relativity of spatial distance, which is the length contraction effect

in the special theory of relativity. In the framework MIP, we have two independent methods

to derive this effect.

The first derivation is a natural inference of time dilation and mass enhancment effects,

which we have derived in the above two sections. In each direction, STP and the particle’s

unit cross-section have the same collision number N . The time dilation is independent of

the spatial direction (that is, the orthogonality is guaranteed). Based on these two points, in

the parallel direction and the vertical direction of the particle motion, each of the collisions

of a rectangular cross section is considered. In the case where the particles are stationary,

two rectangular sections are both a long , the width is also b.

For a rectangular section in the parallel direction of particle motion (which is perpendic-

ular to the direction of particle motion), the increase in the number of collisions N is due

to the dilation of time, see the equation (357) . In the view of a stationary observer, if the

area of the rectangle is constant, then the rectangular section in the vertical direction of the

particle motion (which is parallel to the direction of particle motion) will have more STP

passes. Similar to calculation of time dilation, we can get it at ∆t′ The number of STP

passing the same area are:

Ñ = ρ0abvst∆t
′/
√

1− v2/v2
st = N/

√
1− v2/v2

st. (358)

Then this result will show that the mass is not isotropic, which clearly violates the defini-

tion of statistical mass. The only way to resolve this contradiction is to make the length

in the particle’s direction of motion contract, and its contraction ratio is exactly equal to√
1− v2/v2

st. This makes a → a′ = a
√

1− v2/v2
st, Ñ = N . Therefore, from the inher-

ent self-consistency of the theory, the moving ruler under the framework of MIP must be

contracted.

The second derivation is discussed below.

We consider the relativity of the spatial distance, that is, the measure effect in special

relativity. We first consider the rest reference system, the length of the ruler is

l0 = xB − xA (359)
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Figure 9: Ruler in rest reference frame.
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Figure 10: Ruler in moving reference frame.

When the ruler is moving along x- direction in speed of v , as shown in the following

figure.

The spacetime coordinates at both ends of the ruler are

(x′A, t
′
A), (x′B, t

′
B),

as a rigid body, it requires t′A = t′B . In this coordinate system, the special relativistic

transformation is

XA =
x′A + vt′A√

1− v2

v2
st

, xB =
x′B + vt′B√

1− v2

v2
st

(360)

Hence

xB − xA =
x′B − x′A√

1− v2

v2
st

(361)

and

l = x′B − x′A = l0

√
1− v2

v2
st

(362)

In the framework of MIP, we consider the differential distance dx′ The MIP requires δ(px) =

nh = δ(p′x′), n ∈ Z . In all inertial frames, each time the STP acting on matter particle ,
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the changing of action is nh. The basic principle will remain the same regardless of inertial

reference frames.

In the motion reference frame, we know that the mass m′ = m0/
√

1− v2/v2
st, thus

inducing δp′ = m′δv. In the rest reference frame δp = mδv0 , we can easily seethat to ensure

the MIP is independent of reference frame transformation, there must exists the relation

dx′ = dx
√

1− v2/v2
st (363)

The length now is the integral of the above formula, and we have

l =

ˆ B

A

dx′ = l0

√
1− v2/v2

st (364)

Thus we have derived the same result as in special relativity. However, its intrinsic meaning

is not the same as in special relativity. Since we study within frameword of MIP, in which the

STP’ relative movement to the particle does not change under refrence frame transformation.

Distinct frome macro length contraction effect of special relativity, the differntial distance is

also constracted under MIP, which precisely reflects the universal applicability of the MIP.

F. An Alternative Method of Deriving Special Relativity

From the nature of time and space to study the transformation between inertial systems,

we don’t have to discuss the nature of light from beginning to end. We only need: the speed

of STP is the maximum possible speed, and we can obtain special relativity. In Model 1 of

Chapter 3 of this paper, we discuss examples of discrete space-time, where the maximum

STP speed is not an assumption.

Consider two inertial systems K,K ′. When t = 0 is set, the two origins of inertial

systems coincide. K ′ relative K with speed ν . Simplifying the derivation of symbols,

using 1 + 1 dimension space-time. Most commonly, the time and space of K and K ′ are

transformed as follow:

x′ = X(x, t, v) , t′ = T (x, t, v), (365)

where X and T are two universal functions. We will determine the form of X,T ˙ by the

nature of space and time in the following.
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Consider that the space is uniform. That is, a ruler is in K and the endpoints are in x1

and x2. It must be the same length as the endpoints in x1 + ∆x and x2 + ∆xẆith spatial

invariance, also in the K ′ system:

X(x2 + ∆x)−X(x2) = X(x1 + ∆x)−X(x1). (366)

Get ∆x→ 0, you can get:

∂X(x, t, v)

∂x
|x1=

∂X(x, t, v)

∂x
|x2 . (367)

With the arbitrariness of x1 and x2 , we know that the equation must be constant at both

ends, i.e. X is a linear function of x . By the same token, a linear function of T is t can

be obtained from the homogenous of time.

With t = 0 = t′, the origin coincides with x = 0 = x′ , we can getx′
t′

 =

av bv

Cv dv

x
t

 (368)

where av, bv, cv, dv are functions of ν and the diagonal elements are dimensionless. When

x = vt x′ = 0 gets bv = −vav.

Let’s consider the spatial homogenous. In the 1+1 dimension spacetime, it can be

understood as the inversion of the x axis. x→ −x, v → −v, x′ → −x′, the spatio-temporal

transformation is unchanged, that is, union:x′
t′

 =

av bv

Cv dv

x
t

 (369)

as well as

−x′
t′

 =

a−v b−v

C−v d−v

−x
t

 (370)

Can get:

a−v = av, b−v = −bv, c−v = −cv, d−v = dv. (371)

By definition, the transformation of K to K ′ must be equivalent to the transformation of
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K ′ to K with a relative speed of −ν, ie:x
t

 =

a−v b−v

C−v d−v

x′
t′

 (372)

Lianli available:

dv = av, cv =
a2
v − 1

bv
. (373)

which is, x′
t′

 =

 av −va−v
−a2

v−1
vav

av

x
t

 (374)

Very importantly, we generally determined that the diagonal elements of the spacetime

transformation must be equal.

With the definition of the inertial system, there is a K ′′ inertial system relative to K ′ to w

movement, then K ′′ relative K Must be an inertia transformation. This can be formulated

as: x′′
t′′

 = awav

 1 + w a2
v−1
νa2
v

−(w + v)

−a2
w−1
wa2

w
− a2

v−1
va2
v

1 + v a
2
w−1
wa2

w

x
t

 (375)

Combining the above two equations, we get an important relationship:

1 + w
a2
v − 1

va2
v

= 1 + v
a2
w − 1

wa2
w

(376)

v2a2
v

a2
v − 1

=
w2a2

w

a2
w − 1

= G. (377)

Because w, v is any speed, this formula must be equal to both constants and set to G.

The following proves that this formula must be no less than zero:

Available

av =
1√

1− v2

G

, (378)

Since v = 0, av = 1 is equivalent to no transformation, so we can remove the negative root.

It can be seen that for any speed v, there must be av > 0. Using (375), after two inertial

transformations, it is still an inertial system transformation. So have

1 + w
a2
v − 1

νa2
v

> 0 (379)
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If av < 1, when w � v, the above formula cannot be maintained. So we prove that av ≥ 1

is equivalent to G ≥ 0. From this we can set

v2a2
v

a2
v − 1

=
w2a2

w

a2
w − 1

= θ2. (380)

In summary, the final transformation can be obtained:x′
t′

 =
1√

1− v2

θ2

 1 −v
−v
θ2 1

x
t

 (381)

From this formula, you can see that v < θ. (space-time coordinates cannot be imaginary).

The joint transformation satisfies:

ω =
w + v

1 + wv
θ2

. (382)

Because w < θ, v < θ, no matter how we combine, we must have ω < θ. In summary,

θ must be the maximum possible speed allowed for time and space. Combined with our

discrete space-time model, there is a minimum length in time and space l and a minimum

time τ , and STP speed is defined as the ratio of the minimum length and time.

Let’s prove θ = l
τ
≡ vst. as follows: If there was a speed V > θ, it would move τ time

interval, The distance must be greater than l, which is no problem and will not cause any

contradiction. But it travels through the shortest distance l . It only takes l
V
< τ time,

which contradicts the definition of the shortest time.

Therefore we prove that the STP speed θ = vst is the maximum possible speed in space

and time. Time and space of this nature must have the properties derived above. When the

STP speed is exactly equal to the propagation speed of light in a vacuum, our results are

equivalent to the special relativity.

XI. MIP AND GENERAL RELATIVITY

Gravitation refers to the attraction of objects with mass, and together with electromag-

netic force, weak interaction force and strong interaction force constitute the four funda-

mental interactions of nature. Among these four fundamental interactions, gravity is the

weakest, but it is also a universal long-range attraction. Whenever is an attraction between

any two particles, the magnitude of the force is inversely proportional to the square of the
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distance, and proportional to the product of mass, we can conclude that this force must be

gravitational. In the framework of the mass principle, we naturally derive the gravitation

from the interaction between the massive fermion and STP.

A. Electron and STP

The electrons are described by the spinor field ψ, and the dynamics of free electrons are

determined by the amount of Dirac Lagrangian:

LD(ψ) = ψ̄(i∂/−m)ψ (383)

Where m is the electronic mass.

STP is described by the massless scalar field φ, and the dynamics of free STP is determined

by Klein Gordon Lagrangian:

Lsp(φ) =
1

2
∂µφ∂µφ (384)

The interaction between STP and electrons is determined by the Lagrangian:

Lint(φ, ψ) = −λψ̄φψ (385)

According to MIP, the interaction strength of STP and electrons λ must be positively cor-

related with the mass m of the electron and

lim
m→0

λ(m) = 0 (386)

What needs to be studied here is the lowest order behavior of the interaction strength λ

when the electron mass tends to zero. It is very subtle that this behavior cannot be (A is a

constant coefficient):

λ(m) = Am (387)

When we replace all the electronic masses in the system with −m, the interaction strength

λ , all physical laws must remain the same. Therefore, the lowest order behavior is

λ(m) = A
√
m2 (388)

At m = 0 is the branch point of the function, which corresponds to the singularity implied

by MIP, that is the disappearance of interaction with STP. Comparing the description of
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photon frequencies and wavevectors by relativistic quantum mechanics ω = ck, its correct

interpretation should be:

ω = c
√
k2 (389)

This leads to the important conclusion that λ2 (instead of λ) is an analytic function for m2.

The correct expansion must be of the form:

λ2 = C0 + C2m
2 + C4m

4 + ... (390)

According to the MIP, there must be C0 = 0. The electron mass is very small compared

to the natural Planck mass. we can almost ignore the contribution of all high-order terms,

leaving only the lowest-order behavior:

λ2 = C2m
2 (391)

In summary, the dynamics of the entire system are composed of STP and electrons, which

are determined by the following action:

S[φ, ψ] =

ˆ
d4x [Lsp(φ) + LD(ψ) + Lint(φ, ψ)] (392)

Substituting a concrete expression, the total amount of action of the system is:

S[φ, ψ] =

ˆ
d4x

[
1

2
∂µφ∂µφ+ ψ̄(i∂/−m)ψ − λψ̄φψ

]
(393)

According to path integration, the total partition function of this system is:

Z =

ˆ
DφDψeiS[φ,ψ] =

ˆ
DψeiSeff [ψ] (394)

Let J = −λψ̄ψ, the result for the STP field φ is

Z =

ˆ
Dφ exp(

1

2
∂µφ∂µφ+ Jφ) = eiW (J) (395)

When the fermion is at static limit, J(~xi) = λδ(~x− ~xi), we have

W (J) = −1

2

ˆ
d4k

(2π)4

J∗(k)J(k)

k2
=

ˆ
dx0

ˆ
d3~k

(2π)3

λ2ei
~k·~r

~k2
(396)

Using Z = eiW (J) = e−iVeffT and T =
´
dx0 , we can get the effective interaction between

electrons as:

Veff (r) = −
ˆ

d3~k

(2π)3

λ2ei V eck·~r

~k2
= − λ2

4πr
= −C2m

2

4πr
(397)
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The effective interaction forces between the corresponding electrons are:

Feff (r) = − λ2

4πr2
= −C2m

2

4πr2
(398)

Where r = |~r| is the distance between the electrons, and the preceding negative sign indicates

this is an attractive interaction. This universal attraction force is inversely proportional to

the square of the distance and proportional to the product of mass. We can conclude that

it can only be gravitational. So we can compare the gravitational formula and determine

the scale factor C2 = 4πG, that is:

Feff (r) = −Gm
2

r2
(399)

Where G is the gravitational constant, and the interaction force between the electrons in-

duced by STP is universal gravitation.

B. Universal Gravity among Macroscopic Bodies

Let us consider a system with three components: free protons, free neutrons, STP. The

nucleon is described by the spinor field ψi (subscript i=1 is denoted as proton, i=2 is denoted

as neutron, repeating indicator is summed), and the dynamics of free nucleus is

LN(ψi) = ψ̄i(i∂/−mi)ψi (400)

Where m1 is the proton mass and m2 is the neutron mass.

The description of the free STP section is as described in the previous section. The

interaction between STP and nucleon is determined by the Lagrangian quantity Lint:

Lint(φ, ψ) = −λijψ̄iφψj (401)

The repeated index are automatically summed, and there are four terms in this formula.

According to MIP, the interaction strength of STP and electrons λij must be positively

related to the mass of the nucleus mimj, and must have:

lim
m1→0

λ11 = λ12 = λ21 = 0 (402)

lim
m2→0

λ22 = λ12 = λ21 = 0 (403)
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With the same reasoning of the previous section, according to the analytical nature of the

function and the limitations of the MIP, the lowest order behavior must be:

λ2
ij = C2mimj (404)

In summary, the dynamics of the entire system are composed of STP and nucleon, which

are determined by the following action:

S[φ, ψ] =

ˆ
d4x [Lsp(φ) + LN(ψ) + Lint(φ, ψ)] (405)

Substituting a concrete expression, the total amount of action of the system is:

S[φ, ψ] =

ˆ
d4x[

1

2
∂µφ∂µφ+ ψ̄i(i∂/−mi)ψi − λijψ̄iφψj] (406)

According to path integration, the total partition function of this system is:

Z =

ˆ
DφDψ1Dψ2e

iS[φ,ψ1,ψ2] =

ˆ
Dψ1Dψ2e

iSeff [ψ1,ψ2] (407)

The result of accumulating the STP field φ can further obtain the effective interaction

potential between the nucleons:

Vij(r) = −
λ2
ij

4πr
= −C2mimj

4πr
(408)

Same as the previous section, let the lowest order proportional coefficient C2 = 4πG, where

G is the gravitational constant. This leads to the important conclusion that the interaction

between the nucleus induced by STP is universal gravitation:

Fij(r) = −Gmimj

r2
(409)

We obtained the correct expression of the gravitational potential between protons and pro-

tons, protons and neutrons, neutrons and neutrons. Considering that the gravitational po-

tential is a scalar potential, a direct summation superposition can be performed, thereby ob-

taining the gravitational force between the macroscopic objects, and mathematically proves

that the sum of the gravitational forces between the constituent elements of the two macro-

scopic objects is equivalent to mass center. This is the classic proof of Newton and will not

be repeated here.
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C. MIP and Equivalence Principle

The principle of equivalence plays a very important role in the general relativity. The

principle of equivalence means that the observer cannot distinguish the inertial force

generated by the acceleration and the gravitational force generated by the mass , which is

derived from the fact that the gravitational mass and the inertial mass are strictly equal.

In the theoretical framework of general relativity, the gravitational mass and the inertial

mass are strictly equal, which is a postulation of the theory. Aparting from the support of

empirical facts, there is no theoretical further explanation.

Within the framework of MIP, we have the microscopic origins of gravitation in the

above two sections, which implies important physical results: in the universal gravitational

formula induced by STP and fermion interaction, the mass of fermion from Dirac equation

is inertial mass. From the overall perspective of modern physics, we can determine that

this force must be gravitational, and it can be inferred that the inertial mass of the fermion

must be equal to its gravitational mass. Of course, this conclusion cannot completely

replace the principle of equivalence, and does not solve the problem of whether the mass

of the boson in the natural world is equal to the mass of gravity. However, it is still an

extremely important conclusion, because the principle of equivalence and general relativity

are mainly applied to macroscopic objects in nature (such as various celestial bodies), and

their mass components are completely derived from fermions. It can be said that when

general relativity is applied in macroscopic fields such as cosmology and astrophysics, the

equivalence principle is no longer a hypothesis, but a property that can be derived from

microscopic STP dynamics.

Starting from the equivalent principle we derived, combined with Einstein’s elevator

thought experiment, we can demonstrate the inevitable bending of time and space with

gravitational source. Describing the curve time and space , mathematically we have to

use the metric field of Riemannian geometry. The core of general relativity is the physical

equation that is satisfied in this Riemannian background. To get the Einstein field equation

furthermore, we must add some constraints. The important ones are as follows:

1.The Newton gravitational potential is the classical limit. The static gravitational field
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is determined by the mass density distribution of matter, which is a component of the

momentum energy tensor. Extending to the general gravitational field and determining

the momentum energy tensor of the gravitational field must correspond to this limit.

2. Referring to the Newtonian gravitational potential equation, we also require that the

differential equations satisfied cannot have more than two orders of derivatives. This is

combined with a theorem of Riemannian geometry [51] and the classical limit of Newton’s

gravitation, the form of the gravitational field equation can be determined. The coefficient

of the cosmological constant term has not been completely determined. This item has no

effects on this paper and will not be discussed here.

Furthermore, according to MIP, inertial mass and gravitational mass are no longer fun-

damental physical quantities. The two remain equal because both come from the statistical

mass of STP collisions.

XII. SUMMARY

Starting from the fundamental concept innovation of statistical mass, this paper proposes

MIP: material particles will be subjected to random collision of STP which is ubiquitous in

space and time to make frictionless quantum Brownian motion. The change of the action of

material particles in each collision is integer multiple of Planck constant h. From MIP, we

can prove all the important results of the special theory of relativity. The speed of light in a

vacuum no longer has a special physical meaning, but instead the speed of STP represents

the upper limit of the speed of physical information propagation in spacetime. The constant

speed of light is a natural consequence of MIP. The relative invariance of the speed of light

actually reflects that the speed of STP relative to the particle of matter is always relatively

constant. The quantum theory obtained under the framework of MIP is fully compatible with

the existing quantum theory. The advantage of this new framework is that it does not require

the introduction of additional wave function assumptions, which can directly derive the

Schrödinger equation. The interpretation of Bonn is also a natural consequence in our theory.

In particular, the concept of wave pack collapse is not required to be introduced under our

MIP framework. The Heisenberg uncertainty principle no longer has a fundamental position

but a natural inference under the MIP framework. From the statistical uncertainty between

inertial mass and space-time diffusion coefficient, the most basic coordinate momentum
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uncertainty relationship of quantum mechanics can be derived. Therefore, it is proved that

the wave-particle duality is a property exhibited by the STP colliding particles under the

MIP framework. Furthermore, we apply MIP to quantum measurement problems, and

have a new breakthrough interpretation of the EPR paradox problem that has confused

physics for nearly a century. The STP colliding matter particles is a zero-spin scalar particle

without mass. According to MIP, the topological properties and dynamic properties of STP

can explain the nature of photons, and thus naturally obtain the complete electromagnetic

theory and all important properties of charge. Furthermore, from the topology of space

time, we obtain the origin of the spin and the relationship between spin and mass. From

the microscopic behavior of a large number of STP, the macroscopic gravitational effect can

be derived, and the Newton’s universal gravitation formula are obtained. Inertia mass and

gravitation mass are no longer basic physical quantities. The real root of the equivalence

principle is that both come from the statistical mass of STP collisions. In summary, MIP

systematically solves all the basic problems of modern physics, which is the common origin

of special relativity, general relativity, electromagnetic theory and quantum nature. Starting

from the only one principle hypothesis, we can reconstruct the foundation of modern modern

physics and unify all important areas of modern physics.

Appendix A: Brown Motion and Markov Process

When the displacement of the material particle X(t) satisfies the following conditions,

we call the material particle doing Brownian motion: 1.X(0) = 0. 2. On any finite disjoint

interval set (si, si + tt), the displacement of the particle is X(si + tt) − X(si) , which are

random variables that are independent of each other. 3. For each s > 0, t > 0, X(s+t)−X(s)

obeys the normal distribution N(0, t).

For each constant a, the process X(t) + a is called the Brownian motion starting from a.

For the Brownian motion that is physically free of friction, we call it the quantum Brownian

motion in this paper.

Consider any past set of times (· · · , p2, p1), any "current time" s, and any "future time"

t, all of which are within the range of X, if any

· · · < p2 < p1 < s (410)
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Then the Markov property is established, and the process is a Markov process, but only if:

Pr
[
X(t) = x(t) | X(s) = x(s), X(p1) = x(p1), X(p2) = x(p2), . . .

]
= Pr

[
X(t) = x(t) | X(s) = x(s)

]
(411)

Set up for all time sets. Then calculate the conditional probability

Pr
[
X(t) = x(t) | X(s) = x(s), X(p1) = x(p1), X(p2) = x(p2), . . .

]
(412)

Future state is independent of any historical state and is only relevant to the current state.

In summary, the quantum Brownian motion studied in this paper is a Markov process.

Appendix B: Decomposition of Random Variables

In the Langevin equation, the true velocity of particle motion ~V contains three parts: the

classic statistical velocity ~v , quantum envelope velocity ~u and Gaussian noise ~ν

We do not consider the impact of classic statistical velocity. Then the random motion

of the particles will be determined by the quantum envelope motion and Gaussian noise.

The fact that we need to prove is that we can distinguish the quantum envelope motion ~u

in the strict mathematical differential sense. The quantum envelope motion corresponds to

the smooth continuous part of the random motion, and the Gaussian noise corresponds to

the continuous non-differentiable part of the random motion.

First, for any random variable r(x, t), if a smooth function f(x, t) is superimposed, the

result is still a random variable. which is a random variable, as

w(x, t) = r(x, t) + f(x, t) (413)

But if r(x, t) or w(x, t) has a finite order autocorrelation association, then theoretically we

can strictly distinguish w(x, t) and other two random variables of r(x, t), which is:

〈r(x1, t1)r(x2, t2) · · · r(xn, tn)〉r = Fn(~x,~t), mod(n,N) ≡ 0 (414)

〈r(x1, t1)r(x2, t2) · · · r(xn, tn)〉r = 0, mod(n,N) 6= 0 (415)

Then there is

〈w(x1, t1)w(x2, t2) · · ·w(xN , tN) · · ·w(xn, tn)〉r 6= 0, n > N (416)
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Therefore, it can be strictly distinguished mathematically. In the case we considered, Gaus-

sian noise ~ν has a second-order correlation

〈νi(t)νj(t′)〉 = Ωδi,jδ(t− t′) (417)

And all odd-order associations are zero

〈ν(t)〉ν = 0

So obviously

~w(t) = ~u(t) + ~ν(t)

The odd-order correlation is not zero. So you can strictly distinguish between ~w(t) and ~ν(t).

Due to the MIP, there is only one kind of Gaussian noise, and there is no other noise source.

So continuous functions other than noise are smooth and differentiable functions. So ~u is a

smooth function.

Appendix C: From MIP to the Uncertainty Principle

We believe that the uncertainty principle comes from the kinematic equation of stochastic

spacetime motion, which is rooted in the non-differentiable motion path, i.e. the particle

coordinate ~x(t) derivative of time d~x/dt does not exist. Therefore, it must be noted that

the particle’s momentum ~p = md~x/dt cannot be well defined. The momentum is defined as

follows

~p = mD~x = m~v +m~u (418)

Kinematic equation

~u = <∇ρ
ρ

(419)

For the sake of simplicity, the following discussion uses only one component in the x direction,

and all vector equations become equations of one component. For any random variable O,

the statistical average is < O >=
´
Oρ(x)dx. Multiplying both sides of the equation by ρ

and integrate x, we can get the x and ux covariance

σ(x, ux) =< (x− < x >)(ux− < ux >) >= −< (420)
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The covariance represents the total error of two variables, which is different from the variance

that only represents the error of one variable. If two variables change in the same directions,

then the covariance between two variables is positive. If two variables change in opposite

directions, the covariance between two variables is negative. For any two real random

variables A and B, there is the Schwarz inequality |σ(A,B)| 6 σ(A)σ(B), which leads to

σ(x)σ(ux) > < = ~/2m (421)

The statistical definition of uncertainty is

σ(x) =
√
< x2 > − < x >2 (422)

σ(ux) =
√
< u2

x > − < ux >2 (423)

So far we have proved the uncertainty relationship between the position of random spacetime

moving particles and the fluctuation speed. Further, if the uncertainty of momentum has

two parts of contributions

σ2(p) = m2(σ2(v) + σ2(u)) (424)

That is, σ(p) > mσ(u), the uncertainty of the position and the fluctuation speed can be

obtained.

σ(x)σ(px) > ~/2 (425)

The proof of our paper interprets Heisenberg’s uncertainty principle as the uncertainty re-

lationship between random spacetime moving particle position and fluctuation speed.The

random spacetime motion has no friction and no irreversible dissipation.

The uncertainty of the fluctuation speed is entirely from spacetime fluctuations. According

to Heisenberg’s original statement, the measured action inevitably interferes with the state

of the particles being measured, thus creating uncertainty. Later that year, Kennard gave

another statement. The following year, Herman also obtained this result independently.

According to Kennard’s statement, the uncertainty of position and the uncertainty of mo-

mentum are the nature of the particle, and cannot be suppressed below a certain limit,

regardless of the measured action. Thus, for the principle of uncertainty, there are two

completely different interpretations. Landau believes that the two interpretations are equiv-

alent, so one expression can be derived from another expressions (Ref. quantum mechanics

of Landau). However, in the latest experimental progress, Japanese scholars published on
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January 15, 2012, the empirical results of the Heisenberg uncertainty principle. They used

two instruments to measure the spin angle of the neutron and obtained a smaller measure-

ment than the Heisenberg limit, which proves the measurement interpretation by Heisenberg

is wrong. However, the principle of uncertainty is still correct, because this is the quantum

nature of the particle.

The derivation process of this paper has nothing to do with the measurement theory, and

it has nothing to do with the internal properties of the particles. It is believed that the

uncertainty principle is rooted in the fluctuation of spacetime. Under the non-relativistic

framework, spacetime fluctuations are only related to the mass of the particles. The mass

of a particle is the only perceptible property of the particle in spacetime.

Appendix D: Additional Physics Example with Three-speed Decomposition

The superposition of orbitals and the formation of chemical bonds, which are common in

chemistry, involves quantum superposition states. In the simplest case, the ground state of

the hydrogen atom and the first excited state are superimposed with equal probability as

ψ(r, t) = ψ100e
−iE1t + ψ200e

−iE2t (426)

Where E1 = −13.6ev, E2 = −13.6/4ev = −3.4ev, the wave function of the ground state of

the hydrogen atom and the first excited state are

ψ100 =
1√
πa3

e−r/a (427)

ψ200 =
1√
2a3

e−r/2a(1− r

2a
) (428)

Where a is the Bohr’s radius a = 0.529× 10−10m.

With the Euler formula, we can write the superimposed wave function as

ψ = [ψ100cos(E1t) + ψ200cos(E2t)]− i[[ψ100sin(E1t) + ψ200sin(E2t)] (429)

From the real and imaginary part, the two potential functions R and I of the superposition

wave function can be further determined. It is found by equation (145) and (146) that the

electrons u and v are not zero in this state.

This physics example is not a special case, and has general physical meaning. When the

quantum state has definite energy, its classical statistical velocity v must be zero. Generally



105

speaking, the particle is in the superposition state of the energy eigenstate, and its three

speeds are not zero which has clear physical meaning.

Appendix E: Self Isomorphism on Direct ProducSpin Clusters

We hope to prove the following conclusions in this appendix:

Theorem 1. Given any topological excited state deformation: A : ΛL ⊗ ΛR 7→ ΛL ⊗ ΛR,

where A For automorphism mapping, ΛL,ΛR represent the left-hand spin cluster and the

right-hand spin cluster, respectively, and A is the vector map.

Proof: First of all, from the symmetry of the spin structure, it is not difficult to know

that we only need to prove arbitrary automorphism: A : ΛL 7→ ΛL Both are vector maps.

This is because if we can determine that A is a vector map, we can get it through conjugate

expansion: Ã : ΛL ⊗ ΛR 7→ ΛL ⊗ ΛR for vector mapping.

To prove that any automorphism: A : ΛL 7→ ΛL is a vector map, we need to consider

the model on the left-handed spin sector, which is corresponding to the Clifford algebra

.Proposition 1.3.2 by [48] It can be seen that for the finite form Clifford algebra, the

following forms are isomorphic:

Clr,s ∼= Cl1 ⊗̂... ⊗̂ Cl1⊗̂ Cl∗1... ⊗̂ Cl∗1.

Among them, the number of Cl1 corresponds to r, and the number of Cl∗1 corresponds to s.

From the theorem 1.5.4 of [48], all Clifford K− means that ρ can be decomposed into

straight sums of irreducible algebra representations of the following form:

ρ = ρ1 ⊕ ...⊕ ρm.

The feature subspace Wi corresponding to ρi is the smallest subspace.

In additions, by the Bott cycle law theorem [48], we can get the algebraic representation

of all Clm, (m = 1, ...8), and the representation follows the indicator m Repeated with a

period of 8. That is: we can get the algebra of any Clm as follows:

Cl1 = C, Cl2 = H, Cl3 = H⊕H, Cl4 = H(2),

Cl5 = C(4), Cl6 = R(8), Cl7 = R(8)⊕ R(8), Cl8 = R(16). (430)
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For any combination of the above forms, the straight and broken parts ρi Can be split

into direct product form:

Clr,s ∼= Cl1 ⊗̂... ⊗̂ Cl1 ⊗̂ Cl∗1...⊗̂ Cl∗1.

The automorphism mapping between any part of the above direct product form can be made

by Cl1 = C, ...Cl8 = R(16) Algebraic combination between parts. Since the above parts are

all vector spaces, the automorphism must be a vector mapping, that is, the automorphism

of ρi must correspond to the matrix form.

In addition, from the algebraic decomposition process described above, it is not difficult

to know that the homomorphic mapping between all corresponding different sub-blocks is

also a vector mapping. Finally, we will be ρi, i = 1, ...8 All of them are combined together

in a straight form, and we can get the automorphism A : ΛL 7→ ΛL when i = 1, ...8 for

vector mapping. When the indicator i is greater than 8, by the Bott cycle law, we can still

get the automorphism mapping by the above process. A is the vector map. The conclusion

is proved.

Appendix F: Field Theory Calculations for Fermionic Loop Integral

We consider the following Fermion loop momentum integrals
w ddk

Dn1
1 Dn2

2

= iπd/2(−p2)d/2−n1−n2G(n1, n2) , D1 = −(k + p)2 , D2 = −k2 (431)

Noting that in the denominator, D1, D2 should actually have an infinitesimal analytic con-

tinuation (−i0+). But for the sake of simplicity, we don’t explicitly write it out. After

analysing the continuation, we need to consider the contribution of p2 < 0, and the power

contribution of −p2 can be easily obtained from dimensional analysis. In fact, what needs to

be calculated now is the dimensionless function G(n1, n2); to simplify the calculation, we can

let −p2 = 1. When n1 ≤ 0 or n2 ≤ 0, the score can be strictly calculated and G(n1, n2) = 0

can be obtained.

Using Wick rotation and α parameterization, we can rewrite G(n1, n2) as:

G(n1, n2) =
π−d/2

Γ(n1)Γ(n2)

w
e−α1(k+p)2−α2k2

αn1−1
1 αn2−1

2 dα1 dα2 d
dk . (432)

Let

k′ = k +
α1

α1 + α2

p ,
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We can get

G(n1, n2) =
π−d/2

Γ(n1)Γ(n2)

w
exp

[
− α1α2

α1 + α2

]
αn1−1

1 αn2−1
2 dα1 dα2

w
e−(α1+α2) Bmk2

ddk

=
1

Γ(n1)Γ(n2)

w
exp

[
− α1α2

α1 + α2

]
(α1 + α2)−d/2αn1−1

1 αn2−1
2 dα1 dα2 .

(433)

Using the substitution α1 = ηx, α2 = η(1− x), the above formula can be rewritten as

G(n1, n2) =
1

Γ(n1)Γ(n2)

1w

0

xn1−1(1− x)n2−1dx

∞w

0

e−ηx(1−x)η−d/2+n1+n2−1dη

=
Γ(−d/2 + n1 + n2)

Γ(n1)Γ(n2)

1w

0

xd/2−n2−1(1− x)d/2−n1−1dx .

(434)

The integrand is an Euler B function, so we can get the final result

G(n1, n2) =
Γ(−d/2 + n1 + n2)Γ(d/2− n1)Γ(d/2− n2)

Γ(n1)Γ(n2)Γ(d− n1 − n2)
. (435)

For all positive integers n1,2 they are proportional to

G1 = G(1, 1) = − 2g1

(d− 3)(d− 4)
, g1 =

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

, (436)

The scale factor is a rational function of d.

Noting that at k →∞, the denominator part of (431) behaves as (k2)n1+n2 . Therefore,

this integral is divergent when d ≥ 2(n1 + n2).
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