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Abstract

Haug [1, 2] has recently introduced a new theory of unified quantum gravity coined “collision space-time.”
From this new and deeper understanding of mass we can also understand how a grandfather pendulum clock can
be used to measure the world shortest time interval, namely the Planck time [3, 4], indirectly. Such a clock can,
therefore, also be used to measure the diameter of an indivisible particle indirectly. Further, such a clock can
easily measure the Schwarzschild radius of the gravity object and what we will call “Schwarzschild time.” This
basically proves that the Newton gravitational constant not is needed to find the Planck length or the Planck
time; it is also not needed to find the Schwarzschild radius. Unfortunately, there is significant inertia in the
current physics establishment towards new ideas that could rock the fundamentals, but this is not new in the
history of science. Still, the idea that the Planck time can be measured totally independent of any knowledge of
Newton’s gravitational constant could be very important to move forward in physics; we hope it will be given
serious consideration in the future.
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1 Important Elements in the History of Gravity

Before we show how to measure the Planck time with a grandfather clock, let’s shortly summarize the key points
in history of gravity that are relevant for this paper.

• 16568 – Pendulum clock invented by Christiaan Huygens

• 1673 – Christiaan Huygens [5] publishes theory on how to calculate the pendulum periodicity from gravity

acceleration: T = 2⇡
q

L
g .

• 1687, 1713, and 1726 – Three versions of the Principia. Newton’s [6] gravitational formula F = Mm
r2

.
Newton only states this in words. Newton never introduced a gravitational constant per se, nor did he
have any use for one, one can at best claim he hinted at one. Newton stated that mass is proportional to
weight. Further, he showed how to extract the relative mass of astronomical objects easily and, based on
the size of the planets, he could find their relative densities. Newton was focusing on relative masses as also
pointed out by Cohen [12]; “That is, since Newton is concerned with relative masses and relative densities,

the test mass can take any unity, so that weight-force may be considered the gravity or gravitational force

per unit mass...”

• 1796 – The introduction of the kilogram (kg).

• 1798 – Cavendish [7] calculates the weight of the Earth in kg using a torsion balance. This torsion balance
was invented by Cavendish friend John Michell some time before 1783, but Michell never got time to
perform the experiment before he died.

• 1873 – The idea that one needed a constant, now known as Newton’s gravitational constant to obtain the
gravity force, F = f Mm

r2
was mentioned explicitly by Cornu and Baille [8], with notation f for the gravity

constant (and it is worth mention the formula was only mentioned in a footnote). The reason it was needed
was that one had now defined mass in terms of the kg. The gravitational constant was then needed to
remove an element from an arbitrary mass that had nothing to do with gravity, and to include what had
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been missing in the kg definition of mass, namely the Planck length. This without the physicists back then
or now knowing that this is actually what is going on, see [2].

• 1894 – The gravitational constant was first called G by Boys in August 1884, see [9]. Here he stated the

following formula: Force = GMass⇥Mass
Distance2

. Although this latest step going from f to G is merely cosmetic.

Many physicists still used f even in the early 1900s, see for example Isaachsen [10] that had studied under
by Helmholtz. It was first in the 1920s that todays standard notation of G had taken hold.

• 1916 – Einstein [11] produces his theory of general relativity, where he ”naturally” are heavily dependent
on G in his formulas.

• 2019 – For more than 100 years, physicists have tried to unify theories of gravity and quantum mechanics
with minimal success. The theory of collision space-time o↵ers a fresh, new perspective that seems to unify
a modified special relativity with gravity and quantum mechanics in a fully consistent way. This is not the
topic here, but this article is based on this theory.

What is important to understand here is that Newton never invented a gravitational constant, nor did he use
one himself. Still, from his theory and insight he was able to calculate the relative masses of heavenly objects,
such as the Earth, the Sun, Jupiter, and Saturn, see Principia and also [12]. He was also able to calculate their
approximate relative densities. Newton claimed and ‘showed that weight was proportional to mass. Mass for
Newton was the quantity of matter and at the deepest level he thought matter consisted of indivisible particles.
Weight was not linked to kg in those days, as the kilogram definition of mass was first was put forward in 1796,
long after Newton’s death.

The kg at a deeper level is a collision frequency ratio, as shown by Haug and the rest mass of one kg can be
described as

m =
h̄

�̄

1
c

(1)

where h̄ is the Planck constant, �̄ is the reduced Compton wavelength [13], and c is the speed of light. Some
will likely question why we not are using the de Broglie [14, 15] matter wave, as it is normally the wavelength
linked to matter. We think one of the greatest mistakes in physics has been to build quantum theory and matter
theory around the de Broglie wavelength rather than the Compton wavelength. For example, the de Broglie
wavelength is infinite for a rest mass particle – something that is absurd, but has been accepted and not even
questioned much anymore, as it has been in use for almost 100 years. One does obtain the correct predictions
when building a theory using the de Broglie wavelength, but at the cost of unnecessarily complexity. In our
view the de Broglie wavelength is simply a mathematical derivative of the true matter wave, which we claim
is the Compton wavelength; this is discussed in more detail in [1, 16]. The relationship between the Compton
wavelength and the de Broglie wavelength is simply that the de Broglie wavelength is the Compton wavelength
multiplied by c

v .
However, the standard mass definition (even if we write it as a function the de Broglie instead) does not

contain any information about how long each collision lasts. For this detail, one needs the unknown length of
the indivisible particle x, that we have already shown in our previous work is the Planck length. Here we will
show that it can be extracted from a simple pendulum with no knowledge of the so-called Newton’s gravitational
constant if one combines it with an understanding of collision space-time. Gravity is directly linked to collision
space-time and modern physics has indirectly incorporated this by combining their kg mass measure with the
gravitational constant. This is why we need the gravitational constant, but as seen from a deeper perspective
although we will not go into much detail on this here, as it is covered this quite well in [1, 2]. Here we will
concentrate on how our new understanding of mass makes it possible to measure the Planck time with a pendulum
clock.

2 Pendulum Clock

Huygens was the first to derive the formula for the period of an ideal mathematical pendulum

T = 2⇡

r
L
g

(2)

where L is the length of the pendulum and g is the gravitational acceleration. The gravitational acceleration at
the surface of the Earth is experimentally known to be about g ⇡ .9.81 m/s2. From modern Newtonian gravity,
including the gravitational constant G, we also know that the gravitational acceleration is given by

g =
GM
R2

(3)

However, based on our new collision space-time quantum gravity theory, any rest-mass can be viewed as
collision-time, which is given by
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m̃ =
lp
c
lp
�̄

(4)

where lp is the diameter of an indivisible particle and �̄ is the reduced Compton wavelength of the mass in
question. Be aware that this formula holds for any mass, even large astronomical bodies like the Earth and the
Sun. The Earth does not have a physical reduced Compton wavelength, but we predict that each elementary
particle making up the Earth has one, and these are adapted in the following formula

�̄ =
nX

i=1

1
1
�̄1

+ 1
�̄2

+ · · ·+ 1
�̄n

(5)

Based on this, the gravitational acceleration of any object must be

g =
c3m̃
R2

(6)

Thus, we have simply replaced the standard mass measure with our mass measure, and we have replaced
the gravitational constant with c3, which is the much simpler ”gravity” constant in our reformulated quantum
gravity theory. It is the speed of light cubed. In other words, we are getting rid of a constant, namely G. Now
we can rewrite the Huygens formula and solved with respect to the mass, this gives

T = 2⇡

s
L

c3m̃
R2

T 2

4⇡2
=

L
c3m̃
R2

m̃ =
4⇡2R2L
c3T 2

(7)

Next keep in mind that we claim m̃ =
lp
c

lp
�̄
; this means we can solve with respect to lp and this gives

l2p
c�̄

=
4⇡2R2L
c3T 2

lp =
2⇡R

p
L�̄

cT
(8)

we can divide this by c and get the Planck time

tp =
2⇡R

p
L�̄

c2T
(9)

However, some will likely claim we cannot know the Compton wavelength of the Earth �̄ without knowing G.
This is actually not the case. We can measure the Compton wavelength of an electron. The cyclotron frequency
is linearly proportional to the reduced Compton frequency. Conducting a cyclotron experiment, one can find
the reduced Compton frequency ratio between the proton and the electron. For example, [17] measured it to be
about (see also [18])

c
�̄P
c
�̄e

=
fP
fe

= 1836.152470(76) (10)

.
They actually measured the proton-electron mass ratio this way and not the mass in kg. To measure the

relative mass between particles rather than their mass in kg is very similar (in spirit) to Newton measuring the
relative mass between planets, again no kg or such involved.

This means the Compton frequency of a proton is approximately1836 times higher than in an electron. We
now have to count the number of protons in the Earth. This is theoretically possible, even if not practically
possible (without going an indirect route). Assume we have counted the number of protons (we assume neutrons
are the same for simplicity) in the Earth and found that there are approximately 3.57⇥1051 protons in the Earth.
The Compton frequency (internal collision frequency) in the Earth must then be 3.57⇥1051⇥ c

�̄e
⇥1836 ⇡ 5.089⇥

1075 times per second. This means the Compton wavelength of the Earth is �̄ ⇡ c
5.089⇥1075

⇡ 5.89⇥ 10�68 m.
Take note that we found this without relying on the Planck constant, and therefore we have totally avoided the
kg definition of mass. The speed of light is known. The pendulum time on a 25 cm pendulum we measure to
be about 1 second. We can now input this in our formula, and if the formula is based on sound logic, it should
give an accurate value of the Planck time
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tp =
2⇡ ⇥ 6371000

p
0.25⇥ �̄

c2 ⇥ 1
⇡ 5.4⇥ 10�44 s (11)

which is the well-known Planck time. In other words, we have mathematically proven that a pendulum clock
can be used to find the smallest time unit without any knowledge of G or the Planck constant. Of course, we
never could have counted the number of protons in the Earth in practice. However, there exist simple indirect
ways to do so. We could use a Cavendish apparatus to measure the Schwarzschild radius of a lead ball. To do
this also requires no knowledge of G or the Planck constant. The formula is given by

rs =
L4⇡2R2✓
c2T 2

(12)

This is the Schwarzschild radius from the large lead ball in a Cavendish apparatus. Again G or h̄ not needed.
Now we can count the number of protons in the large lead ball. Also, a practical challenge, but possible (?).
Alternatively, we can use the Planck constant. Assume our large lead ball is half a kg; the Compton frequency

in half a kg is given by f = c
h̄
mc

= mc2

h̄ . And the Schwarzschild radius of the Earth can be found by the following

formula

rs,E = 2g
R2

c2
(13)

The Compton frequency in the Earth is now the Compton frequency we found in the lead ball multiplied by
the Schwarzschild radius of the Earth divided by the Schwarzschild radius of the ball. So, we can easily find
the Planck time and Planck length without relying on G, or even h̄ if we count the number of protons with a
method that does not rely on the Planck constant.

It is quite impressive we can use a grandfather pendulum clock and measure the smallest time-interval there
is. How can this be? The pendulum clock is a type of gravity clock, the pendulum periodicity is depending on
gravitational acceleration. What we have extracted is the shortest possible collision time, and shortest possible
length. If we want to know the aggregated collison time, we do not need to know the Compton frequency of the
Earth, as this only is used to divide the total collision time into its building blocks, which are the Planck time
length collisions. The collision time of the whole Earth per shortest possible time interval and it is given by

rs,t =
8⇡4R2L
c3T 2

(14)

here R is the radius of the Earth, T is the measured pendulum oscillation time, L is the length of the pendulum,
and c is the speed of light. This is actually simply half the Schwarzschild radius divided by the speed of light.

But why can we measure the Schwarzschild radius of the Earth only from using a grandfather pendulum
clock? Is the Schwarzschild radius not related to black holes, where all the mass is sucked inside a black hole
within the Schwarzschild radius that only is 8mm for the Earth? We question the view that the Schwarzschild
radius is related to black holes. We think the Schwarzschild radius is even more important, it is the collision
length of indivisible particles making up the gravity object. This indivisible particle is incredibly small, but still
it is the most important of all elements, as the building block of energy and mass, as described in our collision
space-time papers.

3 Conclusion

We have shown how a simple grandfather clock (a pendulum) can be used to measure the shortest time interval
there is, namely the Planck time. This we have shown can be done with no knowledge of G or the Planck
constant. Without the Planck constant it is di�cult at a practical level, but fully possible in principle, just
very expensive. If we take advantage of the Planck constant, we can easily do it in practice. This shows that
the so-called Newton gravitational constant not is essential for finding the Planck units and actually the Planck
constant is not needed for gravity if one redefines mass in a model that take into account what likely to be the
most fundamental form of mass, namely an indivisible particle.

It is also worth mentioning that Newton never invented or used a gravitational constant. We will claim that
Newton’s original theory is, in many ways, superior to today’s modified version of his formula. The ancient
formula made one wonder what mass truly was, and we now simply assume we know what mass is. The mass
should be relative to the Planck mass that in reality likely is collisions between two indivisible particles. To relate
the mass to an arbitrary quantity like the kg and in addition not truly grasp mass at a deeper level has caused
much confusion and constrained the progress in physics. Mass is, as suggested by Newton himself, directly linked
to an indivisible particle, which we claim has a diameter equal to the Planck length. This is one of a series of
papers strongly supporting this view.

It is also interesting to note that one, in principle, can measure the smallest possible time with a grandfather
clock and not with a i-phone, an atomic clock, or even the most advanced optical clock. The key di↵erence
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is that the grandfather clock is a gravity clock and the shortest time interval is directly linked to the building
blocks of mass, which are linked to gravity.
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