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Abstract.

Cn

Current text is to be considered as an addendum for the earlier text: “Turbulence as structured Route of
Energy from Order into Chaos, by Udo E. Steinemann, vixra.com/vixra.1801.0037”. The recent script introduced
a sphere with surface—tension as an appropriate eddy—model in a discussion on energy—transport through a
turbulent fluid—volume. Maybe this vortex—model seemed to be a bit arbitrarily chosen at the publication—time
of the article mentioned above. By the current text I have tried to justify the former model—idea on account of
outcomes from REYNOLDS—equations and PRANDTLs mixing—distance—theory.
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1. Introduct:

Most Information contained in this chapter has been extracted from [1].

1.1. Fluid properties.

A set of properties presented in the scheme below maybe appropriate for the characterization of a turbulent
fluid during subsequent discussions.

S>density: p<€ o

>pressure in turbulence fluid: a(r,t) = 4(r)+a’(r,t)<€

> speed-vector of turbulence fluid: c(r,t) = é(r)+c’(r,t)<€

| composed of |

® =0

Smean portion: &(r)<

N

>mean portion: A(r)<<€M>p = const<&

> e *= |@
il

>stochastic portion representing fluctuation: ¢’(r,t)<€

> stochastic portion due to fluctuation: a’(r,t)<€

[ with|

@+ |0>
o+~ e

> (location-vector: r) A (time-variable: t)<&

decomposed into
/ /

0 | 4=

i

Scomponents: c;AcyAcy <Kl S>components: ¢;AC,AC, <€l S-component

[ according to |

Srectangular coordinate-system<€

[ with|

0« o«e0w=
Q=@+ 0
Q=0+

>(x;—axis) A (xo—axis) A (x3—axis)<€

Properties of turbulent Fluid

1.2. Equations of Fluids Motion.

As shown below there is direct way from NAVIER—STOKE equation for a non—stationary fluid to the
REYNOLDS—equation, which finally will deliver fluid—tensions due stochastic fluctuations of the fluid.

> NAVIER-STOKE-equation for non-stationary fluids<€

[ represented by |

>dc/dt = (dc/dt)+c(V-c) = f—p (Va)+v(Ac)<

>dc;/dt = (dc;/ t)+c,(dc;/0x,) = f—o '(Da/ Ox)+v(8%c;/ 9x,%) <

[ where |

o+~ 0<0+=e0

>[j,k =(1,2,3)] A [f; = external forces] A [v = viscosity] <

| takes into consideration | @ | leads to|

>fluctuation-property: ¢ = é4+c’<€

®> 0=

S-time-everage of a property: {...)<€

>(9¢,/0t)+8,(0¢,/dx) = f— 84/ dx)+(8%4./ 9x,2)—{c, (Dc; | Dx, )< @

[ with|

>{c.(dey’/dxy)) = {d(ci'c;)/ dx,)—{c;(dc,’/dx,))<€

>continuity-equation: dc;’/9x; = 0<€

[leads to |

>REYNOLDS-equation<€

| represented by |

=0 +=0 >0 =0

>(9¢,;/0t)+¢,(9¢/0x%,) = f—p (84 / 8x)+v(8%4,/ 8%, ) —{d(c,c;)/dx, ) <€

[ with |

o+~60

>[v(o ZE’i-j/ ax2)= 9_1(81'11(/ ox)] A [{d(ci'c)/dx,) = (dfc,'c;)/dx, )] <€
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[ leads to | 4
>(9¢,/04)+8,(0¢,/0x,) = [—0 (9a/ dx )+ B/ 0% [Tu—odc/c)) o0
[ results in | 4
(((01')2))((01"32’))«01'03'»
>stress-tensor: —p{c;'c,”) = (—)-{ca’c1H(c2)?Wca'c5) ® o o
{cs'ciWes'caY(es))<€
[ gives| 33
>normal tensions: {(—g-{(c;)*)) — (j = 1,2,3)}< ®
>shear-tensions: {(—p-{c,c,)) —(p,q=1,2,3)}< ®
REYNOLDS-Tensions

1.3. Physical Interpretation of the REYNOLDS—Tensions.

Obviously exist an analogy — as demonstrated by scheme below — between tensions as they exist e.g. in
mechanics and those entities introduced by O. REYNOLDS, which can rightly be called tensions.

>, shear-tensions: {(—p-{[c,c,)) A (p,a=1,2,3)}< ®

>normal tensions: {(—g-{[c;1%)) A (] 1,2 3)}<

® o
| represent | @ | considered as | ¢ | as| | 8
S-macroscopic anisotropic analogy<l Spendant<€ ® @

> parallel-motion in (x;,x5)- plane<

[ intersecting |

@+~

> A-plane within (x,,x3)-plane<€

[ attacked by | & | causes |

®o+=0
@ |+

>shear-tensions: T,<<W>>shear-force: F = A-1.= pA{c,'c,”)

r,

~2
A

" g\\

[o]

> molecular-motions in kinematic gas-theory<

| where is specified |

/ leads to |

Sstatistical pressure: p = 3 'm-n{s*)<<W>7. = o(A/F){c,c, )<<

@ = 0=

>in xdirection: {(p, = p-((c)* D A G=L,2,3}<€

[ with |

>number of molecules per unit-volume: n<€

>molecule-mass: m — (m-n = g)<&

®>0>0+= 0 =6«

Smean kinetic-energy per molecule-mass: {s?)<

Physical Interpretation of the REYNOLDS-Tensions

o

1.4. Energy—Balance of turbulent Fluid—Motion.

Local non—stationary time—modifications of energy in a turbulent fluid—volume are due to interactions of
four different time—dependent effects: production, dissipation, convection and diffusion. Two of them —
production and dissipation — have to be considered as source and sink of turbulent energy, the other two effects —
convection and diffusion — are responsible for transportation of the energy through the turbulent fluid—volume.
While production is strongly related with REYNOLDS—tensions and creates order in fluid—volume on this base,
dissipation on the other hand transforms turbulent energy by fiction into heat and creates chaos thereby.
Production and dissipation — equally sized — turn out to be counterparts in creation and destruction of order.

> in complete flow-area of the fluid<€ ®
> local non-stationary time-modification of turbulent energy<€ &
[ contains | @ | is constantly fulfilled | ¥ ]
>terms<€ @
[ for| }
> production: acceptance of turbulent-energy from tensions<€ ® e o ® o o
[ dueto] AL}
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>normal-tensions: —;_, %*[{(c’;)*)](8¢;/9x;)] <€ &

> ®

[ as| & [ can be compared with |

>shear-tensions: —{c';1¢’2)[(9€,/9x,)+(0¢5/8%,)]—
{c'1c'3h[(0¢1/0x3)+(dE3/B%4)]— o o
{c’2¢"s)(885/ 0x%3)+(8E3/0x%,)| <€

>source<€

> @

| can be combined ts | }

> j:123( k:lEB[Tjg(aéi/axk)})<

> dissipation: waste of turbulent-energy by transition into heat<€ @ ® | o ® 0 o
| specified by | & [ 25| @ | in specific sense of | 3 33

>

>v{2[;,2%((ac’;0%;)*)+
([(dc'1/ 0x%2)+(8c'a/ 3% +{[(DC'1/ B%3)+(DC's / 9%1) 1)+ &
([(ac’2/9%3)+(Dc's/ 0%,)12) <€

> sink<€ M >energy-transition from order into chaos<€ e @

>convection; transportation of turbulent-energy due to mean-motion<€

> @

| specified by | & | represent|

>_]/2{j:123(aéi«k=123(clk)z))/axj)}<

> diffusion: transportation of turbulen]t-energy due to fluctuations < ®

[ specified by |

®+~®

>— 12704’ {p/ 0+l 3(c') 1)/ 0%)) ] <€

>energy-changes in the considered fluid-volume <€ @®

Production for Creation of Order and Dissipation for Destruction into Chaos playing
the roles of Counterparts in turbulent Fluid-Volume

1.5. Measure for Sizes of energetic Vortices and dissipating Vortices in a Dissipation—

State independent of REYNOLDS—Numbers.

Dissipation in turbulent fluid for large REYNOLDS—numbers enables estimates about measures of average—
sizes (L) for energetic vortices and (\) for dissipating vortices as well. This is made obvious in the following
scheme:

S>-dissipation: waste of turbulent-energy by transition into heat<€

[ as specified by |

>v{2[ ., 2%((ac’;0x,)*)+
([(8c'1/ 0%x3)+(8C"3/ 8x%1)1*)+H{[(Bc'1/ Bx3)+(DC's/ Bx4)]2Y+
([(9c’>/x3)+(8c'3/Dx5)]?)<€

| written more densely |

o+~ O =0

)>v[j,k=123(<[(6c,jaxk)+( 9c’, 9x,)|(9c' Ix;) )<

[ leads to |

>~1{(9¢))’)/N'<

[ ] & where|

®+~0 -0
®

Sturbulent state independent of REYNOLDS-numbers <€

> =0 BH(c)?/(9e,/0x) ) P » e

[ except for | & | to be considered as | ¢ | becs

0+
®+=e

>small structures strongly influenced by: v <<m>>typical size (micro-scale) of dissipating vortices<&

>REYNOLDS-number: Re;, =~ (L/)\)*<

®
[ where | 4
>L: "integral correlation-lengths" or typical size of energetic vortices <€ ®

Measures for Mean-Sizes of Vortices in a Dissipation-State independent from REYNOLDS-Numbers

Further measures were added by PRANDTL on base of his “mixing distance hypothesis”. Under assumptions:
o &=C(X)AC=283=0AC15F#0
he developed an impulse—exchange—model for turbulent shear—tensions. Starting from kinetic gas—theory he

specified a molecular viscosity as product of molecular speed and average—free—distance of the molecules and
proposed for the pendant — the turbulent motion — a similar connection will have to exist. This means, he

W
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proposed for vortices a viscosity as product of a characteristic velocity of the turbulent flow and a length (the so—
called mixing—distance length). Details of PRANDTLs theory are sketched shortly by the scheme below:

Stransported quality <€ @

>turbulent motion ofa fluid<

| assumed to be | @ | transports | ¢ |

®
.
@

e+ 0

> macroscopic pendant<l}/«guah&yi q(xy)<€

>Q = {c’z[{a(xz)2)—a(xz)])<€ ®

[——
S

=,
4
<=

> kinetic gas-theory < ®

>a turbulence-ball<€®>q(x,),—{a(x3),) = q(x:+Ax,)—{a(x;).) <€ °®

[ expanded ints |

>TAYLOR-series<€

- Qw0 |=

[ leads to | }

[ with| ] ]

> molecular viscosity: v = X ,{s%)"/><€m>velocity: ¢/, <€ @ @

>Q = {c",Ax,){dq/dx,) |, +12{c’2(Ax,)*Wd*q/d(x2) Y| +...<€

>a similar correlatlon< @

| where | & | means| ¢ |

-
0+~
.

>-mean distance between molecules M<l>> ortex-viscosity <€ @

>Q={c zsz»«dQ/dxz))lz<

[ becomes | @ | for| | leads 1o

®|«~e
@

>speed of a molecule: §<l>§mmca<’

[o]

S-characteristic speed<<m>() = —1%{(c’,)?)"/*<

[ where | ]

® > 00+~
&

> characteristic length<€® > Ax, = (x,),—(x,), <€

>—(c'>Ax,) =1*{(c,)*)*<

[for | & | where |

o+~0 =0
0=

>c/,Ax, < 0<€E>exchange-length: 1¥<€

Overview of PRANDTL's Mixing-Distance-Hypothesis

As outcome — in connection with the above considerations — alength (1, = mixing—distance—length) can be
be estimated, which informs about the average—distance a turbulent—ball (vortex) must travel until it loses its
individuality — being transformed into another vortex or due to viscosity into heat. This is further demonstrated
in the following scheme:

>[c’y = Axy(dey /dx,)] A [{(c1)?) = {Ax,%(des/dx,)*)] A [{c1) ~ ()<< e

>quality: q(x,)<€

®
[ identified by | ¢ | leads to] ¥ 4 A
Simpulse: {p) = o{c, )< s

>((c'2)*)* ~ {Ax,*(dey/dx,) )2 = {Ax,)'2[{dc, /dx,)| <€ e o

[ leads to | } }

[ where | [

>c’y = {ei(x1))—{ci(x2)) < L

shear-tension: T, = —p{c’s¢’5) = —pI*{Ax,%)%[{dc, /dy)|{dc,/dy)<€ | ®

@< e

>7p = —gl,,’[{dc,/dy)|{dc,/dy)<

[ where |

o+e

>, = I¥(Ax,°) ! <

[ specifies |

=0

S measure for distance where in transported entity loses its individuality<€

Consequences from Mixing-Distance-Hypothesis

Udo E. Steinemann, Justification of Sphere with Surface-Tension as Eddy-Model in a turbulent Fluid, 01-08-2019. 4



2. Effects on Vortex—Model in Discussions [2].

b ]

2.1. About Eddies shaped as spherical Fluid—Elements.

The existence of REYNOLDS—tensions within a turbulent fluid—volume give rise to a picture of sub—
structures within the fluid—volume (e.g. shaped as spheres or balls as proposed by PRANDTL in the development
of his mixing—distance—theory). The sub—structures are separated from each other by complicated surfaces with
individual surface—tensions, directly or indirectly related to the REYNOLDS—tensions. The spheres are filled
with certain amounts of turbulent translation— and rotation—energy and due to the dynamic of the turbulence
permanent forces will act on their surfaces, which finally cause a cascade of splitting—steps.

—~

2.2. Measures relevant for Sizes of the Splitting—Cascade.

Discussions [2] are relevant in a turbulence—range with dissipation independent from REYNOLDS—numbers;
the REYNOLDS—equations enable these numbers to be estimate (as shown in chapter 1). Additionally typical
size—measures:

o L: forenergetic vortices and
e X\: fordissipating vortices

could be obtained from REYNOLDS—equations as well; these estimates are of relevance in discussions (2]
because:

¢ The splitting—cascade starts with a vortex of size (L) and
e Difference between (L) and (\) is decisive for the step—number of the splitting—cascade.

A final parameter (1,,) of turbulence could be estimated from PRANDTLs "mixing—distance—theory” and is
decisive for a measure where a vortex loses its individuality under the actual turbulence—conditions:

e Measure for the distance where energetic vortices will split into follower—vortices and
¢ Measure where dissipating vortices are transformed into heat on account of the fluids viscosity (v).

2.3. Concluding Remarks with regards to Discussion [2].

From the proceeding explanations in connection with the statements of chapter 1, it becomes obvious that the
assumption of discussion [2] seems to be appropriate, to consider eddies in turbulent flow as spheres. The
assumption seems appropriate because it harmonizes with turbulent—tensions and measures as outcomes from
REYNOLDS—equations and PRANDTLs "mixing—distance—theory”. Moreover is an existence of a splitting—
cascade — from energetic to dissipating vortices with the final dissolution of the latter ones into heat — supported
by PRANDTLs "mixing—distance—theory”.
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