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Abstract —Trigonometry is an important part of mathematics. In general, a proper understanding of 
trigonometric functions is a pre-requisite for understanding important topics in physics, architecture, and many 
branches of engineering. We commonly suppose that the mathematics of trigonometric functions is perfectly true. 
However, trigonometric functions have a very long and colourful history and the need to take a more precise look 
on the same is great. This publication provides some evidence that there are circumstances where today 
understanding of trigonometric functions leads to contradictions. 
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I. INTRODUCTION  
 
The knowledge of the true origins of memorable discoveries [1] even if found by accident is of help to 

recognize the relativity even of mathematical knowledge. In this context, the early studies of triangles can be 
traced back to the 2nd millennium BC to Egyptian (Rhind Mathematical Papyrus) and Babylonian mathematics. 
However, a systematic study of trigonometric functions began with the Hellenistic mathematics during the second 
half of the 2nd century BC. The Hellenistic astronomer Hipparchus of Nicaea (ca. 180–ca. 125 BC) has been the 
first to compile a trigonometric table and is known as “the father of trigonometry” [2]. The Hellenistic mathematics 
reached India [2] where significant developments of trigonometry are ascribed especially Aryabhata (sixth century 
CE), who discovered the sine function. Finally, Aryabhata's table of sines reached China in 718 AD [3] during the 
Tang Dynasty. In the following, the studies of trigonometry continued in the Middle Ages by Islamic 
mathematicians [4] and led to the discovery of all six trigonometric functions. Latin translations of accumulated 
Arabic knowledge inspired trigonometry to be adopted in western Europe. In 1342, Levi ben Gershon (1288-1344) 
[5], known as Gersonides too, worked On Sines, Chords and Arcs [6]. Finally, the western Age of Enlightenment 
inspired and accelerated the development of modern trigonometry by Jost Bürgi (1552-1632) [7], Henry Briggs 
(1561-1630) [8], Isaac Newton (1643 - 1727) [9], Roger Cotes (1682–1716) [10], James Stirling (1692-1770) [11], 
Leonhard Euler (1707-1783) [12] and other too. 
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II. MATERIAL AND METHODS  
 

A. Definitions 
 
DEFINITION 1. (NUMBER +0) 
Let c denote the speed of light in vacuum, let  e0 denote the electric constant and let µ0 the magnetic constant, let 
i denote an imaginary number [13]. The number +0 is defined as the expression  

	 +0 ≡ $c& × ε) × µ) + − $c& × ε) × µ) +
≡ +1 − 1
≡ 	+i& − i&

	 (1)	

while “=” denotes the equals sign or equality sign [14, 15] used to indicate equality and “-” [14, 16, 17] denotes 
minus signs used to represent the operations of subtraction and the notions of negative as well and “+” denotes the 
plus [16] signs used to represent the operations of addition and the notions of positive as well. 
 
DEFINITION 2. (NUMBER +1) 
Let c denote the speed of light in vacuum, let  e0 denote the electric constant and let µ0 the magnetic constant, let 
i denote an imaginary number [13]. The number +0 is defined as the expression  

 +1 ≡ $c& × ε) × µ) + ≡ −i&  (2) 

 
DEFINITION 3. (THE RIGHT-ANGLED TRIANGLE) 
A right-angled triangle is a triangle in which one angle is 90-degree angle. Let RCt denote the hypotenuse, the side 
opposite the right angle (side RCt in the figure). The sides at and bt are called legs. In a right-angled triangle ABC, 
the side AC, which is abbrivated as bt, is the side which is adjacent to the angle a, while the side CB, denoted as 
at, is the side opposite to angle a. The following figure ([18], p. 117) may illustrate a right-angled triangle. 

 
 
 
 

   
 
 
 

 
DEFINITION 4. (PHYTHAGOREAN THEOREM) 
The Pythagorean theorem is defined as 

 𝑎1& + 𝑏1& ≡ 𝐶4 1
& (3) 

 
DEFINITION 5. (THE NORMALIZATION OF THE PYTHAGOREAN THEOREM) 
The normalization [19, 20] of the Pythagorean theorem is defined as 

 𝑎1&

𝐶4 1
& +

𝑏1&

𝐶4 1
& ≡ +1 (4) 

 

Figure 1. A right-angled triangle 
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DEFINITION 6. (THE VARIANCE OF A RIGHT-ANGLED TRIANGLE) 
The variance s2 of a right-angled triangle [19, 20] is defined as 

 𝜎1& ≡
(𝑎1&) × (𝑏1&)

$ 𝐶4 1
&+ × $ 𝐶4 1

&+
 (5) 

DEFINITION 7. (SINE FUNCTION) 
The sine function denoted as sin(angle) is a trigonometric function which relates an angle of a right-angled triangle 
and the ratios of two side lengths. The sine function is defined ([18], p. 117) in terms of at, bt and RCt as 

 
sin(𝛼) ≡

$𝑎1 +
$ 𝐶4 1 +

 (6) 

and 

 
sin(𝛽) ≡

$𝑏1 +
$ 𝐶4 1 +

 (7) 

DEFINITION 8. (COSINE FUNCTION) 
The sine, the cosine, and the tangent are the most familiar trigonometric functions. The cosine function is defined 
([18], p. 117) in terms of at, bt and RCt as 

 
cosin(𝛼) ≡

$𝑏1 +
$ 𝐶4 1 +

 (8) 

and 

 
cosin(𝛽) ≡

$𝑎1 +
$ 𝐶4 1 +

 (9) 

 
DEFINITION 9. (TANGENT FUNCTION) 
The tangent function is defined ([18], p. 117) in terms of at and bt as 

 
𝑡𝑎𝑛(𝛼) ≡

$𝑎1 +
$𝑏1 +

 (10) 

and as 

 
cotan(𝑎) ≡

$𝑏1 +
$𝑎1 +

=
1

𝑡𝑎𝑛(𝛼) 
(11) 

 
DEFINITION 10. (SIMPLE ALGEBRAIC VALUES) 
The following table provides an overview [21] about some simplest algebraic values of trigonometric functions. 
Table 1. Simple algebraic values 

Degree 0° 90° 
Function:   

sin 0 1 
cosine 1 0 

tan 0 ¥ 
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B. Axioms 
 

1) Axiom I (Lex identitatis. Principium Identitatis. Identity Law) 
In general, it is 

 +1 ≡ +1 (12) 

or the superposition of +0 and +1 as one of the foundations of quantum computing 

 +1 ≡ (1 + 0) × (1 + 0) × (1 + 0) × (…) × (1 + 0) (13) 

 
2) Axiom II (Lex contradictionis. Principium contradictionis. Contradiction Law) 
The (logical) contradiction is expressed mathematically as 

 +1 ≡ +0 (14) 

 
3) Axiom III (Principium negationis) 
In general, it is 

 +1
+0 ≈ +∞ (15) 
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III. RESULTS 
 
 
THEOREM 3.1 (THE CONSEQUENCES OF COS(a=0) = 1) 
CLAIM. 
Under conditions where cos (a = 0) = 1 it is  

 𝑎1 = 0 (16) 

PROOF. 
In general, according to the rules of trigonometry, the cosine function is defined as 

 
cosine(𝛼) ≡

$𝑏1 +
$ 𝐶4 1 +

 (17) 

However, it is accepted as correct that cos (a = 0) = 1 [21]. In this case it is 

 
cosine(𝛼 = 0) ≡

$𝑏1 +
$ 𝐶4 1 +

= +1 (18) 

In other words, it is 

 $𝑏1 +
$ 𝐶4 1 +

= +1 (19) 

or 

 $𝑏1 + = $ 𝐶4 1 + (20) 

or  
 

 (𝑏1&) = $ 𝐶4 1
&+ (21) 

Even under these circumstances, Pythagorean theorem as 

 𝑎1& + 𝑏1& ≡ 𝐶4 1
& (22) 

is valid. Rearranging, we obtain 

 𝑎1& + 𝐶4 1
& ≡ 𝐶4 1

& (23) 

or 

 𝑎1& ≡ 0 (24) 

or 
 

 𝑎1 ≡ 0 (25) 

 
QUOD ERAT DEMONSTRANDUM. 
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THEOREM 3.2 (THE DEFINITION COS(a=0) = 1 LEADS TO CONTRADICTIONS) 
CLAIM. 
The definition cos (a = 0) = 1 is logically inconsistent because the same reduces the value of bt only to 
 

 𝑏1 = +1 (26) 

PROOF. 
In general, according to the rules of trigonometry it is 

 
𝑐𝑜𝑠(𝛼)
𝑠𝑖𝑛(𝛼) ≡

𝑏1
𝐶4 1

𝑎1
𝐶4 1

=
𝑏1
𝑎1

 (27) 

This relationship is claimed to be valid even if a = 0. In this case, it is 

 
𝑐𝑜𝑠(0)
𝑠𝑖𝑛(0) =

+1
+0 =

𝑏1
𝐶4 1

𝑎1
𝐶4 1

=
𝑏1
𝑎1

 (28) 

In other words, it is 

 +1
+0 =

𝑏1
𝑎1

 (29) 

However, if cos (a = 0) = 1 then at = 0 as proofed by the theorem before and we obtain 

 +1
+0 =

𝑏1
+0

 (30) 

Under these circumstances, the division by zero doesn’t matter at all. In particular, whatever the division by 0 may 
be, cos (a = 0) = 1 demands that 

 𝑏1 = +1 (31) 

QUOD ERAT DEMONSTRANDUM. 
 

IV. DISCUSSION 
Trigonometric functions [22] are widely used in science and our trust into the same appears to be limitless. In 

one way or another trust is important in science but can be dangerous too. What we risk while trusting without a 
clear proof of the correctness of something is among other that contradictions may take root in science to such an 
extent that one definition after the other is necessary to rescue what can and must be rescued. 

In this context, it is important to note, that we cannot rely on trigonometric functions any longer to the extent 
which is necessary. Especially under conditions, where cos(a = 0) = 1, there is a contradiction. The side bt of a 
right-angled triangle can take values different from 1, especially if a = 0. However, cos(a = 0) = 1 demands under 
these conditions that bt must be equal to +1, which is a non-acceptable contradiction. 

 

V. CONCLUSION 
It is necessary to review the general validity of the trigonometric functions in detail.  
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