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Abstract. We consider a problem in Wasan geometry involving a golden arbelos
and give a characterization of the golden arbelos involving an Archimedean circle.
We also construct a self-similar circle configuration using the figure of the problem.
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1. Introduction

We consider the arbelos appeared in Wasan geometry, and consider an arbelos
formed by three semicircles α, β and γ with diameters AO, BO and AB, respec-
tively for a point O on the segment AB (see Figure 1). We denote the arbelos
and the radii of α and β by (α, β, γ) and a and b, respectively, and call the per-
pendicular to AB at O the axis. Circles of radius rA = ab/(a + b) are said to be
Archimedean, and the incircle of the curvilinear triangle made by α, γ and the
axis is Archimedean, which is denoted by δ. Let σ be the reflection in the per-
pendicular bisector of AB. We consider the following problem in [11] (see Figure
2).
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Figure 1: (α, β, γ) and the circle δ.
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Figure 2.

Problem 1. Let ε be the circle touching ασ externally γ internally and the axis
from the side opposite to A. If ε and α have the same radius, find the radius of ε
in terms of the difference of the radii of γ and δ.

The same sangaku problem proposed in 1891 [1]. If a/b = ϕ±1, then (α, β, γ) is
called a golden arbelos, where ϕ = (1 +

√
5)/2. We will show that the figure of

the problem forms a golden arbelos and the circles δ and ε touch. We will also
give a condition in which the circles δ and ε touch in the case a ̸= b, and give a
characterization of the golden arbelos involving an Archimedean circle touching
the axis at the point O and construct a self-similar circle configuration.
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2. Circles touching a perpendicular to AB at the same point

We use a rectangular coordinate system with origin O such that the farthest point
on α from AB has coordinates (a, a). We use the next proposition.

Proposition 1. It two externally touching circles of radii r1 and r2 touch a line
at two points P and Q, then |PQ| = 2

√
r1r2.
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Figure 3.
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Figure 4.

Theorem 1. Let ζ be the semicircle of diameter BP constructed on the same side
of AB as γ for a point P on the segment AB, and let ε be the circle touching γ
internally, ζ externally and the axis from the side opposite to A. The following
statements are equivalent.
(i) The circles δ and ε touch.
(ii) The circle ε has radius b− rA.
(iii) The semicircle ζ coincides with ασ.

Proof. Let e and z be the radii of ε and ζ, respectively, and let ye be the y-
coordinate of the center of ε (see Figure 3). Then we have (a + b − e)2 = (−e −
(a− b))2 + y2e and (z + e)2 = (−e− (−2b+ z))2 + y2e . Solving the equations for e
and z, respectively, we get

(1) e = b− y2e
4a

and

(2) z = b− e+
y2e
4b

.

While (i) is equivalent to ye = 2
√
arA by Proposition 1. Therefore (1) implies

that ye = 2
√
arA is equivalent to e = b − rA, i.e., (i) and (ii) are equivalent.

Substituting (1) in (2), we get

(3) y2e = 4zrA.

The equation gives that ye = 2
√
arA if and only if z = a, i.e., (i) and (iii) are

equivalent. □

We now consider the figure of Problem 1 and assume that ε and ζ have radius a
in Theorem 1 (see Figure 4). Then by the equivalence of (ii) and (iii), we have

(4) a+ rA = b.

Then 2a = a + b− rA =, i.e., a = (a + b− rA)/2, which is an answer of Problem
1. On the other hand (4) is equivalent to b = ϕa. Therefore (α, β, γ) is a golden
arbelos, and rA, a, b, c form a geometric progression with common ratio ϕ. Also
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(4) implies that there is an Archimedean circle concentric to γ touching the axis
and the circles α, ασ and ε externally.

The next theorem shows that the Archimedean circle touching the circle ε ex-
ternally and the axis at the point O can also be obtained in the case b ̸= ϕa,
and gives a characterization of the golden arbelos using the Archimedean circle
touching the axis at O.

Theorem 2. Let ζ and ε be the semicircle and the circle as in Theorem 1, and
let η be the circle touching ε externally and the axis at O from the side opposite
to A. Then η is Archimedean if and only if ζ and ε have the same radius. In this
event, (α, β, γ) is a golden arbelos with b = ϕa if and only if ζ and η touch.

Proof. We use the same notations as in the proof of Theorem 1. The radius of
the circle η equals y2e/(4e) = (z/e)rA by Proposition 1 and (3). Therefore η is
Archimedean if and only if z = e (see Figure 5). We now assume z = e. The
semicircle ζ and the circle η touch if and only if z + rA = b. The last equation
is equivalent to Theorem 1(ii), which is equivalent to z = a by the equivalence
of (ii) and (iii) in the same theorem. Therefore ζ and η touch if and only if (4)
holds, which is equivalent to b = ϕa. □
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Figure 5.

We have considered two circles touching a perpendicular to AB from the opposite
side at the same point in a general way in [5]. Theorem 1 gives a special case in
which we get such a pair of circles. Another condition using the reflection in the
axis can also be found in [6].

3. Application of division by zero

We consider the relations (1), (2) with the recent definition of division by zero:
z/0 = 0 for any real number z [3].

We consider (1). Notice that this relation is derived only from the assumption
that the circle ε touches γ internally and the axis from the side opposite to A. If
a = 0, then the semicircle α degenerates to the point A, β and γ coincide, and
y2e/(4a) = y2e/0 = 0 by the definition of division by zero. Hence (1) implies e = b.
Therefore the half part of the circle ε coincides with γ (see Figure 6).

We consider (2). If b = 0 , then β and ε degenerate to the point B, i.e., e = z = 0,
and y2e/(4b) = 0. Therefore (2) still holds (see Figure 6).
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Figure 7: b = 0.

For more applications of division by zero and division by zero calculus to Wasan
geometry see [2], [4], [7, 8], [9, 10].

4. A self-similar circle configuration arising from the golden
arbelos

We construct a self-similar circle configuration using the figure in Problem 1. Let
τ be the product of σ and the homothety of center A and ratio ϕ−1. Let p be
the x-coordinate of a point P on AB. Then we have (p + pσ)/2 = a − b and
(pσ − 2a)/ϕ = pτ − 2a, where pσ and pτ are the x-coordinates of the points P σ

and P τ , respectively. Then pτ = 2a + (pσ − 2a)/ϕ = 2a + (−2b − p)/ϕ = −p/ϕ.
Therefore τ coincides with the homothety of center O with ratio −1/ϕ. Hence
pτ

n
= (−1)np/ϕn, i.e., P τn has x-coordinate (−1)np/ϕn, and the axis is fixed by

τ . Notice that γτ passes through the point of tangency of δ and ε by Proposition
1, because (2

√
arA)

2 = 2a · 2ϕa = |BτO||AτO| (see Figure 8).
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Figure 8: K ∪ Kτ = K1 ∪ K2.
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Figure 9.

Let K be the figure consisting of γ, α, ασ, δ and ε in the case b = ϕa, which
is obtained from Figure 2 by removing AB and the axis. Let Ki = Kτ i−1

for
i = 1, 2, 3, · · · , and K0 =

∪
i≥1Ki. It is a custom of Wasan geometry to describe

the arbelos by three circles so that their centers lie on a vertical line. The original
figure of Problem 1 is also described by K with the axis and its reflection in AB
so that AB is a vertical segment as in Figure 9. Following to this custom, we also
describe K0 so that AB is a vertical line with its reflection in AB (see Figure 10).
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Figure 10: K0 with it reflection in AB.
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