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Abstract 

Gravitation and mass are explained by the fact that spherical pulse responses locally and 

temporarily deform the embedding field. Over time the spherical pulse response integrates 

into the Green’s function of the field. The shape of the Green’s function resembles the shape 

of the gravitational potential of point-like masses. At large enough distance an ensemble of 

massive objects acts as a single point-like mass. This alone does not explain why the 

gravitational force exists. Inertia explains how physical reality minimizes the third-order 

change of the universe and generates the acceleration that mutually attracts massive objects. 

These ingredients explain how gravity works. The mass has a significance of its own and can 

characterize discrepant regions. 

1 Gravitation laws 

1.1 Center of mass 

In a system of massive objects , 1,2,3,...ip i n= , each with static mass im  

at locations ir , the center of mass R  follows from 
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In the following, we will consider an ensemble of massive objects 

that own a center of mass R  and a fixed combined mass M  as a single 

massive object that locates at R . R  can be a dynamic location. In that 

case, the ensemble must move as one unit. The problem with this 

treatise is that in physical reality, point-like objects that possess a 

static mass do not exist.  
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1.2 Newton 

Newton’s laws are nearly correct in nearly flat field conditions. The 

main formula for Newton’s laws is 

 F ma=  (1.2.1) 

Another law of Newton treats the mutual attraction between 

massive objects. This gravitational attraction can be derived from the 

gravitational potential. Massive objects deform the field that embeds 

these objects, but if this effect is ignored and if the gravitational 

potential is a static function, and if the massive object moves 

uniformly, then at large distances, the gravitational potential 

describes properly what occurs.  

The following relies heavily on the chapter on quaternionic 

differential calculus in [1]. 

1.3 Gauss law 

Gauss law for gravitation is 

 , , 4 4
V V V

g dA g dV G dV GM  


=  = − = −    (1.4.1) 

Here g  is the gravitational field. G is the gravitational constant. M is 

the encapsulated mass. The differential form of Gauss law is 

 , , 4g G   =   = −  (1.4.2) 

 g = −  (1.4.3) 

  is the gravitational potential. 

1.4 The spherical pulse response 

This paper considers the formulas that compute the gravitational 

potential from an integral over a distribution of point-like massive 

objects as incorrect. In physical reality, no point-like objects that own 

a persistent mass exist. Instead, spherical pulse responses exist that 

behave as spherical shock fronts and integrate over time into the 

Green’s function of the field that embeds the actuator of the pulse. 

https://en.wikipedia.org/wiki/Gravitational_potential
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The pulse response temporarily deforms the field, and after injecting 

the volume of the Green’s function of the field, the front wipes this 

volume over the field. Consequently, the deformation quickly fades 

away. The injected volume persistently expands the field. 

The field equations that govern spherical pulse responses are 

 ( ) ( ) ( ), 4 ' 'r r q q      −   = −    (1.4.4) 

 ( ) ( ) ( )* , 4 ' 'r r q q      =   +   = −    (1.4.5) 

Here ( )   is a step function and ( )q  is an isotropic Dirac pulse.  

After the instant ' , the spherical pulse response is described by 
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The normalized vector n does not occur in the solutions of the wave 

equation (1.4.4). The spherical pulse must be recurrently regenerated 

to obtain a persistent deformation. 

The equations (1.4.4) and (1.4.5) also govern one-dimensional pulse 

responses that behave as one-dimensional shock fronts.  

 ( )( )' 'f q q c n  = −  −   (1.4.7) 

One-dimensional shock fronts do not deform the embedding field. 

During travel, the shape of the front f  does not alter. For the one-

dimensional shock front also the amplitude does not change. Shock 

fronts only occur in an odd number of participating dimensions. 

1.5 Pulse location density distribution 

It is false to treat a pulse location density distribution as a set of 

point-like masses as is done in formulas (1.1.1) and (1.1.2). Instead, 

the gravitational potential follows from the convolution of the 

location density distribution and the Green’s function. This 
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calculation is still not correct, because the exact result depends on 

the fact that the deformation that is due to a pulse response quickly 

fades away and the result also depends on the density of the 

distribution. If these effects can be ignored, then the resulting 

gravitational potential of a Gaussian density distribution would be 

given by 

 
( )

( )
ERF r

r GM
r

   (1.5.1) 

Here ( )ERF r  is the error function. 

Far from the center of this distribution, the shape of the gravitational 

potential (blue line) looks again like the shape of the Green’s function 

(red line) of the embedding field. 

 

Due to the convolution, and the coherence of the location density 

distribution, the blue curve does not show any sign of the singularity 

that is contained in the red curve. 

In physical reality, no point-like static mass object exists. The most 

important lesson of this investigation is that far from the 

gravitational center of the distribution the deformation of the field is 

characterized by the gravitation potential   

 ( )
GM

r
r

   (1.5.2) 
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1.6 Inertia 

The condition that for each type of massive object, the gravitational 

potential is a static function and the condition that in free space, the 

massive object moves uniformly, establish that inertia rules the 

dynamics of the situation. These conditions define an artificial 

quaternionic field that does not change. The real part of the artificial 

field is represented by the gravitational potential, and the uniform 

speed of the massive object represents the imaginary (vector) part of 

the field. 

The change of the quaternionic field can be divided into five separate 

changes that partly can compensate each other.  

The first order change of a field contains five terms. Mathematically, 

the statement that in first approximation nothing in the field 

changes indicates that locally, the first-order partial differential   

will be equal to zero. 

 , 0r r r r      = = −  + +  =  (1.6.1) 

Thus 

 , 0r r r  = −  =  (1.6.2) 

 0r r   = +  =  (1.6.3) 

These formulas can be interpreted independently. For example, the 

variation in time of r  must equal the divergence of  . The terms 

that are still eligible for change must together be equal to zero. For 

our purpose, the curl of the vector field   is expected to be zero. The 

resulting terms are 

 0r r  + =  (1.6.4) 

In the following text plays  the role of the vector field and r plays 

the role of the scalar gravitational potential of the considered object. 

At a large distance r , we approximate this potential by using formula 
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The new artificial field ,
GM

v
r


 

=  
 

considers a uniformly moving 

mass as a normal situation. It is a combination of the scalar potential 
GM

r
 and the uniform speed v .  

If this object accelerates, then the new field ,
GM

v
r

 
 
 

 tries to 

counteract the change of the field v  by compensating this with an 

equivalent change of the real part 
GM

r
 of the new field. According to 

the equation (1.6.4), this equivalent change is the gradient of the real 

part of the field. 
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 (1.6.6) 

This generated vector field acts on masses that appear in its realm. 

Thus, if two uniformly moving masses 1M  and 2M  exist in each 

other’s neighborhood, then any disturbance of the situation will 

cause the gravitational force 

 ( )
( )1 2 1 2

1 2 1 3

1 2

GM M r r
F r r M a

r r

−
− = =

−
 (1.6.7) 

The disturbance by the ongoing expansion of the embedding field 

suffices to put the gravitational force into action. The description also 

holds when the field  describes a conglomerate of platforms and M

represents the mass of the conglomerate. 

The artificial field  represents the habits of the underlying model that 

ensures the constancy of the gravitational potential and the uniform 

floating of the considered massive objects in free space. 
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Inertia ensures that the third-order differential (the third-order 

change) of the deformed field is minimized. It does that by varying the 

speed of the platforms on which the massive objects reside. 

1.7 Gravitational potential 

A massive object at a large distance acts as a point-like mass. Far 

from the center of mass, the gravitational potential of a group of 

massive particles with combined mass M is 

 ( )
GM

r
r

   (1.7.1) 

The formula does not indicate that the gravitational potential can 

cause acceleration for a uniformly moving massive object. However, 

the gravitational potential is the gravitational potential energy per 

unit mass. The relation to Newton’s law is shown by the following. 

The potential   of a unit mass mat a distance r from a point-mass of 

mass M can be defined as the work W that needs to be done by an 

external agent to bring the unit mass in from infinity to that point. 
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1 1
( ) , ,

r r
W GmM r GM

r F dr dr
m m m rr


 

 = = = 
 

 (1.7.2) 

1.8 Elementary particles 

For elementary particles, a private stochastic process generates the 

hop landing locations of the ongoing hopping path that recurrently 

forms the same hop landing location density distribution. The 

characteristic function of the stochastic process ensures that the 

same location density distribution is generated. This does not mean 

that the same hop landing location swarm is generated! The squared 

modulus of the wavefunction of the elementary particle equals the 

generated location density distribution. This explanation means that 

all elementary particles and all conglomerates of elementary particles 

are recurrently regenerated. 
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2 Mass 

2.1 Mass as a deformation strength characteristic 

The fact that far from a massive object, the gravitational potential 

always takes the shape of the Green’s function, gives the property 

mass an extra significance. The amplitude at a distance r can 

characterize the strength of the deformation that the massive object 

causes at this distance. Thus, if a compact object is inserted into a 

continuum, then the deformation by this object is characterized by 

the amplitude of the gravitational potential ( )
GM

g r
r

  at a significant 

distance r . Thus. this amplitude determines the mass M  of the 

object. It does not matter what the object is.  

2.2 Black hole 

The object can be an encapsulated bubble that is generated by a non-

continuous region that is encapsulated by a minimal surface. The 

surface is also a continuum. Inside the region, field excitations cannot 

exist. So, field excitations also cannot penetrate or leave the region. 

The phenomenon can be quite large and is known as a black hole. 

In its simplest form, the region has the shape of a sphere. The black 

hole produces so much deformation and corresponding gravitational 

potential that one-dimensional shock fronts lose their energy against 

the gravitational potential energy before these energy packages 

reach the region. Photons are strings of equidistant one-dimensional 

shock fronts that obey the Einstein-Planck relation E h= . Thus, also, 

these objects cannot enter or leave a black hole.  

If we use the energy-mass equivalence for the energy packages inside 

the photon, then the energy 2E mc= is spent when this energy equals 

the gravitational potential energy 

 2 GMm
mc

r
=  (2.2.1) 

Thus, the energy of the energy packages is used up at radius bhr   
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2bh

GM
r

c
  (2.2.2) 

This does not agree with the Schwarzschild radius sr  

 
2

2
s

GM
r

c
=  (2.2.3) 

The encapsulating surface enables new physics because pulse 

responses behave differently in different numbers of participating 

dimensions. The direct surround of the region will attract many 

elementary particles that will cling with their geometric center to the 

encapsulating surface. This will introduce special conditions and 

corresponding phenomena. In the base model, elementary particles 

are represented by separate Hilbert spaces and the embedding field 

is represented by an eigenspace of an operator in a non-separable 

Hilbert space. The discrepant black hole region may correspond to a 

subspace of the underlying vector space that does not own a private 

version of a number system to sequence the members of that 

subspace. Therefore, the black hole region does not show a specific 

symmetry other than what follows from the minimal encapsulating 

surface condition. 

2.2.1 Changing black hole mass 

It is not clear what mechanism increases the mass of the black hole. 

Part of the platform of the elementary particles that cling together at 

the border of the black hole hovers over the black hole region. The 

stochastic process that generates the landing locations of the 

hopping path of the elementary particles also produces these 

locations inside the black hole region. There these landings cannot 

generate pulse responses. However, it can add members to the 

discrete set that locates inside the black hole region. Landing 

locations outside the black hole region can still produce shock fronts, 

but these shock fronts cannot enter the black hole region. Like the 

one-dimensional shock fronts, these fronts are stopped before they 
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reach the border. What happens at the border is unclear. The chance 

to land at the border is nihil.  

2.3 Mass versus volume 

The pulses that generate the footprint of elementary particles 

temporarily deform the embedding field and permanently extend the 

volume of that field. The pulse causes an increment of the mass of 

the elementary particle. However, the corresponding deformation 

quickly fades away and must be recreated to ensure persistent mass. 

The volume addition is persistent. Thus, here, a temporary increment 

of mass corresponds to a persistent increment of the volume of the 

embedding field. An increment of the mass of the black hole 

corresponds with an increment of the radius of the black hole. The 

corresponding increment of the volume of the black hole region is 

much larger than the increase of the volume of the embedding field 

in the case of the elementary particle. Increasing the volume of the 

black hole causes an equivalent increase in the volume of the field 

that embeds the black hole. The mass that is added to the black hole 

does not quickly fade away. 

2.4 Dark matter 

The effect of the spherical shock fronts is so tiny that these field 

excitations cannot be perceived in isolation. For that reason, these 

phenomena are perfect candidates for what is called dark matter. In 

the universe, the isolated spherical pulse responses appear as a halo 

around the visible matter. There they produce the gravitational 

lensing effects. They add to the mass of the galaxies. 

3 Charges 

3.1 Symmetry-related charges 

Symmetry-related charges only appear at the geometric center of the 

private parameter space of the separable Hilbert space that acts as 

the floating platform for an elementary particle. These charges 

represent sources or sinks for the corresponding symmetry-related 
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field. Since these phenomena disturb the corresponding symmetry-

related field in a static way that can be described by the Green’s 

function of the field, the same trick that was used to explain inertia 

can be used here to explain the attraction or the repel of two 

symmetry-related charges 
1Q  and 

2Q . 
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 (3.1.1) 
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3.2 Color confinement  

Some elementary particle types do not possess an isotropic 

symmetry. Mainstream physics indicates this fact with a 

corresponding color charge. Spherical pulse responses require an 

isotropic pulse. Thus, colored elementary particles cannot generate a 

gravitational potential. They must first cling together into colorless 

conglomerates before they can manifest as massive objects. Mesons 

and baryons are the colorless conglomerates that become noticeable 

as particles that attract other massive particles. 

4 Gravitational waves 

The term gravitational wave is a misnomer. In fact, the phenomenon 

that is indicated as a gravitational wave is a superposition of a huge 

number of spherical shock fronts. This superposition results in a 

broad front that like the separate spherical shock fronts travels with 

light speed. The source of this phenomenon can be traced back by 

reversing the spherical shock fronts at each point where the 

combined front passes. This means that the passage of the combined 

front tells the story of the events that happened at the source of the 

combined front. 
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If the chirp that was measured by LIGO and Virgo lasted only a few 

seconds, then this means that the whole combined event at the 

source only lasted that small period. 

If that combined event showed some periodicity, then that 

periodicity can be traced in the combined front, but otherwise, the 

combined front is not a finite superposition of waves. 

5 The universe 

The universe is a dynamic field that acts as our living space, and that 

via its dynamics reports the story of the objects that reside in this 

field. Observers perceive via this field. The field is represented by a 

normal operator in a non-separable quaternionic Hilbert space that 

acts as a background platform in a mathematical model of physical 

reality. The field can be represented by a quaternionic function that 

applies a quaternionic parameter space. 

5.1 Before the birth of the universe 

Before the birth of the universe, the eigenspaces of the operators 

that represent the footprint of an elementary particle in the private 

separable quaternionic Hilbert space of that particle were filled with 

the complete life story of the particle by defining the hop landing 

locations of the hopping path as a combination of time-stamps and 

landing locations. This is done in a special way, such that the hopping 

path recurrently generates a coherent hop landing location swarm 

that can be described by a hop landing location density distribution, 

which equals the squared modulus of the wavefunction of that 

particle and equals the Fourier transform of the characteristic 

function of the stochastic process that generates these locations. 

This comes down to the fact that the stochastic process can be 

considered as a spatial Poisson point process that can be interpreted 

as the combination of a genuine Poisson process and a binomial 

process. The binomial process is defined by a spatial point spread 

function. Consequently, the combination of separate Hilbert spaces 
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that act as floating platforms for the elementary particles behaves as 

a read-only repository for the dynamic geometric data of all 

elementary particles.  

This configuration cares that the gravitational potential of each type 

of elementary particle always has the same shape, and consequently 

that particle type always owns the same (rest) mass. 

The way that elementary particles get their mass implies that all 

elementary particles and all their conglomerates must be recurrently 

regenerated at a high regeneration rate. Thus, the mass of 

elementary particles is not conserved. Instead, the recurrent 

regeneration establishes that for each elementary particle type the 

same mass results. The private stochastic processes are responsible 

for this fact. 

5.2 Birth of the universe 

At the birth of the universe, this field was flat, and its spatial part 

corresponded to the spatial part of the parameter space. At that 

instant, all time-stamps in the parameter space were equal to zero. 

At that instant, the stochastic processes that generate the hop 

landing locations of elementary particles had not done yet any work. 

Still, the separable quaternionic Hilbert spaces that act as floating 

platforms for the elementary particle were already floating around. 

They were already carrying the corresponding symmetry-related 

charges.The story of the universe can be interpreted as an ongoing 

embedding of the contents of the eigenspaces of the footprint 

operators of the elementary particles into the field that represents 

the universe. This embedding drives the dynamics of the underlying 

model. 

So, directly after the first completed generation cycle of the 

elementary particles, the universe was sparsely covered by a huge set 

of footprints of elementary particles that were located widespread 

over the spatial part of the background parameter space. All these 
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footprints own a characteristic deformation that defines the mass of 

the corresponding elementary particle. All the floating platforms may 

contain at their geometric center a source or a sink that represents 

the electric charge (and the color charge) of the corresponding 

elementary particle. Thus, after this first cycle, the universe was 

already filled with a variation of massive objects that may own an 

electric charge.  Only after this phase, the generation of 

conglomerates can start. So, after a while, atoms and molecules can 

develop. The charges and masses regulate and stimulate this 

development. 

This story deviates significantly from the Big Bang story. 

6 The Higgs 

The Higgs particle and the corresponding Higgs field were introduced 

by physicists because QFT, QED, and QCD could not explain why 

elementary particles own mass. The Hilbert Book Model applies the 

spherical pulse responses for this purpose. Thus the HBM does not 

need the Higgs. The spherical shock front is a field excitation and 

does not require a special field. No experiment has yet verified that 

the Higgs field adds mass to other particles. So far, the particle 

detected by the LHC is a normal conglomerate of elementary 

particles. 
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