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Abstract. The basic motive of the five-dimensional Kaluza–Klein theory is the unification of gravity 

and electromagnetism. A feature of these theories was the relation between the electromagnetic 
coupling e2, and gravitational coupling GN and the radius of the fifth dimension Rc. The radius of the 

fifth dimension Rc is thus fixed by the elementary electric charge. From the known value of the 

elementary charge, we find that Rc is of the order of the Planck length. Based on The five-dimensional 

Kaluza–Klein theory, we show that if the observed harmonic pattern of the laboratory-measured values 

of GN is due to some environmental or theoretical errors, these errors must also affect the elementary 

electric charge e. We calculate the values of fundamental electric charge e predicted by 3+1 and 4+1 

dimensional space-time model respectively. We find that in the case of 4+1 the fundamental electric 

charge e values are oscillated with the 5.9 year LOD oscillation cycle, while in the case of 3+1 space-

time dimensions the fundamental electric charge e is constant and perfect fitted to the straight line. 

Furthermore, we propose that the number of space-time dimensions can be reveal by the 5,9years 

repeated Millikan’s oil drop experiments. 

 
PACS numbers: 04.60.-m, 14.80.-j, 04.80.-y  
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1. Introduction 

Newton's gravitational constant, G, has been measured about a dozen times over the last 40 

years. Recently, John D. Anderson and coauthors [1] found that the measured G values 

oscillate over time like a sine wave with a period of 5.9 years. They propose that this 

oscillation of measured G values does not register variation of G itself, but rather the effect of 

unknown factors on the measurements [46]. C.S.Unnikrishnan [47] provides a possible 

explanation to the 5.9-year period of G values oscillation by the gravitational link between the 
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Earth and Jupiter: there is a 5.9 year periodicity in the length of the Earth’s and an 11.86 year 

periodicity in Jupiter’s around the Sun. 

Klein (2015[2]) suggests that the observed discrepancies between G values determined in 

different experiments may be associated with a differential interpretation of Modified 

Newtonian Dynamics (MOND) theory applied to the galaxy rotation curves. Recent 

quantitative analysis (Lorenzo Iorio, 2015[3]) rules out the possibility that the harmonic 

pattern observed in laboratory-measured values of GN is due to some long-range modification 

of the currently accepted laws of gravitational interaction. This analytical approach may guide 

future investigations of the systematic uncertainties that plague measurements of GN. 

Based on Symbolic Gauge Theory (SGT), a formalism applied to General Relativity (GR) by 

R. Mignani, E. Pessa and G. Resconi [4,5] and further developed by I. Licata and G. Resconi, 

M.E. Rodrigues and E.Koorambas [8,9,10], the E. Koormabas and G. Resconi recently 

proposed a Non-Conservative Theory of Gravity (NCTG) which can explain the observed 

variations of G at a 5.9-year scale [9]. 

The strength of the gravitational force depends on the scale at which the gravitational force is 

measured by Cavendish-type experiments where two masses (one of which is a test mass) are 

precisely known, or by (equivalent in principle) gravitational scattering experiments [11]. At 

laboratory scales, the strength of gravity is characterized by the reduced Planck mass Mpl = 

2.435 × 1018 GeV, which determines Newton’s constant GN = Mpl
−2. Conventionally, the 

Planck scale MPl is interpreted as the fundamental scale at which quantum gravitational 

effects become important in nature. Like all other interactions in nature, nevertheless, the 

effective strength of gravity is affected by quantum corrections. This effect depends on the 

characteristic energy of the process probing gravitational interactions (see [12,13] for reviews 

of an effective theory of gravity). Potential problems of running gravitational couplings by 

focusing only on physically observable quantities (e.g. amplitudes, cross sections) are 

discussed in [14,15]. New approaches to the physics of particles with masses greater than 

1TeV could offer insights to the problem of the variation of measured GN values. In such 

models there is no hierarchy problem [16], whereas quantum gravity can be assessed through 

experiments at TeV energy levels. That this can be the case in extra-dimensional models is 

already established [17,18]. Is such modification of gravity also possible in four dimensions 

[19,39]. Current data from the Large Hadron Collider (LHC) experiments at the European 

Laboratory for Particle Physics (CERN) do not confirm that gravity becomes stronger around 

1 TeV [40-44]. 

 

Recently, E.Koorambas suggested that if the observed harmonic pattern of the laboratory-
measured values of G is due to some environmental or theoretical errors, these errors must 

also affect the true value of momentum k transferred by the graviton in scattering experiments 

at the LHC [45]. Furthermore, environmental or theoretical errors could shift the scale of 
Quantum gravity at 100TeV. Quantum gravity can be investigated by a 100 TeV Proton-

Proton Collider as long as environmental or theoretical errors are present. This proposition 

may explain the current null results for black hole production at the LHC [45]. 

 
Although our world appears to consist of 3+1 dimensions (three dimensions of space; and 

time), it is possible that other dimensions exist, and that these appear at higher energy scales. 

From the point of view of physics, the concept of extra dimensions received great attention 

after Kaluza’s proposition, in 1921[48], to unify electromagnetism with gravity by identifying 

the extra components of the metric tensor with the usual gauge fields.   

No experimental or observational signs of extra dimensions have been reported. Many 

theoretical techniques for detecting Kaluza–Klein resonances by means of mass couplings of 
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such resonances with the top quark have been proposed. However, until the LHC reaches full 

operational power, observation of such resonances is unlikely. An analysis of results from the 

LHC in December 2010 severely constrains theories with large extra dimensions. [49] 

The observation of a Higgs-like boson at the LHC establishes a new empirical test that can be 

applied to the search for Kaluza–Klein resonances and supersymmetric particles. The 

loop Feynman diagrams for the Higgs interactions allow any particle with electric charge and 

mass to run in such a loop. Standard Model particles other than the top quark and W boson do 

not make large contributions to the cross-section observed in the H → γγ decay. However, if 

there are new particles beyond the Standard Model, they could potentially change the ratio of 

the predicted Standard Model H → γγ cross-section to the experimentally observed cross-

section. A measurement of any dramatic change to the H → γγ cross-section predicted by the 

Standard Model is, therefore, crucial in probing the physics beyond it. 

Another, more recent, paper, from July 2018 [50], bodes some hope for this theory: in this, 

the authors dispute that gravity is leaking into higher dimensions as in brane theory. However, 

the paper does demonstrate that electromagnetism and gravity share the same number of 

dimensions. This lends support to Kaluza–Klein theory, regardless of whether the number of 

dimensions is 3+1 or in fact 4+1. The number of dimensions is subject to further debate. 

 

The main aim of the five-dimensional Kaluza–Klein theory is the unification of gravity and 
electromagnetism. A feature of unification theories was the relation between the 

electromagnetic coupling e2 and gravitational coupling GN, and the radius of the fifth 

dimension Rc. The radius of the fifth dimension Rc is thus fixed by the elementary electric 
charge. From the known value of the elementary charge, we find that Rc is of the order of the 

Planck length. Based on the five-dimensional Kaluza–Klein theory[48,51,52], we show that if 

the observed harmonic pattern of the laboratory-measured values of GN is due to some 

environmental or theoretical errors, these errors must also affect the elementary electric 
charge e. We then calculate the values of fundamental electric charge e predicted by 3+1 and 

4+1 dimensional space-time models. We find that, in the case of 4+1 space-time dimensions, 

the fundamental electric charge e values oscillate with the 5.9 year LOD oscillation cycle. In 
In the case of 3+1 space-time dimensions, however, the fundamental electric charge e is 

constant. Furthermore, we propose that the number of space-time dimensions can be revealed 

by the 5,9 years repeated Millikan’s oil drop experiments. 

 

2. Extra dimensions hypothesis 

The initial theory has five-dimensional general coordinate invariance. However, it is assumed 

that one of the spatial dimensions compactifies, so as to have the geometry of a circle S1 of 

very small radius [48,51,52]. Then, there is a residual four-dimensional general coordinate 

invariance, and, an Abelian gauge invariance associated with transformations of the 

coordinate of the compact manifold, S1[48,51,52]. Put another way, the original five-

dimensional general coordinate invariance is breaks spontaneously in the ground state. In this 

way, we arrive at an ordinary theory of gravity in four dimensions and a theory of an Abelian 

gauge field A . The parameters of the two theories are connected because both theories derive 

from the same initial five-dimensional Einstein gravity theory [48,51,52]. 

We adopt the coordinates xm, m = 1, 2,5 with 

5( , )mx x x   ,        (1)  

where 
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, 0,1,2,3x x             (2) 

being coordinates for ordinary four-dimensional space-time, and 

5x             (3) 

being an angle to parametrize the compact dimension with the geometry of a circle S1.   

The line element is given by 

2 m n

mnds g dx dx  ,        (4) 

where m,n=1,2,..,5,and mng is the five-dimensional metric.  

The five-dimensional Einstein equations yields the following results: 

a) For g g  , the four -dimensional Einstein equations for gravity; 

b) For 5g A  , the Maxwell equations for electromagnetism; 

c) For 55 ( )g x , the Klein-Gordon equation. 

A feature of these theories is the relation between electromagnetic coupling, e2, gravitational 

coupling, GN and 
5p , the momentum of the particle in the fifth dimension: 

2 5 216 ( )Ne G p .          (5) 

We can use very simple arguments from quantum theory to show that the electric charge is 

quantized, i.e. that q is a multiple of some elementary charge e. By applying the old Bohr–

Sommerfeld quantization rule to the periodic motion, 5 02 ( ) 2r p n  , we deduce that, 

5

0( ) ( / )cp n R , which implies that  

2 2 2 2 2

2

16 N
n

c

G
q n e n

R


   .       (6) 

The radius of the fifth dimension Rc is thus fixed by the elementary electric charge. From the 

known value of the elementary charge, we find that Rc is of the order of the Planck length: 

2 1

4 137

e

c



  , 

3222
3.7 10

8

N
c

G
R cm

c





       (7) 

If we could calculate the radius Rc from some other considerations, this relation might be used 

to calculate the electric charge. The idea of calculating the elementary electric charge has 

attracted physicists’ attention for a long time, but no satisfactory solution has yet been 

proposed. 

 

Many years ago [53,54], it was pointed out that the field equations of N = 1 supergravity in d 

= 11 dimensions admit vacuum solutions corresponding to AdS x S7, and that, since S7 admits 

8-Killing spinors, and since its isometry group is SO(8), this gives rise (via a Kaluza—Klein 

mechanism) to an effective d = 4 theory with N = 8 supersymmetry and local SO(8) 

invariance. There is now a considerable literature on S7 compactification of d = 11 

supergravity [53-59]. An up to date account, paying particular attention to the Brout—
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Englert--Higgs—Kibble spontaneous symmetry breaking interpretation of the different S7 

solutions, [57]. 

In the case of S7 compactification of d = 11 supergravity, Rc = m-1 is just the S7 radius. 

However, for more complicated geometries one must be more precise about the meaning of 

Rc. Weinberg [58] has shown how this is done for an arbitrary geometry with Killing vectors 

in terms of appropriate root-mean-square circumferences. The precise constants of 

proportionality in (5) depend crucially on the field content of the higher-dimensional theory. 

Although at the classical level the “size” of S7 is undetermined, Candelas and Weinberg [59] 

have pointed out that in a certain class of theories admitting a compactification due to one-

loop radiative corrections one may calculate R, and hence, in a realistic theory, the fine 

structure constant
2 / 4e   . 

More recently, it has been realized that the hierarchy problem could be addressed, and 

possibly solved, by utilising the geometry of space-time. In many extra-dimensional models, 

the (3 + 1)-dimensional space time we experience is a structure called a brane, which is 

embedded in a (3 + k + 1) space time called the bulk. The hierarchy problem can then be 

addressed by postulating that all extra dimensions are compactified on circles (or other 

topology) of some size, R (as has been done in the Arkani Hamed, Dimopoulos and Dvali 

(ADD) scenario [60]), thus lowering the fundamental Planck scale to an energy near the 

electroweak scale. Alternatively, this could be accomplished by introducing extra dimensions 

with large curvature (warped extra dimensions), as has been suggested by Randall and 

Sundrum [61]. The extra dimensional scenario which we will focus on in the remainder of 

this review (universal extra dimensions) does not share the features of the ADD or RS 

scenarios. Instead, it introduces flat extra dimensions which are much smaller than those in 

the ADD framework.  

In addition to the hierarchy problem, motivation for the study of theories with extra 

dimensions comes from string theory and M-theory, which today appear to be the best 

candidates for a consistent theory of quantum gravity and a unified description of all 

interactions. It appears that such theories may require the presence of six or seven extra-

dimensions. A general feature of extra-dimensional theories is that upon compactification of 

the extra dimensions, all of the fields propagating in the bulk have their momentum quantized 

in units of p2 ∼ 1/R2. The result is that for each bulk field, a set of Fourier expanded modes, 

called Kaluza–Klein (KK) states, appears. From our point of view in the four-dimensional 

world, these KK states appear as a series (called a tower) of states with masses mn = n/R, 

where n labels the mode number. Each of these new states contains the same quantum 

numbers, such as charge, color, etc. In many scenarios, the Standard Model fields are 

assumed to be confined on the brane, with only gravity allowed to propagate in the bulk. 

Nevertheless, if the extra-dimensions are small, it would be possible for all fields to freely 

propagate in the extra dimensions. Such is the case in models with universal extra dimensions 

(UED).  Scenarios in which all fields are allowed to propagate in the bulk are called universal 

extra dimensions UED [62]. Following Ref. [63].  In the case of one extra dimension, the 

constraint on the compactification scale in UED models from precision electroweak 

measurements is as low as R−1=300 GeV [62]. Recently, it was shown that this bound can be 

weakened to R−1=280 GeV if one allows a Higgs mass as heavy as mH=800 GeV [64]. This is 

to be contrasted with another class of models where Standard Model bosons propagate in 

extra dimensions while fermions are localized in 4 dimensions. In such cases, the constraint 

on the compactification scale is much stronger, requiring R−1= 1 TeV [65]. 

The prospect of UED models providing a viable dark matter candidate is indeed what 

motivates us in our discussion here. The existence of a viable dark matter candidate can be 
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seen as a consequence of the conservation of momentum in higher dimensional space. 

Momentum conservation in the compactified dimensions leads to the conservation of KK 

number. However, this does not stabilise the lightest KK state. To generate chiral fermions at 

the zero mode, the extra dimensions must be modeled out by an orbifold, such as S/Z2 for one 

extra dimension or T 2/Z2 for two. This orbifolding results in the violating of KK number, but 

can leave a remnant of this symmetry called KK-parity (assuming that the boundary terms 

match). All odd-level KK particles are charged under this symmetry, thus ensuring that the 

lightest (first level) KK state is stable. In this way, the lightest Kaluza–Klein particle (LKP) is 

stabilized in a way quite analogous to the LSP in R-parity conserving supersymmetry. In the 

next section, we will discuss some of the characteristics of the LKP in models of UED. 

3. The sinusoidal variations of Newton’s coupling constant 

Measurements of the gravitational constant (G) are notoriously difficult due to the 

gravitational force being by far the weakest of the four known forces. Recent advances, 

making use of electronically controlled torsion strip balances at the Bureau International des 

Poids et Mesures (BIPM) in the last 15 years, have improved the accuracy of G 

measurements (see [20] for details on experimental methods). These recent measurements 

have also revealed a peculiar type of oscillatory variation, seemingly following a 5.9 years 

cycle akin to the so called Length-of-Day (LOD) [1].  

Although we recognize that the correlation between G measurements and the 5.9 year LOD 

cycle could be fortuitous, we think that this is unlikely, given the striking match between 

these two (Fig. 1). 

 
 

 

Fig. 1: Comparison of the CODATA set of G measurements) with a fitted sine wave (solid 

curve) and the 5.9 year oscillation in LOD daily measurements (dashed curve), scaled in 
amplitude to match the fitted G sine wave. Acronyms for the measurements follow the 

CODATA convention. Also included are a relatively recent BIPM result from Quinn et al. 

[21] and measurement LENS-14 from the MAGIA collaboration [22] that uses a new 
technique of laser-cooled atoms and quantum interferometry, rather than the macroscopic 

masses of all the other experiments. The green filled circle represents the weighted mean of 

the included measurements, along with its one-sigma error bar, determined by minimizing the 

L1 norm for all 13 points and taking into account the periodic variation. 
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The observed correlation cannot be due to centrifugal force acting on the experimental 

apparatus, since changes in LOD are too small by a factor of about 105 to explain changes in 

G. This is because the Earth’s angular velocity E  is by definition 

 

         (8) 

where 0 is an adopted sidereal frequency equal to 72921151.467064 prad s-1 and the LOD is 

in ms d−1 (www.iers.org). The total centrifugal acceleration is given by: 

 

        (9) 

 

where A is the amplitude of the 5.9 year sinusoidal LOD variation (= 0.000150/86400), and rs 

is the distance of the apparatus from the Earth’s spin axis. The maximum percentage variation 
of the LOD term is 3.47 × 10−9 of the steady-state acceleration, while dG/G is 2.4×10−4. Even 

the full effect of the acceleration with no experimental compensation changes G by only 10−5 

of the amplitude shown in Fig. 1. 

 

Following Anderson et al. 2015a [1], the shift from the true value of renormalized 

gravitational constant is given by: 

 

    (10) 

where 

,           (11) 

and 

 (Anderson et al. 2015a) [1].  (12) 

Here, the variation term due to environmental or theoretical errors in equation (10) 

is given by 

(0, ) ( ) ,

( ) 2 sin( )

error error
ren ren

error
G G

G t G f t

f t A a t







 
        (13) 

where is the renormalized gravitational constant and ( )errorf t  is the environmental or 

theoretical error.  

 

4. Gravitational action in the presence of environmental or theoretical errors 

A scalar-tensor theory of gravity (STG), first proposed by Brans and Dicke [66], was inspired 

by a suggestion of Dirac’s that the gravitational constant GN varies with time [67]. In the 

Scalar-tensor theories of gravity, the gravitational action can be written: 
 

1
( ) ( )( ) ( ) [ , ]

16 2

n

N

R
S d x g f g V F g

G


      



 
        

 
  [72]  (14) 

 0 1 ,E LOD  

2

0 0

2
1 2 sin ( ) ,c sa r A t t

P




  
    

  

( ) ( ) sin( )

2 sin( ),

Error
ren ren ren ren G G
sh

ren ren G G

iftG t G G t G B a t

G G A a t

 



    

  

2G ren GB G A

4  80.10 9 , 2 /  5.89, 9 , .G GG Gdeg a P P yrA     

( )Error
renG t

renG
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What characterizes different STG models is the specific choice of f(φ), V (φ) and F [φ, gμv], a 
local scalar function of φ, gμv and their derivatives. The coefficient of the Ricci scalar R in 

conventional General Relativity (GR) is proportional to the inverse of Newton’s constant GN 

[66-72]. In scalar-tensor theories, then, where this coefficient is replaced by some function of 

a field which can vary throughout space-time, the “strength” of gravity (as measured by the 
local value of Newton’s constant GN) will be different from place to place and time to time 

[66-72].  

 
Following my previous paper [45], we propose a scalar-tensor gravity where the scalar field is 

the environmental or theoretical error ( )errorf t given by equation. (13). In this proposition, 

the variation of gravity due to environmental or theoretical errors is given by: 

 

 

00
0 0

1
( ) ( ( ) )( ( ) )

16 2

1

16 ( )

n
G error error error

N

N
n

N

R
S d x g F t g f t f t

G

R
d x g

G t N




 

 
      

 

 
   
  





 ,  (15) 

where 

2 2 2
0 0( ( ) )( ( ) ) 4 cos ( )error error GG G

f t f t a A a t     , (vanish by equation.12),  (16) 

 

and 

 

 

 2 2

1
( )

| ( ) | /1

N

error

error pl

F t
f t L cm N





, 0,1,2,3,......N     (17) 

 

In equation.17, plL is the Planck length and N are the integers. 

  

Without any loss of generality, we assume that the variation of the gravitational constant 

in the action (15), defined by the absolute value of the function 

[45] is:  
 

2
( )

2

( )
( ) | ( ) | 2 | sin( ) | ,error

N N error G N G

Pl

g t
G t G f t A G a t

M


         (18) 

where 

 
2 2( ) 2 | sin( ) |,G Gg t g A a t          (19) 

2

2
.N

Pl

g
G

M
           (20) 

 

In equation18, the variation of gravitational constant δGN is absorbed by the dimensionless 

gravitational coupling δg given by equation.19. This differs from is my previous paper [45] 

where g was considered as a constant and the variation of the gravitational constant δGN was 

inversely proportional to the variation of the square Plank mass
2

PlM . 

From action (15), we obtain the gravitational action in the presence of environmental or 

theoretical errors: 

( )( ) error

NG t 
| ( ) |errorf t
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EH GS S S  ,         (21) 

 

where 

 
16

n
EH

N

R
S d x g

G

 
   

 
 ,        (22) 

SHE is the Einstein-Hilbert action; GS  and ( )errorf t are as in equation 13.   

 

The zeros of the error function ( ( ))errorf t : ( ) Gt a t    (equation13) are calculated as 

follows: 

If 
( ) ( )

( ( )) 2 sin ( ) 0
error errori t i t

error G error G
e e

f t A t A
i

 

 



   ,   (23) 

then  

( ) ( )error errori t i t
e e
 

  or 
2 ( ) 21errori t k ie e
   , 0, 1, 2,...k        (24) 

Hence 2 ( ) 2errori t k i   and ( ) 0, , 2 ,...zeros
error t k       , i.e. the latter are all zeros and 

real.   

Now, we calculate the action.15 at zeros ( ) ( )zeros
errort t  for time scale t<<PG=5,8yr, when 

N  , as follows: 

 

   

( ) ( )

( )

1
lim lim

16 ( )

1 1
lim lim 0

16 ( )

zero zero

zero

N
n

G
N

N N

N N
n n

NN
N

R
S d x g

G t N

d x gR d x gR
NG t N

   

 






 
 

 


  
    
    

    
         
      



 

 , (25) 

where  
 

( ) 0NG t    ,
( )

( ) ( )
zeros

error errort t   (by equations.13, 23),    (26) 

 
and 

 1
lim 0

N

N N

 
  
 
 

.         (27) 

 
Using equations.13, 17-19, and the interactions of graviton with matter in the presence of 

environmental or theoretical errors, it can be written a: 
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 int 1

16 ( )

N

G h
N

h T
G t N




 

 
   
  

,      (28) 

where h  is the graviton and T is the energy-momentum tensor. With the requirement 

that  non-renoremalizabele terms be suppressed by inverse powers of Planck mass 

(equation.20), the propose theory will become renormalize in the limits.26, 27: ( ) 0NG t  

,
2

PlM when N  . (for details see [45]) Indeed, in the presence of environmental or 

theoretical errors, we treat quantum gravity as an effective theory by taking the limit 
2

PlM  (as discussed in [45]). 

 

5. Kaluza-Klein gravity in the presence of Newton’s constant variation δGN in (4+1) 

space-time dimensions 

Following Ref. [52]. We adopt coordinates xA, A = 1, 2, 5, with respects to equations.1-3. 

After compactification, the ground-state metric is: 

 (0)

55ABg diag g  ,        (29) 

 
Where 

 

 1, 1. 1, 1     ,         (30) 

 
is the metric of Minkowski space, M4, and 

 
2

55 cg R           (31) 

 

is the metric of the compact manifold S1, where Rc is the radius of the circle. The 

identification of the Abelian gauge field ( , )B x   arises from an expansion of the metric 

about the ground state. We parametrize the metric in the form: 

 

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )
AB

g x B x B x x B x x
g x

B x x x

   



     


  

   
  

  
   (32) 

 

To extract the graviton and the Abelian gauge field, it is sufficient to replace  ( , )x   with 

its ground-state value 55g and to use the ansatz without  dependence: 

 

55 55

55 55

( , ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
AB

g x B x B x g x B x g x
g x

B x g x g x

   



  
  

 
.    (33) 

 
We write 

 

( ) ( )B x A x  ,         (34) 

 

where is a scale factor, to be chosen so that ( )A x  is a conventionally normalized gauge 

field. 
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Coordinate transformations associated with the coordinate  of the compact manifold may be 

interpreted as gauge transformations, as we proceed to show. Consider the transformation: 

 

( )x               (35) 

 

For a general coordinate transformation 

 
A B

AB A B A B

x x
g g

x x

 

  

  


 
 .        (36) 

 

For the particular transformation (35), the off-diagonal elements of the metric give 

 

A A A       .        (37) 

 
Transformation (35) of the coordinates of the compact manifold, therefore, induces an 

Abelian gauge transformation on ( )A x . This means that the compact manifold provides the 

internal symmetry space for the Abelian U (1) gauge group. Internal symmetry has now to be 

interpreted as just space-time symmetry, but associated with the extra spatial dimension. 

 
An effective action for the four-dimensional theory may be derived from the action for five-

dimensional Einstein gravity in the presence of environmental or theoretical errors. Following 

equations.15-20, we have the five-dimensional action: 
 

 5 1/2 5 1/2
1

| det | ( ) | det |
16 16 ( )

N

G g error

N N

RR
S d x g F t d x g

G G t N


  

   
          
    (38) 

 

R ; is the five-dimensional curvature scalar, ( )errorF t is given by equation.17 and NG ,

( )NG t 
are the gravitational constant for five dimensions and its variation, respectively. 

 

Substituting ansatz (33) for ABg , and integrating over the extra spatial coordinate , gives an 

effective four-dimensional action in the presence of environmental or theoretical errors for 

time scales t<<PG=5,8yr: 

 

   2
5 1/2 55

5 1/2

2 1 2 1
| det |

416 ( ) 16 ( )

| det | ,

N N

c c

G

N N

R Rg
S d x g R

G t N G t N

d x g F F 



 


  

  
    

  
 







  (39) 

 

where cR  is the radius of the compact manifold as in equation.31, R is the four-dimensional 

curvature scalar, and 
 

F A A       .         (40) 

 

Now, the variation of the four-dimensional gravitational constant δGN becomes  

 

( )
( )

2

N
N

c

G t
G t

R







   .        (41) 
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To obtain standard normalization for the gauge field, we must then choose 

 
2

2

2

55

16 ( ) ( )
( ) N

c

G t t
t

g R

 




   ,      (42) 

where 

 
2 ( ) 16 ( )Nt G t   .         (43) 

 

Then, the effective four-dimensional action in the presence of environmental for time scales   
t<<PG=5,8yr is given by 
 

  5 1/2 5 1/2
1 1

| det | | det |
16 | ( ) | 4

N

G

N

S d x g R d x g F F
G t N




 


  

     (44) 

 

 

5.1. The electron’s unit charge from the fifth dimension  
 

The natural scale of mass for these theories is the Planck mass Mpl. Massive fields in five 

dimensions will naturally result in to particles with masses on the Planck scale in four 
dimensions. Suppose, instead, that we start with a massless field in five dimensions. For a 

five-dimensional scalar field Φ(x,θ), we may make the Fourier expansion on the compact 

manifold: 

 

( , ) ( )n in

n

x x e   




   .        (45) 

 
The Klein-Gordon (KG) equation, 

 
2

2 2

1
( , ) 0,x

c

x

x
R

g  

  

 


 
  

 

     

  ,       (46) 

 

then gives the equations for the Fourier components: 

 

 2 ( ) 0n

nx M x   ,        (47) 

 

where 

 
2

2

2n

c

n
M

R
 , 0, 1, 2, 3,........n            (48) 

 

The fields Φn(x) are thus the mass eigenstates in four dimensions, and the field Φ(x) is the 

only massless one or perhaps light, after allowing for radiative corrections[52]. The other 

fields Φn(x) have masses of the order
1

cR
, which we would expect to be comparable to the 

Planck mass Mpl.  We see that all scalar particles have n ≠ 0. But, from (48), this means that 

they all have masses at the Planck scale Mpl, whereas the familiar particles have very small 
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masses at that scale.  In this way Klein explained (for the first time) the quantization of 

electric charge [51]. (Note also that charge conjugation is just parity transformation y → −y in 
the fifth dimension). Of course, if we identify the fundamental unit of charge (e = 

√216πGNMc as in equation.6) with the charge of the electron, then we are forced to take Mc to 

be very large: the Planck mass 1019 GeV, well beyond the range of any current or foreseeable 

accelerator. This answers the second question left unanswered by Kaluza: with Mc being very 
large, the radius of the circle must be very small, at the order of the Planck size (10−35 meters), 

which accords satisfactorily with our everyday experience of living in four space-time 

dimensions [73]. 
 

5.2. On the variations of electron’s unit charge in the presence of environmental or 

theoretical errors in five-dimensional space-time  

Following Ref. [52]. If we apply the coordinate transformation.35 in the presence of 

environmental or theoretical errors,  

( ) ( )t x               (49) 

  

to the ( , )x   as in equation. (58), we have: 

 ( ) exp ( ) ( ) ( )x i t x x             (50) 

Here, ( )t
, 

given by equation.42, is treated as a constant for time scales t<<PG=5,8yr.   

The Abelian gauge field transforms.37 in the manner, 

A A A       .        (51) 

 

This means that ( )x  has the variation of the unit electric charge δe due to the presence of 

environmental or theoretical errors: 

( )
( ) ( )

c

t
e t t

R


     ,        (52) 

where we have used the normalization condition.42. Thus, the variation of electric charge 

δe2(t) is quantized in units of ( ) / ct R . Using equation.43, the variation of the unit electric 

charge δe2 can be written as; 

2

2

16 ( )
( ) N

c

G t
e t

R






   .        (53) 

Inserting equations.13 to 53, and using equation.6, the variation of elementary electric charge 

can be expressed as follows: 

2 2( ) 2 | sin( ) |G Ge t A e a t   .        (54) 

By using equation. (54), we obtain the time depended unit of charge of the electron in the 
presence of environmental or theoretical errors, 

 

( ) 2 | sin( ) |G Ge t e e A a t    ,       (55) 
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where
 

 (Anderson et al. 2015a) [1], and 

e is the electron unit charge. 

 

6. Testing the number of space-time dimensions by the proposed PG=5,9yr repeated 

Millikan’s oil drop experiments 

 
The oil drop experiment was performed originally by American physicist Robert A. Millikan 

in 1909[74] to measure the charge of a single electron. The experiment  

apparatus (Figure.2) consists of an atomizer which sprays tiny oil droplets and of a short focal 

distance telescope, by means of which the droplets can be viewed. There are two plates, one 
of positive and one of negative charge, above and below the bottom chamber. A dc supply is 

attached to the plates. Some of the oil drops fall through the hole in the upper plate. The 

bottom chamber is illuminated with X-rays that cause the air to ionize. As the droplets 
traverse through the air, electrons accumulate over the droplets and negative charge is 

acquired. With the help of the dc supply a voltage is applied. The speed of droplet motion can 

be controlled by altering the voltage applied on the plates [74-78].  
 

 
 

Fig. 2. Design of the Millikan oil-drop experiment for determining the electric charge of the 

electron. 

 
By adjusting the applied voltage, a droplet can be suspended in the air. Millikan observed one 

drop after another, varying the voltage and noting the effect. After many repetitions, he 

concluded that charge could assume only certain fixed values. He repeated the experiment for 
many droplets and confirmed that the charges were all multiples of some fundamental value 

and calculated it to be 1.5924(17) ×10−19 C, within one percent of the currently accepted value 

of 1.602176487(40) ×10−19 C. He proposed that this was the charge of a single electron [74-
78]. Millikan’s paper [74], presented a complete summary of data on 58 drops studied over 60 

consecutive days. Mathematically, Millikan started with the following equation: 

 

1 2/ /v v mg Fe mg   .        (56)

   

With appropriate substitutions, the equation takes the following form: 

 
1/23/2 1/2

1 2 1(4 / 3) (9 / 2) 1/ ( ) ( ) / ...ne g v v v F          (57) 

Including the correction from Stokes’ law gives the equation: 

 2

1 2 / 9 ( ) 1 /v ga A             (58) 

Combining equations (57) and (58) gives the value of e: 

4  80.10 9 , 2 /  5.89, 9 , .G GG Gdeg a P P yrA     
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3/2(1 / ) ne A e           (59) 

where v1: speed of descent of the drop under gravity; v2 : speed of ascent of the drop in the 

electric field; mg : force of gravity; F : electric field; en : frictional charge on the drop; μ 

;coefficient of viscosity of air; s  density of the oil; d = density of air; a = radius of the drop; l 

: mean free path of a gas molecule; and A  : correction term constant. The mean value 

obtained with this method was reported to be: e =4.774 ±0.009×10-10 esu. At this stage, it is 

important to note that Millikan, based on his guiding assumptions, expected the value of en to 

be an integral multiple of e, where n = 1, 2, 3, . . . Apparently Millikan discarded values that 

did not turn out to be integral multiples [78]. Note that there is a larger gap between the 

values 2.2x10-19 C and 2.9x10-19 C than between the other points that define the first five gaps 

(increments). We cluster the first six values (e1 to e6) together by averaging that group, and 

we assign that group to integer 1 (1 unit of charge as in equation. 55). The next significant 

gap occurs between 3.7x10-19 C and 4.5x10-19 C, so we average the values between 2.9x10-19 

C and 3.7 x 10-19 C into the second cluster and assign them to integer 2 (2 units of charge) 

[78]. 

Since the electron unit charge is given by equation.75, we propose repeated Millikan’s oil 

drop experiments with the time scale of 5.9 year, equally to the LOD oscillation PG=5,899yr, 

Newtonian constant of gravitation GN. Substituting equation.55 to 59, we find the variation of 

electron fundamental charge measured by repeated Millikan’s oil drop experiments with time 

scale equally to PG=5,899yr: 

 

3/2 3/2( )(1 / ) ( | sin( ) |)(1 / )

1 2 | sin( ) | ( )

G G

n G G n

e t A e e A a t A

e A a t e t

  



    

   
    (60) 

for five dimensional space-time; 

3/2(1 / ) ne A e           (61) 

for four dimensional space-time, 

with
 

 (Anderson et al. 2015a) [1], and e 

being of the currently accepted value of 1.602176487(40) ×10−19 C of electron charge [78]. 

The comparison between the values of fundamental electric charge e predicted by four 

dimensional space-time equation. (61), and the set of e(t) values predicted by the five 

dimensional space-time model (60) with the 5.9 year LOD oscillation cycle is calculated in 

Table.1 and shown in Fig.3. 

 

t  (years) e(Coulomb) predicted by 

4+1 dimensions  Eq.(60) 

e(Coulomb) predicted by 

3+1 dimensions  Eq.(61) 

0 1.62469×10-19 1.602176487(40)×10-19 

1 1.61997×10-19 1.602176487(40)×10-19 

2 1.61633×10-19 1.602176487(40)×10-19 

3 1.62477×10-19 

 

1.602176487(40)×10-19 

4  80.10 9 , 2 /  5.89, 9 , .G GG Gdeg a P P yrA     
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4 1.61933×10-19 1.602176487(40)×10-19 

5 1.61719×10-19 1.602176487(40)×10-19 

6 1.62482×10-19 

 

1.602176487(40)×10-19 

 

 

Table.1. The first column is the time decimal in years. The second column is the fundamental 

electric charge e(t) predicted by the five dimensional space-time model (60). The third 

column is the electric charge e predicted by the four dimensional space-time equation. (61). 

 

 

Fig. 3 Comparison between the values of fundamental electric charge e predicted by four 

dimensional space-time, and the set of e(t) values predicted by the five dimensional space-

time model with the 5.9 year LOD oscillation cycle.  The red curve shows the values of e 

predicted by the four dimensional space-time equation. (61); the black curve is the theoretical 

variation of e(t) predicted by five-dimensional model (60).  

 

7. Discussion  

In 2014, the UK’s Royal society hosted a conference titled “The Newtonian Constant of 

Gravitation, a constant too difficult to measure?” [79], which was intended to resolve the 

problem of large discrepancy between recent GN values. [80]  

Another reasonable explanation for the discrepancy of GN measurements is that there is still 

some unknown physical cause. [80,45,46] In 2015, Anderson et al. claimed that the recent 

values of GN varied sinusoidally with a period of about 5.9 years by analyzing the 

measurement results [1], and they proposed that one possible reason for this variation was the 

activity of the Earth’s core. Then Schlamminger et al. corrected the acquisition time of these 

measurement results but did not find any remarkable correlation [46]. In 2017, Parra proposed 

that the temporal variation of GN was potentially caused by the sun’s dragging effect. [81] 

These hypotheses can be neither confirmed nor refuted at present, since the precision of GN 
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measurement is low. GN measurements of higher precision, obtained by more methods, are, 

therefore, required.  

 

Using the normalization condition.42, we find that the variation of electric charge δe2(t) is 

quantized in units of 16 ( ) /N cG t R and is proportional  to the sinusoidally variation of dGN 

with a period of about 5.9 years (Table.1; Figure. 3). We also observe that the changes of 

electron charge due to the presence of a fifth space dimension should be about 10-2 with a 

period of about 5.9 years (as shown by the red curve in Figure 3). In the case of four space-

time dimensions, the electron charge is constant and perfectly fits a straight line (black curve 

in Fgiure 3).   We propose that the number of space-time dimensions can be revealed by the 

5,9 years repeated Millikan’s oil drop experiments. 

8. Conclusion 

The core aim of the five-dimensional Kaluza–Klein theory is the unification of gravity and 

electromagnetism. A feature of unification theories is the relation between the 

electromagnetic coupling e2, gravitational coupling GN, and the radius of the fifth dimension 
Rc. The radius of the fifth dimension Rc is thus fixed by the elementary electric charge. From 

the known value of the elementary charge, we find that Rc is of the order of the Planck length. 

Based on the five-dimensional Kaluza–Klein theory, we show that, if the observed harmonic 
pattern of the laboratory-measured values of GN is due to some environmental or theoretical 

errors, these errors must also affect the elementary electric charge e. We calculate the values 

of fundamental electric charge e predicted by 3+1 and 4+1 dimensional space-time models. 

We find that, in the case of 4+1 the fundamental electric charge, e values oscillate with the 
5.9 year LOD oscillation cycle, while in the case of 3+1 space-time dimensions the 

fundamental electric charge e is constant. We also propose that the number of space-time 

dimensions can be revealed by the 5,9years repeated Millikan’s oil drop experiments. 
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