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Abstract

This report details the pedestrian derivation of Einstein’s famous equation, E =

mc2. Through the use of elementary physical quantities of Newtonian mechanics such

as distance, force, momentum, velocity and energy, our approach resembles a ‘handling

units’ method. Further, two other proofs premising on the notion of mass and its de-

pendence on velocity are discussed. These methods prove to be simple and physically

intuitive, thus stimulating the amateur enthusiasts to a better understanding of various

complex and difficult-to-derive formulas which are otherwise understood at a sophisti-

cated academic level. Pedagogic significance of these methods is further discussed.

Introduction

It’s no secret that lecturers, instructors, and educators face tremendous difficulty in explain-

ing the difficult-to-derive formulas and concepts of modern physics, as well as their origins
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in history, to chemistry students in the college setting - especially freshmen students who

are preparing to pursue studies in chemistry, biology, and engineering. The following report

is inspired by these challenges faced by instructors and it is the hopes of the researchers in-

volved that it serves as a valuable pedagogical resource for teachers, students, and amateur

physics enthusiasts in their pursuit of knowledge.

Many instructors find themselves struggling to derive Einstein’s E = mc2 equation1

without first looking to calculus. However, calculus always tends to be an area that causes

much stress, intimidation, and apprehension among most college and pre-college students,

as well as high school students and beyond.2,3 And yet, the relevance and mysteriousness of

the origins of E = mc2 tend to keep students and enthusiasts alike in awe, forcing them to

seek its origin asking ‘how the heck this formula came up’? However, even for the freshman

chemistry student, Einstein’s equation is still notoriously difficult to derive.

Still, probably the most glorious “proof” that anyone knows of is an A-bomb. An A-

bomb is built on one principle; that mass can be transformed into energy, and the formula

that exactly predicts this conversion between energy and mass is E = mc2. What has this

celebrated formula has to do with Special Relativity? The answer is that E = mc2 is derived

directly from special relativity. But this poses another obstacle as the enthusiast amateur is

not aware of the link between E = mc2 and the special theory of relativity, and in fact, know

nothing about relativity theory and its principles except the well-known fact that ‘nothing

can exceed the speed of light’.

It is not often realized by chemistry students during their first year, that the special

theory of relativity is behind several aspects of (quantum) chemistry like electron spin for

example. The predictions of molecular properties by non-relativistic (quantum) chemistry

deviate significantly from the experimental results as the properties of various elements are

influenced by relativistic effects. These include the liquidity of Mercury,4 the color of Gold

and other chemical properties of heavy metals such as dipole moments, biological activity

and force constants. It is worth mentioning that relativistic treatments and corrections
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are consistently implemented in standard quantum chemical software packages, without the

knowledge of advanced students who use them.5 For a student to understand the importance

of relativistic effects in chemistry, the yellow color of Gold offers a good example. According

to special relativity, an object with a velocity close to the speed of light exhibits time dilation

and length contraction. This is exactly the case for electrons in Gold with their velocities

close to the speed of light, thus exhibiting length contraction. This relativistic effect causes

the wavelength of light absorption shift to blue and to reflect the opposite color, i.e., yellow.6

After an extensive and comprehensive literature review2 that included related pedagogical

papers,7–9 the researchers of this report were shocked to understand that a simple derivation

for E = mc2 does not yet exist or at the very least, one that would allow amateur enthusiasts

and beginning chemistry students to grasp, understand, and appreciate without the prior

knowledge of calculus and special relativity.

Moreover, after corresponding with experienced teachers and colleagues throughout the

last number of years, we have determined that presenting the derivation in its simplest

relation as ”handling units” allows students and amateurs a chance to approach the concept

from a more convincing and easily memorizable standpoint.

Here, we bring a simple eye-catching and easily comprehensible proof of E = mc2 with no

intention to present the nomenclature of the formula nor its interpretation and justification.

Thus, we avoid the need to delve into the mass-energy equivalence which states that anything

having mass has an equivalent amount of energy and vice versa.10 In Treptow,11 the reader

can find a pedagogic discussion on to what extent is mass conserved in the reactions of physics

and chemistry. A mass-energy equivalence in this context is anything having energy that

exhibits a corresponding mass m given by its energy E divided by the speed of light squared

c2. As already mentioned above, beside this mass-energy equivalence, what laymen usually

associate with the E = mc2 equation is that nothing can exceed the speed of light c, without

even relating it to the special relativity principles and to Lorentz transformation. Following

those “knowledge”, we present, with a method similar to that of ‘handling units’, a simple
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and picturesque derivation of the formula using nothing but Newtonian laws of motions, that

do not go beyond mere definitions, together with well-known elementary physical quantities

as: distance, velocity, force, momentum and energy. In Leary and Ingham12 the reader can

find a pedagogic derivation of E = mc2, which can supplement our approach.

The next section presents our derivation which is based on a method which resemble

a handling unit method. In the section following the next, we present another derivation

of E = mc2 that is based on Einsteins own thought experiment (1906).13,14 This proof is

followed by a pedagogical explanation on the subtle notion of mass of a photon. The third

section presents yet another proof that relies on elementary calculus as taught in high school

though it uses only the mere definitions of differentials and derivatives. The derivation

goes beyond proving Einstein’s mass-energy relation by presenting the path toward the

understanding of how the (relativistic) mass of an object depends on its velocity while

keeping in mind that nothing can exceed the speed of light. A subsequent summary and

outlook on the pedagogic merit of these presentations is given.

Deriving the formula - a treatment resembling a ‘han-

dling units’ method

As explained in the introduction, the derivation that we provide uses a method which re-

sembles that of ‘handling units’, as well elementary knowledge of Newtonian laws of motion

that do not extend beyond understanding the definitions of elementary quantities. Let us

consider a body that moves with a velocity v that is very close to that of c, the speed of light,

c = [speed of light]. All we know about the ‘speed of light’ is that nothing can exceed it,

no material body can reach the speed c or go beyond it. Let us recall that by momentum

we mean [mass] × [velocity] and that a Force acting on a body is [mass] × [acceleration].

From mechanics, we know and understand that an impulse is the product of the average net

force acting on an object and its duration, [impulse] = [Force] × [time duration]. Impulse
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applied to an object produces an equivalent change in its momentum, [impulse] = [change in

momentum]. If a constant force applied for a time interval ∆t on a body, the momentum of

the body changes by an amount [Momentum] = [Force] × [time interval]. Now, what would

have happened if a constant force F will act upon our body (that travel very close to the

speed of light)? From elementary mechanics, we know that a Work is done on a body when

an applied force moves it through a distance, [Work] = [Force] × [distance]. Since our body

travels at a speed close to c, the constant force that we assume acting on it does not really

change (i.e., increase) the velocity of the body. So, what changes due to the force that acts

on our body? Our body has a momentum ([mass] × [velocity]), and since the velocity is not

changing (it is already close to c, and cannot increase further), we are forced to conclude

that it is the mass of the body that changes. This means that the momentum of our body

is now [mass] × [c].

Let us now consider the Energy of the system. Energy is the ability to do work. The

increase of energy of the body due to the constant force which acts on it along the distance

that the body travels is, [Energy] = [Force] × [distance the body travel ]. Now, what exactly

is the distance that the body travels? Recall that [distance] = [velocity] × [time]. So, in unit

time, the distance the body travels is just c, the speed of light (since in our case distance

∼ [speed of light] × [time]). Remarkably, we can now cast this relation between energy and

force as [
Energy

]
=
[
Force

]
×
[
c
]

(1)

We recall that ∆P = F∆t, the momentum of the body is equal to the force acting on

the body multiply by the time interval, and in unit time it is simply equal to [momentum]

= [Force]. But what exactly is the momentum, ∆P , gained by the body? It is merely

[mass ] × c, i.e., ∆m × c. The reader should be keen to take note that even though we are

dealing with unit time, in this case, we choose to express the mass and energy as difference
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quantities for clarity. Now, the expression for the force acting on the body is

[
∆F

]
=
[
∆m

]
×
[
c
]

(2)

Lets us now plug in expression (2) into expression (1) and we get, in unit time, the relation:

[
∆E

]
=
[
∆F

]
×
[
c
]

=
([

∆m
]
×
[
c
])
×
[
c
]

(3)

Simplifying the above equation, one finally gets

E = mc2. (4)

The above simple derivation brings us Eq.(4). In plain English, this equations tells us that

the energy E gained by the body, in unit time, due to the action of the force is equal to the

quantity mc2, where m is the mass that the body gained. We should remark though that such

a hand-waving derivation is for this special case, where we consider a body that travels at a

speed close to c, and can not explain the generic case between energy and mass.7,8,10

Photon energy - Einstein’s thought experiment

In this section, we present another form of proof based on a thought experiment which

was invented by Einstein himself in 1906.13,14 The treatment shown here differs somehow

from his original article, making the presentation more easy to grasp. Our objective in this

thought experiment is to put forward the idea that energy must have a certain inertial mass

equivalent that is associated with it (by inertial mass, we are referring to the ratio of linear

momentum to velocity, namely m = p/v ).

Let us imagine a stationary isolated box of length l, floating in outer space (free from any

external forces including gravitation). In addition, let us consider a finite amount of radiation
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(photons) of total energy E, that is being emitted from the left side of the box towards its

right end (see fig.1). For simplicity we consider this radiation as a single photon (a ’particle

of light’) of the same energy. The energy of an amount of radiation has a momentum defined

by E = pc. This phenomenon is known as radiation pressure. An interesting property that

the reader should bear in mind is that photons are massless particles. A photon does indeed

possess a momentum, but it does not posses mass, and this is confirmed by experiments

conducted within strict limits. We can interpret the relation E = pc by saying that a

photon’s momentum is a function of its energy, but it is not proportional to the velocity,

which is always c. The relation between energy and momentum of radiation (photon) is

outside the scope of Newtonian mechanics, but that shouldn’t distract the reader from

understanding the treatment presented here. In fact, this so called ‘radiation pressure’ will

be derived in the next section (see Eq.(26)) and will be based solely on Newtonian mechanics

and the mass-energy equivalence. From Newtonian mechanics, we know that momentum is

a product of mass and velocity (p = mv). So, how do photons have momentum yet have

no mass? In his great perception, Einstein considered that the energy of a photon must be

equivalent to a quantity of mass and hence could be related to the momentum.13,15 From

Newton’s laws of motion, we know that for an isolated system the momentum of the system

must be conserved, i.e., pbox = pphoton. Due to this fact, we also know that the box must

recoil to the left as the photon is emitted. At some time later, ∆t, the photon collides

with the other side of the box, transferring all of its momentum to the box. Since the total

momentum of the system (box+photon) is conserved, the impact of the photon causes the

box to stop moving.

No external forces are acting on this system, and as such, its center of mass is required

to remain in the same location. However, the box has moved so how can the movement of

the box be explained with the system’s center of mass remaining fixed? Einstein resolved

this evident contradiction by proposing that there must be a ’mass equivalent’ to the energy

of the photon. That is to say, the energy of the photon must be equivalent to a mass moving
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Figure 1: Einstein’s box experiment: An isolated box recoils from its initial position (I) to
a final position (II) as a result of a photon traveling from one end of the box to the other.

from left to right in the box; a mass that is large enough to cause the system center to

remains stationary. Let us now spell out our finding mathematically, using only Newtonian

mechanics.

If the energy of the photon is E then the momentum of the photon is given by

pphoton =
E

c
(5)

The box of mass M , will recoil slowly in the opposite direction to the photon with speed v

and box momentum that is given by

pbox = Mv (6)

After a very short time, ∆t, the photon will reach the other side of the box. During this

time, the box will have moved a small distance, ∆x (see fig.1). We can now write for the

speed of the box as

v =
∆x

∆t
(7)
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Due to the fact that momentum is conserved, pbox = pphoton, we have

M
∆x

∆t
=

E

c
(8)

Now, the time it takes for the photon to reach the other side of the box is

∆t =
l

c
(9)

By substituting this into the conservation of momentum equation (8) and rearranging the

terms we arrive at the expression

M∆x =
El

c2
(10)

Now, let us suppose for a moment that the photon has some mass, which we denote by

m (remember that photons are massless particles! See discussion below). By doing that,

we can calculate the center of mass of the system, box + photon. Let us now donate the

positions of the box and the photon as x1 and x2 respectively. As such, the center of mass

of our system (box + photon), by definition, given us

xcm =
Mx1 + mx2

M + m
(11)

As we argue above, and because the system is isolated, Newtonian mechanics tells us that

its center of mass should not change. Namely, the center of mass at the beginning of our

thought experiment must be the same as the end of the experiment. Mathematically, it is

represented by

Mx1 + mx2

M + m
=

M(x1 −∆x) + ml

M + m
(12)

Now, since the photon starts at the left of the box, we have x2 = 0 for its position. Plugging
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this into the above equation and rearranging the terms we obtain the simplified expression

ml = M∆x (13)

Let us now substitute eq. (10) into (13). This will give us

ml =
El

c2
(14)

Finally, by rearranging we obtain the mass-energy equivalence, Eq. (4), namely,

E = mc2 (15)

For a further discussion on this thought experiment and to answer some subtleties which

have been omitted here, we recommend exploring and referencing the article by Antippa.16

A gymnasium calculus derivation

Here, we propound yet another form of proof for E = mc2 based on Newtonian mechanics.

And although it may not be as simple in that it will require a minimal knowledge of cal-

culus, this method doesn’t go beyond simple high school calculus with preliminary notions

of differentials and derivatives. Let us consider a body of mass m that moves at a speed v

very close to the speed of light. We also assume that a force F acts on the body and, as a

result, the energy E of the body increases. As we know, nothing can exceed the speed of

light and so the speed of the body v cannot exceed c and, as the force continues to act, the

speed v approaches c asymptotically. From Newtonian mechanics we know that for a time

interval ∆t, the momentum of the particle changes by an amount ∆p = F∆t, i.e., F = dp/dt

(force equal the rate of change of momentum). From Newton’s second law, we also know

that work, W , is equal to the change in kinetic energy Ek of the linear velocity of the body,
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W = ∆Ek.

Mathematically, the relation between the net force and the acceleration is given by New-

ton’s second law, F = ma, and the body displacement x can be expressed by the equation,

x =
v22 − v21

2a
(16)

which follows from v22 = v21 +2ax. Now, the work of the net force is calculated as the product

of its magnitude and the particle displacement. Substituting the above equations, we obtain:

W = Fx = ma

(
v22 − v21

2a

)
=

mv22
2
− mv21

2
= ∆Ek (17)

Using the fact that F = dp/dt, we understand the dependence of E as a function of time by

taking the derivative of E with respect to t. By doing so we get for dE/dt,

dE

dt
= Fv =

d(mv)

dt
v = v2

dm

dt
+ mv

dv

dt
(18)

In this last equation, the time t is the independent variable. This equation shows how

energy E(t), mass m(t), and speed v(t) change as a function of time t. Our aim here is

to determine exactly how the mass depends on the energy. In order to achieve that, the

independent variable in the above expression should be the energy E such that the time,

mass and velocity will all depend on E. In order to make the time t(E), mass m(E) and

speed v(E) to be functions of E, we will simply multiply Eq.(18) by dt(E)
dE

and use the chain

rule to derive at,

1 = v2
dm

dt

dt

dE
+ mv

dv

dt

dt

dE
= v2

dm

dE
+ mv

dv

dE
(19)

By rearranging the above expression, we arrive at

dm

dE
=

1

v2
− m

v

dv

dE
(20)
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The expression in Eq.(20) tells us how the mass depends on the energy E. Now, how will this

expression appear when the energy E grows very large? Since nothing exceeds the speed of

light, we know that in that limit, v approaches c asymptotically and the term dv
dE

approaches

zero:

lim
E→∞

dm

dE
=

1

c2
(21)

This equation shows us that for the addition of each unit of energy E, the mass m of a body

grows incrementally by a factor of 1
c2

. In plain English, Eq.(21) gives us the mass-energy

equivalent relation, E = mc2 (Eq. (4)). We should stress though, that while this result holds

generally, this simple hand-waving calculation is valid only in the special case in which the

energy E of the body has grown so large that its speed v is close to c.
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Figure 2: Dependency between the mass of a body and its velocity. The graph shows how the
mass approaches infinity as velocity approaches the speed of light. Thus, it is not possible
for an object with mass to reach the speed of light.

Let us now try to put together some of the results we have discussed.17 Let us combine
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Eq.(4), E = mc2, and the definition of momentum, m = p/v, into a single expression,

E =
c2p

v
(22)

Newtonian mechanics tells us that the change in the kinetic energy of a particle corresponds

to the work done by external forces. By combining this with the relation between force and

momentum, F = dp/dt we have

dE = Fdx =
dp

dt
dx (23)

and from this we get,

dE = vdp (24)

Let us now combine Eqs.(22) and (24) by multiplying together the left and right sides of

these two equations, EdE = c2pdp. By integrating them, we obtain the relation

E2 = c2p2 + E2
0 (25)

where E2
0 is a constant of integration, written explicitly as the square of some constant of

energy. Eq.(25) is a relationship between energy E and momentum p for a particle, a relation

that can now be proposed as a general one. If the body is a massless particle, m0 = 0, then

Eq.(25) reduces to Eq.(5):

E = pc (26)

For a photon, this is the relation between radiant momentum (causing radiation pressure)

and radiant energy (see previous section). Let us now substitute in Eq.(25) the relation

cp = Ev/c that we got from Eq.(22). This will give us the relation between energy and

velocity

E(v) =
E0

(1− v2/c2)1/2
(27)

For particles that travel in a speed very small compared to the speed of light, v << c, we can
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approximate this exact resulting, Eq.(27), by neglecting terms of higher order than v2/c2:

E(v) = E0 +
1

2

(
E0

c2

)
v2 (28)

Equation (28) should be similar to Newtonian mechanics at low velocities, and so we identify

E0/c
2 with the classical mass of a particle which we call the ‘inertial mass’ and denote by

m0. With this realization one can see that Eqs.(4) and (27) together lead to an explicit

relationship between mass and velocity (see Fig.2):

m(v) =
m0

(1− v2/c2)1/2
(29)

We call this mass, which depends on v a ‘relativistic mass’. The quantity m0, which in

Newtonian mechanics would be the ‘inertial mass’ of a body, now assumes a new role as the

‘rest mass’ of the body for v = 0 and the quantity E0 (= m0c
2) is called the ‘rest energy’.

Generally, ‘relativistic mass’ is a measure of the energy E of a particle, which changes

with velocity (see eq. (29), and Fig.2). The reader should be aware that we commonly

don’t designate relativistic mass as the ‘mass of a particle’ (and in the case of a photon, it

will be awry to say that the photon has mass in this way). By the mass of an object we

usually mean its ‘invariant mass’ define as m =
√

E2/c4 − p2/c2 (see eq. (25)), and for a

photon this quantity is zero. The reason that nowadays we define ”mass” as the invariant

mass of an object is mainly because the invariant mass is more useful and practical when

doing any kind of calculation. However, with this definition in mind, mass is not to be

considered a conserved quantity and furthermore, mass is not simply the sum of the masses

of an objects parts. In the modern view ”mass” is not equivalent to energy. The mass

is just that part of the energy of a body which is not kinetic energy. Energy depends on

velocity whereas mass does not depends on velocity. In contrast to this, relativistic mass

is a quantity that is equivalent to energy, which is the prime reason for why relativistic

mass is not a commonly used term today. For a more detailed discussion on the notion of
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mass in relativity, pedagogical discussions by Sandin,18 Hecht,19 Okun20 and Roche21 are

recommended.

Summary and outlook

To introduce the properties and behavior of an equation or a formula to mathematically un-

equipped students, most of the instructors make use of simple, memory-less and physically

intuitive methods such as that of ”handling units”. Here, we considered this line of approach

to derive E = mc2. Firstly, a simple derivation of this equation using handing units like ap-

proach was presented, followed by yet another proof based on Einstein’s thought experiment.

We further presented another proof relying solely on elementary Newtonian mechanics using

basic high school calculus that doesn’t go beyond the mere definitions of differential and

derivative. Using terms from Newtonian mechanics we introduce to the reader the depen-

dence of mass on velocity - a concept that is otherwise appreciated only while delving into

the special theory of relativity. In addition to that, we elaborate on the notion of mass avoid-

ing the need of introducing to the student the nomenclature of the concepts involved and

their technical jargon. From experience, our approach will enable a student to understand

such complex-to-derive equations when supplied with just a set of definitions of physical

quantities like work, energy and force. The student can thus be taught to look upon them

as shorthand statements of physical laws that are valid, no matter in what units one may

choose to express any of the quantities involved. We believe that the treatment presented

here has a great pedagogic merit as it will spark a better understanding of various mysterious

and strenuous-to-derive equations in undergrad students or even amateur enthusiasts.
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