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A new ‘wave-particle non-dualistic interpretation’ at the single-quantum level, existing within the
quantum formalism, is presented by showing the Schrödinger wave function as an ‘instantaneous
resonant spatial mode’ where a particle moves. For the first time, the position eigenstate of a particle
is identified to be related to the absolute phase of the wave function in such a way that its position
eigen values always lie on a classical trajectory, proving that the ‘time parameter’ is common to both
classical and quantum mechanics. It’s brought into light that the quantum formalism demands a
different kind of boundary conditions to be imposed to the wave function unlike classical formalism
and hence naturally yields the Born rule as a limiting case of the relative frequency of detection.
This derivation of the Born rule automatically resolves the measurement problem. Also, these
boundary conditions immediately expound Bohr’s principle of complementarity at a single quantum
level. Further, the non-duality naturally contains the required physical mechanism to elucidate why
the Copenhagen interpretation is experimentally so successful. The single-quantum phenomenon is
then used to unambiguously explain what’s really going on in the Young double-slit experiment as
anticipated by Feynmann and the same is again used to provide a causal explanation of Wheeler’s
delayed-choice experiment.
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I. INTRODUCTION

For nearly hundred years, there is no consensus about
what kind of physical reality is being revealed by the
quantum formalism irrespective of its ability to accu-
rately predict the outcomes of innumerable experiments.
It’s an extremely successful theoretical description of Na-
ture, especially in the atomic scale, where the classical
mechanistic concepts seem to fail completely. Therefore,
the exact interpretation of the quantum formalism is very
important as it can naturally yield an intuitive visualiza-
tion of the true picture of reality which will surely con-
tribute to the deeper developments in the fundamental
physics. Its one immediate application will be in quan-
tum computers.
Consider Young’s double-slit (YDS) experiment [1]

with a single-quantum source (Fig. 1). Every quantum
is fired at the YDS one-at-a-time. The time interval be-
tween any two consecutively fired quanta is chosen to be
greater than the time of arrival of one quantum from the
source to the screen. This choice guarantees that every
quantum is independent of every other one and hence the
behavior of an individual quantum becomes transparent.
As a large number of quanta are being collected on the
screen, an interference pattern, reminiscent of wave na-
ture, gradually emerges out. If slit-1 (slit-2) is blocked,
then a clump pattern corresponding to single-slit diffrac-
tion of slit-2 (slit-1), supposed to be of particle nature,
occurs on the same screen. This implies that every indi-
vidual quantum is aware of how many slits are opened.
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Figure 1. Single-quantum Young’s double-slit exper-

iment: A source shoots quanta, one at a time, towards a
double-slit assembly. 1 and 2 represent two slits through
which the state vectors |S1 > and |S2 > get excited and su-
perposed as |S >= |S1 > +|S2 >. B1 and B2 are two blockers
which can block either slit-1 or slit-2 at any time. D1 and D2

are two detectors useful to find out through which slit any
quantum is passing towards the screen. Immediately behind
the screen, a twin-telescopes, T1 and T2, is placed such that
the quanta passing through slit-1 and slit-2 reach T1 and T2,
respectively. After collecting a large number of quanta, the re-
sulting distribution patterns at the screen and the telescopes
were given at the right hand side. If both slits are opened,
then the observed distribution is < S|S >. If slit-2 (slit-1) is
blocked, then the distribution is < S1|S1 > (< S2|S2 >).

The observed interference pattern suggests to infer that
the quantum ‘somehow’ simultaneously passes through
both the slits like a wave. However, this inference fails
during the experimental observation, because, a quan-
tum always appears going through either slit-1 or slit-2
like a particle but never simultaneously through both the
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slits like a wave. Also, two clump patterns appear on the
screen instead of interference pattern as a confirmation
of the observed particle behavior at the respective slits.
This dual behavior of a quantum is summarized as the
‘quantum enigma’: “When quanta are watched, they ap-
pear as going through any one slit like particles; other-
wise, they seem to go through both the slits like a wave”.
However, a particle is a localized entity present at some
definite location whereas a wave, a delocalized one and
both are incompatible with each other. Hence, a quan-
tum is inferred to simultaneously posses those two mutu-
ally exclusive ‘classical’ behaviors in order to explain the
quantum enigma and is known as the ‘wave-particle du-
ality’ [2–5]. All material particles like photons, electrons,
neutrons, atoms, molecules etc., are known to exhibit the
duality [6–11].

But, “How does a wave, after passing through the
YDS, collapse to a particle on the screen?” because, an
individual quantum event is always observed as a well
localized chunk. The mainstream Copenhagen interpre-
tation [3–5] treats the wave function as unreal and as
merely representing ‘the probability of finding a parti-
cle at some location’ [12]. However, such a treatment
leads to a non-intuitive conclusion that a quantum is a
probability wave until observed as a particle, clearly deny-
ing the pre-existing real world independent of observers.
Therefore, the observation seems to play a very special
role even though such a process is absent in the Hamil-
tonian describing a quantum. On the other hand, if the
wave function is considered to be physically real, then it’s
a must to provide a definite mechanism for the collapse,
which may demand the modification of the Schrödinger
equation [13, 14], the very fundamental one for quantum
mechanics. The collapse is avoided, for example, in the
‘many-worlds’ interpretation but at a cost of branching
of the entire Universe into innumerable copies [15, 16].
There are various other interpretations of quantum for-
malism, like, Bohmian mechanics [17, 18], modal in-
terpretation [19], relational interpretations [20], Consis-
tent histories [21], transactional interpretation [22, 23],
QBism [24] etc,. Although, each one of them is interest-
ing by itself, none of them gives a derivation for the Born
rule using the single-quantum events as it will be shown
in the present article.

If the experimentally observed quantum phenomena
can aptly be summarized by the Schrödinger equation,
then a natural question to ask is, “What could the Na-
ture be like such that the quantum formalism correctly
predicts the experimental outcomes?” The answer is pre-
cisely the ‘physical reality’ of Schrödinger’s wave func-
tion along with its relation to the observed particle. For
the first time in Section-II, the mutually exclusive clas-
sical natures, wave and particle, are successfully united
into a single entity which is named as wave-particle non-
duality. It’s an unique possible picture existing within
the quantum formalism and is analogous to the situa-
tion of a moving test particle in curved space-time of
the general relativity [25]. In the present article, only

the time-independent non-relativistic quantum mechan-
ics is considered, because, its interpretation naturally
goes through time-dependent and relativistic cases. At
this moment, it may be worth emphasizing that, the find-
ings in the present article never go beyond the quantum
formalism, but, only brings out the picture of reality hid-
den within the same.

All the quantum phenomena are actually found to
take place in a complex vector space (CVS) rather than
the usual three-dimensional Euclidean space (3DES), i.e.,
3DES is insufficient to accommodate them; a classic ex-
ample is the Stern-Gerlack experiment [2, 26]. Most cru-
cially, the heart of quantum formalism is the canonical
commutation relation, [x̂ , p̂] = i~, which necessarily de-
mands a CVS for its action; here, x̂ is the position oper-
ator, p̂ is the momentum operator, i =

√
−1 and ~ is the

reduced Plank’s constant. It captures the essence of de
Broglie’s hypothesis [27], “Every moving particle is asso-
ciated with a wave nature of wavelength λ = h/p”; here,
h is the Plank’s constant and p is the momentum. Then,
why the macroscopic objects, which are obviously com-
posites of ‘quantum entities’, appear to live in 3DES?
In Section-III, the actual space where Nature dwells is
shown to be CVS but not 3DES. Also, quantum for-
malism answers how the CVS is ‘effectively’ perceived as
3DES. (The notion about the space around us as a CVS
instead of the usual 3DES may sound weird. Let it be
so! But, once this much of initial weirdness is accepted,
then there will be no more weirdness in the quantum
mechanics). In Section-IV, the absolute phase associated
with the wave function is shown to be responsible for
the experimental outcome of a definite eigenvalue of an
observable.

It’s a well-known fact that a number of physical pa-
rameters entering into quantum physics, like the fre-
quency (ν) of a light source in the Plank-Einstein for-
mula, E = hν, for the energy content of a photon [28, 29],
the speed of light, etc., are all measured using the classi-
cal time. How the classical time is becoming suitable to
measure the physical parameters needed to describe the
quantum phenomena? As an answer, using the quan-
tum formalism, the equality of classical and quantum
mechanical times are explicitly shown for the first time
in Section-V.

The Born rule, interpreting the square of the norm of
a wave function as probability density for finding a parti-
cle, is experimentally successful quantum algorithm. Yet
at the fundamental level, it’s not really pleasing unless
derived from the quantum formalism. In Section-VI, it’s
shown that a quantum state vector induces its own dual
in a detector (or at a boundary) and interacts accord-
ing to the inner-product. Collection of a large number of
random inner-product events statistically yields the rel-
ative frequency of detection and hence, the Born rule.
This statistical derivation shows that there is no direct
and further irreducible equation for probability density
like the Schrödinger equation for wave function, which
implies the absence of probability for a single-quantum.



3

The same is explicitly proved using a sequential measure-
ments [26] in Section-VII.
Prof. Feynmann famously said [2], “We choose to ex-

amine a phenomenon which is impossible, absolutely im-
possible, to explain in any classical way, and which has
in it the heart of quantum mechanics. In reality, it con-
tains the only mystery”; here, the ‘phenomenon’ stands
for the wave-particle duality of a single quantum in the
YDS experiment. Section-VIII contains an explanation
of this mystery in a classical way.
According to Bohr’s principle of complementarity [5,

30–32], depending on the experimental configuration, ob-
servation of wave nature excludes the simultaneous ob-
servation of particle nature and vice versa. For example,
in the YDS experiment (Fig. 1), the presence of a screen
or a twin telescopes corresponds to observe the classi-
cal wave or particle behavior, respectively. Alternatively,
the same can also be viewed as a decision taken by the
quantum, after ‘somehow’ sensing the configuration of
the measuring device, to behave like a wave or a particle
[4, 5]. This later view-point was examined in Wheeler’s
delayed-choice experiment (WDCE) [33]: the screen is
quickly removed, exposing the twin telescopes, after a
quantum has already passed the YDS. The expected in-
terference pattern on the screen is lost and two clump
patterns, one at each telescope, are formed. According
to the duality, the quantum retroactively rearranges its
past history of simultaneously passing through both the
slits like a wave to that of passing through any one slit
like a particle, resulting in the clump patterns. For the
first time, an unambiguous causal explanation of WDCE
is provided using the wave-particle non-duality in the
Section-IX. Section-X contains the conclusions and the
discussions.

II. SCHRÖDINGER’S WAVE FUNCTION AS AN

INSTANTANEOUS RESONANT SPATIAL MODE

In this section, using the quantum formalism, a math-
ematical reasoning is developed to identify the physical
nature of the Schrödinger wave function as an ‘instan-
taneous resonant spatial mode’ (IRSM). Consider the
de Broglie case of a particle executing force-free motion
in one-dimension (1D). Its classical Hamiltonian, H , is
given by

H =
p2

2m
= E, (1)

where, p is the momentum, m is the mass and E is the
total energy of the particle. The Hamiltonian equations
of motion,

ẋ =
∂H

∂p
=

p

m
and ṗ = −∂H

∂x
= 0, (2)

yield the following solutions,

x(t) =
p(0)

m
t+ x(0) and p(t) = p(0), (3)

where, ẋ and ṗ are the time (t) derivatives of x and p and
x(0) and p(0) are constants of integration corresponding
to the initial position and momentum at t = 0.
Replacing the classical variables, x and p, by opera-

tors, x̂ and p̂, respectively, Eq. (3) yields Heisenberg’s
equations of motion [26]:

x̂(t) =
t

m
p̂(0) + x̂(0) and p̂(t) = p̂(0). (4)

Therefore, both the x(0) and p(0) must be treated
as operators so that the validity of original position-
momentum commutation relation remains unaffected,

i.e., [x̂(t), p̂(t)] = [x̂(0), p̂(0)] = i~. (5)

Hence, in the position representation, the Hamiltonian
operator can be written in two equivalent ways as,

either Ĥ = − ~
2

2m

∂2

∂x(t)2
= E, (6)

or Ĥ = − ~
2

2m

∂2

∂x(0)2
= E, (7)

so that the free particle’s eigenvalue equation is either

Ĥψ(x(t)) = Eψ(x(t)) or Ĥψ(x(0)) = Eψ(x(0)). (8)

Both ψ(x(t)) and ψ(x(0)) describe the same physical sit-
uation for the same energy eigenvalue E. Also, from Eq.
(4), one has

[x̂(0), x̂(t)] = i~
t

m
; [p̂(0), p̂(t)] = 0, (9)

where,

x̂(0)|x(0) > = x(0)|x(0) >,
x̂(t)|x(t) > = x(t)|x(t) > . (10)

The sets of position eigenvalues, {x(0)} and {x(t)}, of
x̂(0) and x̂(t) span the same 1D space. However, any
given position eigenstate |x(0) > is a linear superposi-
tion of all eigenstates of x̂(t) due to [x̂(0), x̂(t)] 6= 0, for
any non-zero value of t and vice versa. In other words,
the CVSs of x̂(0) and x̂(t) are twisted with respect to
each other though they give rise to the respective sets
of position eigenvalues spanning the same 1D Euclidean
space.
The wave function, ψ, can be considered as a func-

tion on the set of all possible initial values, {x(0)}, or
as a function on the set of all possible values at a later
time, {x(t)}. But, for any dynamical process happening
in any given space, the set of all possible initial values
(or values at any other instant of time) is the space it-
self. Thus, one arrives at a conclusion that ψ is like a
field on the 1D space. If the reference to the 1D space,
i.e., the position representation, is ignored, then the state
vector (|ψ >) corresponding to ψ (=< x|ψ >) itself must
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be viewed as a spatial mode in the CVS. Once a particle
of momentum p appears (like the emission of an electron
from a metal surface, appearance of a photon at a light
source etc.), say at some position eigen value xp(0), then
ψ(x(0)) appears instantaneously everywhere in the entire
1D space. At later time t, the position eigen value of the
particle changes from xp(0) to xp(t) and the correspond-
ing instantaneous eigen mode is ψ(x(t)). Therefore, ψ
is indeed an IRSM and the Plank’s constant, h, can be
viewed as a kind of coupling parameter tying the IRSM
and its particle. Here, the coupling means that the par-
ticle is actually free to move but always confined to its
IRSM. This inseparable nature of IRSM and its resonant
particle, which is like the eigenstate and its eigen value,
is named as wave-particle non-duality.

III. ‘EMPTY SPACE’ - ACCORDING TO

QUANTUM MECHANICS

Though the physical state of a quantum system is de-
scribed by a complex vector in some ‘abstract’ Hilbert
space, it’s relevant to explain the experimentally ob-
served data via the Born rule. The experimental setup
seems to exist in the 3DES but still it can capture the
information from the respective CVS. This clearly shows
that there is a fundamental mismatch between the ac-
tual space where the quantum particles really live and
our intuition about the particles as if present in 3DES.
In the Newtonian paradigm, a point is located in 3DES

by specifying its coordinates by a rigid measuring rod and
hence attaching the property of rigidity to the space it-
self. Such a rigid but empty space provides an absolutely
passive and unchanging ‘stage’ for all the physical phe-
nomena. But in Einstein’s special theory of relativity,
objects have an intimate connection with the space-time
in such a way that their relative speeds never exceed the
Cosmic speed limit in any inertial frame of reference. In
general theory of relativity, space-time is directly related
to the energy-momentum distribution and is dynamical.
It bends, stretches, twists and even ripples and dictates
the particle’s motion to lie along a geodesic. It’s very im-
portant to identify the actual space where a physical phe-
nomenon is happening. Though the absolute space can
be felt intuitively as nothingness, the important aspect
to note is that its true nature is unavailable independent
of the material phenomena happening in the same.
Quantum mechanics is reveling a profound and re-

markable property of space (or space-time) itself which
is quite different from that of general relativity. Keep-
ing its formalism in mind, the following postulates are
proposed.
Postulate-1: ‘Empty space’ where Nature dwells is an
infinite dimensional complex vector space or equivalently

the Hilbert space, H, but not the 3DES.
Postulate-2: A precise set of elementary particles in

H, with well-defined properties and interactions among
them, results in the macroscopic manifestation of matter

with respect to which the eigenvalues of position operator
‘effectively’ form the 3DES.

The position base representations of the tensor product
of two or more vectors belonging to H are super-imposed
on top of each other and can independently coexist in
the same region of 3DES spanned by the eigenvalues of
the position operator. Two or more classical waves, like
ripples on the surface of water, never behave in this way.
Let ‘r̂’ be the position operator, with eigenstates ‘|r >’

such that the set of all eigenvalues, {r}, span the 3DES.
When a free particle of definite momentum eigenvalue
‘p’ is created, then a resonant spatial mode ‘< r|ψ >’ in-
stantaneously appears such that the particle’s motion is
completely confined to the same; here, |ψ >∈ H. Since
|r > and< r|ψ > are in one-to-one correspondence, with-
out loss of generality, the state vector itself can be called
as an IRSM which has the representation:

|ψ >=
∫

dr|r >< r|ψ > . (11)

By attaching a complex vector |r >< r|ψ > at every
eigenvalue r, the IRSM becomes intuitively visible. The
particle itself will be present at some eigenvalue rp, car-
rying an eigen vector, |rp >< rp|ψ >; here, the subscript
p stands for particle. This particular non-dualistic clas-
sical picture is unavailable to the direct experience in ev-
ery day world due to its complex-valuedness. This shows
that the the quantum mechanical Hilbert space or the
CVS is not some ‘abstract’ space but, the actual space
where Nature dwells. The same picture also holds for
non-free particles.

IV. PRINCIPLE OF MINIMUM PHASE TO

REALIZE A DEFINITE EIGENSTATE

“Questions about what decides whether the photon is
to go through or not and how it changes its direction of

polarization when it does go through can not be inves-
tigated by experiment and should be regarded as outside

the domain of science” - a profound statement by Prof.
Dirac [34], which contains the key for the randomness
and hence, the probability in quantum mechanics. The
last part of the statement, “ ...and should be regarded

as outside the domain of science”, is resolved using the
following example:
Consider a classical scenario of tossing a coin in 3DES.

Using the Newtonian mechanics, it’s possible, in princi-
ple, to predict exactly whether head or tail will occur on
a horizontal flat ground. If there is an ignorance about
some parameters involved in the dynamics of the coin,
then probability can be invoked. Let n̂ be a normal vector
to the head surface passing through the coin’s center-of-
mass and θ be an angle between n̂ and any parallel vector,
ĝ, to the gravitational force. Just before the landing of
the coin, consider its position at a height h ≤ r above
the ground surface; here, r is the radius of the coin. If
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−π/2 < θ < π/2, then head will be the out come. Oth-
erwise, tail occurs for π/2 < θ < 3π/2. Depending on
the value of θ, the coin will jump into either head or tail
state. Upon the outcome, n̂ will be pointing either par-
allel or anti-parallel to ĝ (notice that, if the space is a
complex-Euclidean instead of 3DES, then θ corresponds
to the phase angle between the respective complex vec-
tors). But, this result will not hold in the limit r → 0,
because, the range of θ splitting into two halves is due
to the non-zero value of r. Nevertheless, it can still be
retained including in that limit by considering the coin in
CVS instead of 3DES. If an element of CVS gets resolved
into two components, then the coin has to enter into any
one, because, it itself can’t split. It naturally gets into en-
ergetically favored component making a minimum phase
angle with n̂. If n̂ is replaced by electron’s spin magnetic
axis and ĝ by magnetic force direction, then the resulting
situation is exactly identical to that of an electron in the
Stern-Gerlac (SG) experiment [2, 26, 35]. Let’s consider
this case in detail:
Let ISG = | ↑><↑ | + | ↓><↓ | be an unit opera-

tor in the CVS of the SG apparatus. The IRSM, say
|s >, representing the spin state (spatial dependence is
suppressed for simplicity) through which an electron is
flying, encounters the SG apparatus:

|s >= | ↑><↑ |s > +| ↓><↓ |s > .

The electron’s spin jumps into either | ↑> or | ↓> de-
pending upon which complex number, either <↑ |s > or
<↓ |s >, has a minimum phase. Notice that, though
the electron jumps into, say | ↑>, the empty orthogonal
mode | ↓> survives until the detection of electron. The
absolute phase of |s > determines the eigenstate where
the electron will be detected.
If the IRSM, say |ψ >, encounters a CVS of an operator

having continuous orthogonal eigenstates, then the parti-
cle, without any jump, naturally enters into an eigenstate
having the same phase as that of |ψ >. As an example,
consider the Eq. (11): a particle will be present in a state
|rp >< rp|ψ > whose phase is exactly the same as that
of |ψ >.

V. EQUALITY OF CLASSICAL AND

QUANTUM MECHANICAL TIMES

In the Section-II, it’s shown that a particle moves in its
IRSM but nothing was said about its motion along some
trajectory, if exists. In order to uncover the particle’s
motion, the propagators [26] are derived in a new way us-
ing the Heisenberg equations of motion, because, (i) the
IRSM is a solution of the time-independent Schrödinger
wave equation and (ii) the time-dependent Schrödinger
wave equation is not explicitly considered in the present
article. Application of the principle of minimum phase
to the propagator results in the classical path of least ac-
tion on which the position eigen values of particle-state

lie. From this, the equality of classical and quantum me-
chanical times arises as shown below:
Substitution from Eq. (4) into the second part of Eq.

(10) results,

(x̂(0) +
t

m
p̂(0))|x(t) >= x(t)|x(t) >, (12)

which can be expressed as a first order partial differential
equation,
(

−i~ t
m

∂

∂x(0)
+ x(0)− x(t)

)

< x(0)|x(t) >= 0, (13)

by using an unit operator,
∫

dx(0)|x(0) >< x(0)|, in the
position basis at time t = 0, having a solution,

< x(0)|x(t) >= e{− im

2~t
[x2(0)−2x(0)x(t)+α]}, (14)

where, − im
2~tα is a constant of integration. Similarly,

making use of the identity operator,
∫

dx(t)|x(t) ><
x(t)|, at time t in the first part of Eq. (10) results in
the equation,

(

i~
t

m

∂

∂x(t)
+ x(t) − x(0)

)

< x(t)|x(0) >= 0, (15)

having a solution,

< x(t)|x(0) >= e{ im

2~t
[x2(t)−2x(0)x(t)+β]}, (16)

where, im
2~tβ is another constant of integration. Using

< x(t)|x(0) >=< x(0)|x(t) >⋆, a property of complex
numbers, in Eqs. (14) and (16) yields,

x2(t)− 2x(0)x(t) + β = x2(0)− 2x(0)x(t) + α⋆, (17)

whose solution is,

β = σ + x2(0) ;α⋆ = σ + x2(t), (18)

where, ⋆ stands for complex conjugation and σ is a con-
stant. Hence, Eq. (16) can be rewritten as,

< x(t)|x(0) >= e{σ′+ im

2~t
(x(t)−x(0))2}, (19)

with σ′ = im
2~tσ. From the requirement,

lim
t→0

< x(t)|x(0) >= δ(x(t) − x(0)), (20)

an inference eσ
′

=
√

m
2πi~t can be made, but it works only

for free particle. The following is a general procedure:
Considering the unit operators in the position basis at

time t and at t = 0 as,

I =

∫

dx(t)|x(t) >< x(t)|

=

∫∫∫

{dx′(0)dx′′(0)dx(t)|x′(0) >< x′(0)|x(t) >

× < x(t)|x′′(0) >< x′′(0)|}

=

∫∫∫

{dx′(0)dx′′(0)dx(t)|x′(0) >

×F (x(t), x′(0), x′′(0)) < x′′(0)|} , (21)



6

where,

F ≡ e{σ
′+σ′⋆+ im

~t [x
′(0)−x′′(0)]x(t)+ im

2~t(x
′(0)−x′′(0))2},

such that,

∫

dx(t)F (x(t), x′(0), x′′(0)) = e2σ
′

R

2π~t

m
δ(x′(0)−x′′(0)),

yielding, eσ
′

R =
√

m
2π~t ; here, σ

′
R = (σ′+σ′⋆)/2 = Re{σ′}

is the real part of σ′. Now, Eq. (19) becomes,

< x(t)|x(0) >=
√

m

2π~t
ei{σ′

I
+ m

2~t
(x(t)−x(0))2}, (22)

where, σ′
I = (σ′ − σ′⋆)/(2i) = Im{σ′} is the imaginary

part of σ′, which can be evaluated from the requirement
given in Eq. (20):

δ(x(t) − x(0)) = lim
t→0

< x(t)|x(0) >

= lim
t→0

eiσ
′

I

√

m

2π~t
e{ im

2~t
(x(t)−x(0))2}

= eiσ
′

I i
1
2 δ(x(t)− x(0)), (23)

implying eiσ
′

I i
1
2 = 1. Hence,

< x(t)|x(0) >=
√

m

2πi~t
e{ im

2~t
(x(t)−x(0))2}. (24)

If the time parameter varies from t1 to t2 instead of 0 to
t, then the above equation becomes,

< x(t2)|x(t1) >=
√

m

2πi~(t2 − t1)

×e
{

im

2~(t2−t1) (x(t2)−x(t1))
2
}

. (25)

Similar analysis can be carried out for a simple har-
monic oscillator:

< x(t2)|x(t1) >=
√

m

2πi~ sin(t2 − t1)

× e
imω

2~ sin(ω(t2−t1))
G(x(t2),x(t1);t2,t1), (26)

where,

G ≡
(

x2(t2) + x2(t1)
)

cos(ω(t2 − t1))− 2x(t2)x(t1).

If t2 − t1 = ∆t → 0, then the Eq. (25) or (26) can be
written as

lim
t2→t1

< x(t2)|x(t1) >

=

√

m

2πi~∆t
exp

{

im∆t

2~

(

x(t2)− x(t1)

∆t

)2

− i∆t
2~

[V (x(t2)) + V (x(t1))]

}

=

√

m

2πi~∆t
exp

{

i

~

∫ t2

t1

dtL(ẋ(t), x(t))

}

. (27)

Now, consider the energy eigenstate,

|ψ >=
∫

dx(0)|x(0) >< x(0)|ψ >

=

∫∫

dx(0)dx(t)|x(0) >< x(0)|x(t) >< x(t)ψ >(28)

The particle will be present at some particular eigenstate
|xp(0 > whose phase ph{< xp(0)|ψ >} at time t = 0 is
same as ph{|ψ >}. This criterion yields the following
relation from Eq. (28):

ph{|ψ >} = ph{< xp(0)|ψ >}
= ph{< xp(0)|xp(t) >< xp(t)|ψ >}
= ph{< xp(0)|xp(t) >}+ ph{< xp(t)|ψ >}, (29)

where, ph{< xp(t)|ψ >} is the phase of the particle state
at t. These phases at t = 0 and t will be different,

ph{< xp(0)|ψ >} 6= ph{< xp(t)|ψ >}, (30)

but, any infinitesimal variation of phase at t = 0 results
in the corresponding variation of phase at t,

δ{ph < xp(0)|ψ >} = δ{ph < xp(t)|ψ >}. (31)

Applying the above condition to Eq. (29) results,

δ{ph < xp(0)|xp(t) >} = 0, (32)

which, in turn, implies

δ{ph < xp(t1)|xp(t2) >} = 0. (33)

Application of Eq. (33) to Eq. (27) yields the classical
least action principle,

δ

∫ t2

t1

dtL(ẋp(t), xp(t)) = 0, (34)

which explicitly shows that the position eigenvalue of a
particle state always, as a function of time, lie on a clas-
sical path. In fact, this result is independent of whether
the physical system is microscopic or macroscopic and
proves that the time parameter is common to both the
quantum and the classical mechanics. If a particle can
be inferred to be at location ‘A’ and later at ‘B’, then A
and B are connected by the particle-path which obeys the
principle of least action. Note that, in YDS experiment,
no particle will be found in the regions of dark fringes
because the IRSM vanishes there, which in turn implies
that no classical paths, formed by the position eigen val-
ues of the particle states, are available from any slit to
any dark fringe. Even though the result in Eq. (34) is
proved here for free particle and harmonic oscillator, its
universal validity can be verified by noting the additive
property of phase in Eq. (29) and time-interval indepen-
dence of Eq. (33). One immediate example of this result
is the traces of particle trajectories photographed in the
detectors like Wilson’s chamber.
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VI. INNER-PRODUCT INTERACTION AND

THE DERIVATION OF BORN’S RULE

It’s well-known that the square of amplitude of a clas-
sical wave is proportional to its intensity. But, such
an intensity can’t be claimed for an IRSM, though it
obeys the Schrödinger wave equation, because, the non-
dualistic picture of a particle flying in its own IRSM is
not analogous to any classical wave.
Wherever the particle will be ending up, there a dual

mode gets induced which interacts with the IRSM ac-
cording to the inner-product. This interaction can be
found within the quantum formalism. Let an IRSM,
|ψ >, encounters a detector screen and gets scattered
into some other state, say |ψ′ >. This process can be

described by associating an operator, Ô = |ψ′ >< ψ|:

Ô|ψ >=< ψ|ψ > |ψ′ > . (35)

If the scattered state is discarded or it’s a null-state, then
the particle must have interacted or got absorbed, respec-
tively, at some location in the region of < ψ|ψ >.
Precisely due to the inner-product interaction and the

equality of classical and quantum mechanical times, the
CVS ‘effectively’ appears to be 3DES.
If the detector states do not span |ψ > completely

and is associated with a projection operator P̂ , then the
IRSM seen by the detector is |ψD >= P̂ |ψ > and the
excited dual vector is < ψD|. Therefore, the interaction
region for the particle detection is < ψD|ψD >.
Consider the boundary conditions to an IRSM of a free

particle confined in a 1D box of length ‘L’ placed along
the X-axis, i.e., 0 ≤ x ≤ L. In the spirit of Eq. (35), the
dual modes excited at the boundaries interact with the
IRSM, |ψ >:

< ψ|ψ > |x=0 =< ψ|ψ > |x=L = 0. (36)

Note that the above type of boundary conditions don’t
exist in the classical mechanics, though they eventu-
ally give rise to the classical boundary conditions i.e.,
< x|ψ > |x=0 =< x|ψ > |x=L = 0, which in turn imply,

< ψ|ψ > =

∫ L

0

dx < ψ|x >< x|ψ >

=

∫ L

0

dx | < x|ψ > |2 6= ∞. (37)

The above integral must converge in order to have any
physical interpretation and is the well-known Born’s rule
[2–4, 12]. Here, the aim is just to show that it naturally
emerges from the non-duality.
For a free particle, the initial boundary condition is a

point in the CVS where the momentum originated and
remains unaltered as long as the particle sustains with
the same momentum. This condition can be justified
based on our common sense experience by considering a
distant star located at some millions of light years away.
While looking, it’s not actually appearing as it is right

now but how it was some millions of years ago. Right
now, anything might have happened like it might have
exploded, swallowed by a black-hole, etc. All these de-
tails don’t appear except the star before millions of years.
This simply implies that the origin of a photon remains
unaffected. The final boundary condition depends on
where the particle will end up and need not be a fixed
boundary condition. It can be changed randomly before
the arrival of the particle.
If the particle’s momentum undergoes a sudden

change, then the corresponding IRSM completely disap-
pears and a new IRSM corresponding to new momentum
instantly appears. The origin of new IRSM lies at the
spatial point where the particle gained the new momen-
tum. This is simply a reflection of the nature of eigen-
value equation along with the boundary conditions.
If the IRSM, |ψ >, encounters a CVS of a detector A

spanned by orthogonal eigenstates, |ai >; i = 1, 2, 3, · · · ,
of an observable, Â, then the particle enters into one of
the eigenstate, say |ap >, which makes a minimum phase
with |ψ >. Other eigenstates remain empty but present
ontologically. During the detection, the particle will be
naturally found in |ap > with an eigenvalue ap, because,
all other orthogonal empty states contribute zero out-
come. The IRSM in A’s CVS,

|ψ >=
∑

i

|ai >< ai|ψ >, (38)

interacts with its excited dual-mode, < ψ| as,

< ψ|ψ >=
∑

i

< ψ|ai >< ai|ψ > Detection−−−−−−→
at A

| < ap|ψ > |2,

yielding the eigenvalue ap. The particle itself contributes
a point to the function | < ap|ψ > |2. Note that, this
physical mechanism is indeed in one-to-one correspon-
dence with the ‘wave function collapse’ advocated in the
Copenhagen interpretation [3–5]. Further, repeating the
detection procedure on several identical particle states
having different initial phases and normalizing the out-
comes by the total number of particles yield a relative
frequency of detection (RFD) for various eigenvalues, ai.
In the limit of infinite number of particles, the RFD co-
incides with | < ai|ψ > |2. In other words,

< ψ|ψ >=
∑

i

| < ai|ψ > |2 = 1, (39)

which is the Born rule. Therefore,

RFD
Infinite number of−−−−−−−−−−−→
detection events

The Born rule

and hence, the Copenhagen interpretation is completely
contained within the present non-dualistic interpretation
of quantum mechanics. Though, a single quantum phe-
nomenon can be deterministically described, the unavail-
ability of the information about the absolute phase of the
IRSM due to the inner-product interaction forces exper-
iments to observe only the RFD. Here, it’s worth recol-
lecting Born’s Probabilistic Interpretation [3]:
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“The wave function determines only the probability
that a particle - which brings with itself energy and mo-

mentum - takes a path; but no energy and no momentum
pertains to the wave”. Notice that, except for the notion
of probability, this statement is in exact agreement with
the spirit of wave-particle non-duality which recognizes
the Schrödinger wave function as an IRSM.
Suppose that, instead of Â, the same IRSM, |ψ >, en-

counters a different observable, B̂, whose CVS is spanned
by the eigenstates, say |bi >:

|ψ >=
∑

i

|bi >< bi|ψ >, (40)

and the particle will be present in some eigenstate, |bp >,
which makes a minimum phase with |ψ > . The inner-
product interaction at the detector is,

< ψ|ψ >=
∑

i

< ψ|bi >< bi|ψ > Detection−−−−−−→
at B

| < bp|ψ > |2,

yielding the eigenvalue bp and the particle itself con-
tributes a point to | < bp|ψ > |2. Therefore, it’s the
measuring device, either A or B where the inner-product
interaction happens, decides which property, either ap or
bp, of the quantum to be observed. This is actually Bohr’s
principle of complementarity [30–32], but, at a single-
quantum level. However, notice that, the non-dualistic

picture of a particle flying in its own IRSM is further
irreducible and is independent of any measuring device.
When Â and B̂ are not commuting, the entire CVS of A
will have a non-zero twist with respect to the entire CVS
of B in such a way that any eigenstate from the former
will have unavoidable non-zero projections along more
than one eigenstate of the later and vice versa. There-
fore, through the experiment, only the preexisting proper-
ties of the quantum can be observed. However, the values

of the observed properties may get altered due to the act
of observation.
Consider the IRSM given in Eq. (11): the particle will

be present in a state, |rp >< rp|ψ >, whose phase is
exactly same as |ψ >. Therefore, its interaction with the
excited dual, < ψ|, in a detector is,

< ψ|ψ >=
∫

dr < ψ|r >< r|ψ > Detector−−−−−→ | < rp|ψ > |2,

because, except for the particle state |rp >< rp|ψ >, the
remaining orthogonal ones, |r >< r|ψ >, are empty.
Finally, notice that the measurement problem doesn’t

exist in the quantum formalism due to the inner product
interaction and the principle of minimum phase. There
is no distinction between microscopic and macroscopic
physical systems, because, non-duality recognizes all of
them as represented by suitable CVSs.

VII. SEQUENTIAL SELECTIVE

MEASUREMENTS

Consider three sequential detectors A, B and C repre-
senting the observables Â, B̂ and Ĉ, whose eigenstates

and eigenvalues are |ai >, |bj >and |ck > and ai, bj and
ck, respectively [26]; here, i, j, k = 1, 2, 3, · · · . Let A, B
and C select some particular states |a′i >, b′j > and |c′j >
and reject the rest. Let |ψ > be an IRSM in which a
quantum is flying. The IRSM is resolved in A’s CVS as,

|ψ >=
∑

i

< ai|ψ > |ai >, (41)

and only |a′i > component comes out. If the initial phase
of |ψ >makes a minimum phase with |a′i >, then the par-
ticle passes on to B. Hence, the mode |ãi > (≡< a′i|ψ >
|a′i >) encounters B’s CVS and gets resolved as,

|ãi >=
∑

j

< bj|ãi > |bj > . (42)

B allows only< b′j |ãi > |b′j >, which encounters C’s CVS:

< b′j |ãi > |b′j >=< b′j|ãi >
∑

k

< ck|b′j > |ck > . (43)

Now, C projects out only < b′j |ãi >< c′k|b′j > |c′k > which
interacts with its excited dual < ãi|b′j >< b′j|c′k >< c′k|
as | < b′j |ãi > |2| < c′k|b′j > |2. Out of a large number of
identical particle-states with different initial phases, the
RFD at C is,

< ãi|ãi > RFD−−−→
at C

| < b′j|ãi > |2| < c′k|b′j > |2. (44)

Suppose, B allows all |bj > states to pass through.
Then C will encounter a superposition:

∑

j

< bj|ãi > |bj >= |ãi > . (45)

In B’s CVS, though only |b′j > contains the particle,
all other empty modes do exist ontologically and if un-
blocked, then they contribute at C:

|ãi > =
∑

k





∑

j

< bj |ãi >< ck|bj >



 |ck >

=
∑

k

< ck|ãi > |ck > . (46)

Now, as usual, C projects out only < c′k|ãi > |c′k >,
yielding a RFD,

< ãi|ãi > RFD−−−→
at C

| < ãi|c′k > |2, (47)

which is entirely different from Eq. (44). Therefore, the
ontological presence of an empty mode can have a phys-
ically observable effect.
In Eq. (44), if | < b′j |ãi > |2 is regarded as a probability

for the particle to go through the |b′j > route in B and | <
c′k|b′j > |2 as a probability of finding the same at C, then
they obey the usual rule of probability multiplication. If
the probability is really in play here, then its total, say
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P (c′k), for the particle to arrive at C through all possible
routes in B,

P (c′k) =
∑

j

| < b′j |ãi > |2| < c′k|b′j > |2, (48)

must be the same as without B. But, in the absence of
B, Eq. (47) gives the total probability of finding the
particle at C, which is entirely different from Eq. (48).
This is a clear proof for the absence of probability in
quantum mechanics. Only the RFD arises at a detec-
tor when repeated measurements are made on identical
states (modulo overall absolute phase). If the existence
of a particle is inferred by probability, that too, in the
absence of observation, then it will not yield the correct
picture of a single-quantum.
As a corollary, consider the case of commuting Â and

B̂. Any given eigenstate of Â can have a projection only
along any one of the eigenstates of B̂ and the remaining
projections along all others become zero, i.e., < a′i|b′j >=
δij ; here, δij is the Kronecker delta. Therefore, it doesn’t
matter whether B is present or absent. Only in this case,
Eq. (48) becomes exactly the same as Eq. (47):

∑

j

| < b′j |ãi > |2| < c′k|b′j > |2 = | < ãi|c′k > |2. (49)

VIII. YOUNG’S DOUBLE-SLIT EXPERIMENT:

WHAT’S REALLY HAPPENING?

In this section, the YDS experiment (Fig. 1) performed
with a single-particle source is considered in order to elu-
cidate the actual behavior of an individual quantum.
Each particle is shot onto the screen through the YDS,

only after the registration of the previous one. Classi-
cally, the particles were expected to leave a pattern of two
strips on the screen, as some of them pass through slit-1
and the others through slit-2, because, they were thought
to be moving in the 3DES. But, according to non-duality,
the particles actually move in their own IRSMs obeying
Schrödinger’s equation and hence an interference pattern
occurs.
Let |S0 > be the IRSM of a particle created at the

source. The projector, P̂yds, associated with the YDS
assembly is,

P̂yds =

2
∑

i=1

∫

dr
(i)
i |r(i)i >< r

(i)
i |, (50)

where, {|r(1)1 >} and {|r(2)2 >} are position bases for slit-1
and slit-2, respectively. The IRSM, |S >, excited towards
the screen from the YDS is given by the projection:

|S > = P̂ds|S0 >

=
2

∑

i=1

∫

dr
(i)
i |r(i)i >< r

(i)
i |S0 >

≡ |S1 > +|S2 > . (51)

As explained in the Section-VI, the induced dual-mode,
< S|, in the screen interacts with the IRSM as,

< S|S >=
2

∑

i,j=1

< Si|Sj > . (52)

Note that, the above inner-product interaction happens
instantaneously the moment a particle is created, but its
effect remains unfelt until the hit of the particle on the
screen. As elucidated in the Section-IV, depending on
the initial phase of the IRSM, the particle passes either
through slit-1 or slit-2. If particle’s momentum changes
either due absorption or scattering at the screen, then the
entire IRSM disappears such that the particle contributes
a point to < S|S >.
The next particle appears at the source along with its

IRSM whose absolute phase will be different from the
previous one. However, its interaction region, < S|S >,
is the same as all previous ones. The hits of particles
on the screen occur randomly at different locations due
to different initial phases. The randomness in the phase
is due to its dependence on the nature of source. Af-
ter a large collection of particles, an interference pattern
emerges out which is nothing but the construction of the
function | < r|S > |2 with individual points; here, |r > is
the eigenstate of position operator, r̂, with eigenvalues,
r, which span the detector screen. At this moment, it’s
worth recollecting a philosophical saying, “It is necessary
for the very existence of science that the same conditions
always produce the same result” - this statement is in per-
fect agreement even in the quantum domain, because, the
occurrence of many identical initial states with the same
absolute phase is impossible.
A remark follows: after collecting a large number

of particles, the resulting interference intensity is in-
deed equivalent to the interference intensity produced
by a ‘macroscopic matter-wave’ (MaMW). Therefore,
each and every individual particle may be inferred as
an averaged MaMW i.e., as a ‘microscopic matter wave’
(MiMW). If inferred this way, then MiMW has to col-
lapse to a particle at some region of its own interference
pattern. This leads to wave-particle duality which de-
mands the instant collapse of entire wave function to
a point. Inherent randomness and probability become
unavoidable while describing the collapse though they
arise due to the nature of particle source. This can
be juxtaposed with a situation of black body radiation.
While calculating the Plank radiation formula [28], the
statistically averaged energy of a photon is found to be
ǭ = hν/[exp(hν/KT ) − 1]; here, h is Plank’s constant,
ν is the frequency associated with the photon, K is the
Boltzmann constant and T is the absolute temperature.
However, this never implies the existence of any photon
with energy ǭ. But, the usage of ǭ yields correct results
provided the experiment is done with a large number
of photons, because, ǭ is reflecting the statistical nature
of observation. Therefore, an individual event need not
carry the statistical average which, of course, yields a
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right value if used along with a huge data. In other words,
a particle itself never behaves like a wave though it is as-
sociated with the de Broglie wave nature. Otherwise,
the YDS interference pattern obtained with macroscopic
molecules of definite internal structure [8, 9, 11] can’t be
explained unambiguously.

If slit-1 (slit-2) is blocked, then a clump pattern cor-
responding to a single slit diffraction of slit-2 (slit-1),
< S2|S2 > (< S1|S1 >), is produced on the screen. Ac-
cording to wave-particle duality, a single slit diffraction is
attributed to the particle nature whereas, the double-slit
interference to the wave nature. But, in non-duality, the
particle always moves in its IRSM whether through a sin-
gle slit or a double- slit. Therefore, if a detector observes
through which slit a particle is going, then it will always
appear through either slit-1 or slit-2. As mentioned in
the Section-VI, any momentum changing interaction of
the particle with the detector’s probe will result in the
disappearance of |S >, which had two origins, one at
each slit. A new IRSM, either |S′

1 > or |S′
2 >, of new

momentum appears with a single origin where the inter-
action took place in the vicinity of the respective slit. Its
interaction with the detector screen is either < S′

1|S′
1 >

or < S′
2|S′

2 >. Therefore, in the presence of detectors,
clump patters occur and in their absence, the interference
comes back. This particular property viz, ‘the disappear-
ance of interference pattern and the appearance of clump

patterns whenever the quanta are watched through which
slit they are going’, is an ultimate proof for the under-
lying particle nature. Otherwise, the disappearance of
interference pattern is impossible. Therefore, the quan-
tum enigma is an inference drawn based on the wave-
particle duality by visualizing the quantum phenomenon
in 3DES.

Here, it’s worth mentioning that a given particle simul-
taneously carries both position and momentum eigenval-
ues. Consider the YDS experiment as an example: a
particle will be found at some location of the detector
screen due to the momentum it carries. However, the
position and momentum state vectors of the particle live
in their own respective CVSs which have a non-zero twist
with respect to each other due to the commutation rela-
tion, [x̂, p̂] = i~. Therefore, according to Bohr’s principle
of complementarity at a single-quantum level as given in
Section-VI, the position measurement excludes the mo-
mentum measurement and vice versa. This situation is
totally different from the classical scenario where the vec-
tor spaces of both the position and momentum are un-
twisted due to [x̂, p̂] = 0 and hence their superimposition
on top of each other can be regarded as a single space.

Nevertheless, a free quantum can not be detected in-
side a width, ∆x, less than the de Brogle wavelength
which is characteristic of its momentum. Any such de-
tection will change the IRSM itself. The minimum width
∆xmin inside which a particle can be found, without
changing its momentum eigenvalue, is ∆xmin = λ which
yields p ∆xmin = h (using de Brogle’s relation). If the
IRSM encounters a vertical slit of width ∆y, then from

Bragg’s law, for first order diffraction, ∆y sin θ = λ im-
plying that ∆y p ≥ h. So, there exists a maximum mo-
mentum, Pmax = h/∆y, a particle can have such that at
least a first order diffraction can be observed. Any mo-
mentum greater than Pmax will not exhibit any diffrac-
tion except the zeroth order. These are equivalents of
the Heisenberg uncertainty relations [2–4] in the case of
quantum phenomena at the single-quantum level.
Also, it’s easy to check that the macroscopic objects

naturally yield clump patterns matching our day-to-day
worldly experience because, their de Broglie wave length
is extremely small when compared to the size of the ob-
ject, the dimensions of slits and their separation.

IX. CAUSALITY IN WHEELER’S

DELAYED-CHOICE EXPERIMENT

As already mentioned in Section-I, if the screen in YDS
experiment (Fig. 1) is quickly replaced while a quantum is
in mid-flight after passing the double-slit, then the state
encountered jointly by the twin telescopes, T1 and T2, is

(T̂1 + T̂2)|S > = (T̂1 + T̂2)(|S1 > +|S2 >)

= T̂1|S1 > +T̂2|S2 >

= |S̃1 > +|S̃2 >≡ |S̃ >, (53)

where, T̂1 and T̂2 are operators associated with the tele-
scopes and T̂1|S2 >= T̂2|S1 >= 0, because, T1 and T2
are tightly focused on slit-1 and slit-2, respectively. Let’s
take the quantum to be a photon. The replacement of
screen by telescopes can be viewed as a change of either
final boundary conditions of IRSM or CVS where |S > is
represented. Now, the old IRSM, |S >, changes to a new

one, |S̃ >, but their initial boundary conditions (origins)
remain the same. Wherever be the position of photon
during the replacement, it continues to fly from there
through |S̃ >. The photon’s motion is always continues

even though the boundary condition or the representation
of its IRSM changes suddenly. The continuity in pho-
ton’s motion is governed by conserved quantities. Since,
the CVSs of telescopes are orthogonal to each other, the
observed RFD is,

< S̃|S̃ >=< S̃1|S̃1 > + < S̃2|S̃2 >, (54)

which corresponds to clump patterns. Note that, the
non-duality preserves causality.
Consider again the same YDS experiment with polar-

ization filters P1 and P2 instead of the blockers B1 and
B2, respectively. In this case, the IRSM is,

|S >>= |S1 > |P1 > +|S2 > |P2 >, (55)

where, |P1 > and |P2 > correspond to photon’s polar-
ization states. The interaction of IRSM with its excited
dual at the screen is,

<< S|S >>=
2

∑

i,j=1

< Si|Sj >< Pi|Pj > . (56)



11

If |P1 > and |P2 > are orthogonal, < P1|P2 >= 0, then
the interference vanishes even though < S1|S2 > 6= 0.
If |P1 >= |H > and |P2 >= |V >, then Eq. (55)

becomes,

|S >>= |S1 > |H > +|S2 > |V >, (57)

where, |H > and |V > are horizontal and vertical polar-
ization states, respectively. Insertion of a 45o polariza-
tion rotator (PR), with an unit operator Ipr = |H̄ ><
H̄ |+ |V̄ >< V̄ |, just before the screen, changes the rep-
resentation of IRSM:

|S >> = < H̄ |S >> |H̄ > + < V̄ |S >> |V̄ >

≡ |S̄1 > |H̄ > +|S̄2 > |V̄ > (58)

where,

|H̄ >= (|H > +|V >)/
√
2; |V̄ >= (−|H > +|V >)/

√
2

|S̄1 >=< H̄ |S >>= (|S1 > +|S2 >)/
√
2 (59)

and

|S̄2 >=< V̄ |S >>= −(|S1 > −|S2 >)/
√
2. (60)

It’s clear from Eq. (59) and Eq. (60) that the photon
passing through the slit-1 or slit-2 will be present in either
|S̄1 > or |S̄2 >, respectively.
Now, inserting a Wollaston prism (WP), with unit op-

erator Iwp = |H >< H | + |V >< V |, between PR and
the screen, changes again the representation of the pho-
ton state:

|S >> = (< H |H̄ > |S̄1 > + < H |V̄ > |S̄2 >)|H >

+(< V |H̄ > |S̄1 > + < V |V̄ > |S̄2 >)|V >

= 1√
2
[(|S̄1 > −|S̄2 >)|H > +(|S̄1 > +|S̄2 >)|V >]

= |S1 > |H > +|S2 > |V >, (61)

whose interaction with its dual at the screen is,

<< S|S >> =
1

2

2
∑

i,j=1

(−1)(i+j) < S̄i|S̄j >< H |H >

+
1

2

2
∑

i,j=1

< S̄i|S̄j >< V |V >

= < S̄1|S̄1 > + < S̄2|S̄2 >

= < S1|S1 > + < S2|S2 >, (62)

showing that the clump patterns are intact even in the
presence of both PR and WP. Note that, the above equa-
tion never implies < Si|Si >=< S̄i|S̄i >.
The RFDs of two orthogonal components, |H > and

|V >, from the WP can be detected by two independent
detectors, say H and V :

RFDH =
1

2

2
∑

i,j=1

(−1)(i+j) < S̄i|S̄j >=< S1|S1 >(63)

and

RFDV =
1

2

2
∑

i,j=1

< S̄i|S̄j >=< S2|S2 > . (64)

Therefore, a photon present in the |H > component of
the WP will contribute a point to the anti-interference
pattern given in Eq. (63) and the one in |V > to inter-
ference pattern in Eq. (64). Also, these equations cor-
rectly predict that the photon initially entered through
slit-1 or slit-2 of YDS will be detected by H or V, re-
spectively, due to the law of conservation of momentum.
In the absence of PR, the usual clump patterns corre-
sponding to YDS will be formed at H and V. The role
of PR is simply to replace the clump patterns by the re-
spective anti-interference and interference structures. If
the screen is used for detection instead of H and V, then
these structures disappear into each other yielding the
clump patterns as shown in Eq. (62).
Note that, the PR can be randomly introduced or re-

moved before a photon passes through the same. This
technique was used in an experiment by Jacques et al.
[36, 37], where the Mach-Zehnder interferometer is used
instead of YDS assembly. Similar experiment using sin-
gle atoms [38] and its quantum versions [39, 40] where
the detector itself is described by a quantum state [41]
were also done. As it was already explained, even dur-
ing the random changes of representations or boundary
conditions for the IRSM, the photon flies continuously.

X. CONCLUSIONS AND DISCUSSIONS

The physical reality of the wave function remained as
a mystery since its discovery by Prof. E. Schrödinger
and the same is brought to light for the first time by the
present non-dualistic interpretation of quantum mechan-
ics. It’s shown to be an Instantaneous Resonant Spatial
Mode (IRSM) where a quantum particle flies due to the
constants of motion. The IRSM and its particle always
coexist together as a single entity, which is named as
wave-particle non-duality. As demanded by the quantum
formalism, if the underlying space of the Nature is rec-
ognized as a complex vector space rather than the usual
Euclidean, then the quantum phenomena at the single-
quantum level become causal and deterministic exactly
like the classical phenomena. In a nutshell, the Universe
is fundamentally quantum mechanical even though it ‘ef-
fectively’ appears to be classical at a large scale. The
unavoidable absolute phase of the wave function is shown
to be responsible for the outcome of a definite eigenvalue
of an observable in a given experiment. Moreover, the
position eigenstate, containing a quantum, is shown to
be related to the same absolute phase in such a way that
its eigenvalue, which varies with time, always lies on a
classical path of least action, proving the commonality
of classical and quantum mechanical times. Unknown
to the classical formalism, the quantum formalism de-
mands the consideration of inner-product of the state
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vector with its dual while imposing the boundary con-
ditions to the wave function. This naturally yields the
relative frequency of detection and hence, the Born rule,
showing that the statistical nature of doing experiment
is the actual reason behind the success of the probabilis-
tic interpretation. Moreover, the Copenhagen interpreta-
tion is completely contained within the non-duality. Also,
a causal explanation of Wheeler’s delayed-choice experi-
ment is provided for the first time. In the Young’s double-
slit experiment, if the screen is suddenly replaced by a
twin-telescopes while the particle has already crossed the
double-slit, then the IRSM or the representation of par-
ticle’s state vector changes accordingly but, the particle
itself flies continuously. The same logic is applicable, for
example, in the case of hydrogen atom. When it absorbs
or emits a photon, the electron motion will remain con-
tinuous though the energy eigenstate changes. In the case
of quantum tunneling, the particle itself simply moves in
its IRSM, though it appears to an observer as if tun-
neling through the potential barrier. With respect to
non-duality, the measurement problem doesn’t exist.
The work reported here is a confirmation of what Ein-

stein said, “God does not play dice”. The standard quan-

tum mechanics is universally valid and the classical me-
chanics emerges out only ‘effectively’, but not as a lim-
iting case of Plank’s constant becoming zero. Since, the
non-duality is a visualization of the nature of reality re-
flected within the quantum formalism, it will go through
both time-dependent and relativistic quantum mechan-
ics. In the relativistic case, the IRSM is such that, apart
from obeying the usual quantum mechanical commuta-
tion relations, it takes care of the cosmic speed limit of
its resonant particle, though it itself can change instan-
taneously.
Another mystery of the quantum world, untouched in

the present article, is the entanglement of two or more
particles [42, 43]. It’s worth mentioning that the non-
duality is capable of providing the physical mechanism
for Einstein’s spooky action-at-a-distance [42] by making
use of the nature of IRSM and will be reported elsewhere.
The wave-particle non-duality will surely bring consen-
sus about the kind of physical reality being reflected by
the quantum formalism. Undoubtedly, it will further en-
hance the deeper understanding of Nature’s working at
the most fundamental level, particularly in the direction
of quantum gravity.
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