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Abstract

This paper reproduces the dynamics of quantum mechanics with a four-dimensional spacetime

manifold that is branched and embedded in a six-dimensional Minkowski space [1–4]. Elementary

fermions are represented by knots in the manifold, and these knots have the properties of the

familiar particles [5–7]. We derive a continuous model that approximates the behavior of the

manifold’s discrete branches [8]. The model produces dynamics on the manifold that corresponds

to the gravitational, strong, and electroweak interactions [9].
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I. INTRODUCTION

Physics possesses two fundamental theories, general relativity and the Standard Model,

both strongly tested and verified in their respective domains [10, 11]. A naive combination

of these theories results in unresolvable infinities [12]. Theorists have produced quantum

theories of gravity with varying degrees of success. String theory (or M-theory) makes few

assumptions and has few parameters, and it produces a quantum theory of gravity along with

producing familiar particles [13]. Unfortunately, string theory does not specify a particular

choice for the way the vacuum’s small dimensions should curl up, and most or all predictions

depend on this configuration of the Calabi-Yau space [14]. Loop quantum gravity makes

few assumptions and has few parameters, and it produces a quantum theory of gravity and

explains a few astrophysical phenomena. Unfortunately, its predictions and explanatory

power are quite limited [15].

Like string theory, the theory presented here makes few assumptions and has few free

parameters, and it also produces a quantum theory of gravity, as well as the familiar forces

and particles. By contrast, however, it has greater explanatory power and the power to

predict observations at energies achievable with current technology.

The theory is fully geometric. We assume that the spacetime manifold can be knotted.

From knot theory we know that a piecewise linear n-manifold can be knotted only if it

is embedded in an n+2-dimensional space [16]. Therefore we assume the 4-dimensional

spacetime manifold is embedded in a 6-dimensional Minkowski space. We assume that the

manifold is branched so that paths along the manifold may separate and recombine. In this

way we introduce interference and thus a probabilistic theory [17].

In this paper we will present the assumptions and structure of this theory, as well as work

out the implications of those assumptions in some natural limits and show how the theory

works in doing some calculations. In a companion work, one of us [Ellgen] will present a

calculation of the fine structure constant from first principles [18].
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II. FIRST PRINCIPLES

A. Dynamical variables

The dynamical variables are the shape of the 4-dimensional spacetime manifold M ; the

vector field A⌫ ; and the scalar field ⇢, a conformal weight. The vector A⌫ is a function

of M and is 6-dimensional, and ⇢ is a function of M . The manifold M is embedded in a

Minkowski 6-space ⌦. The vector field A⌫ exists not only in the tangent space of M but in

the tangent space of ⌦.

B. Derivatives

The metric on ⌦ is ⌘µ⌫ = diag(1,�1,�1,�1,�1,�1) with coordinates x⌫ , where

⌫ = 0, 1, ..., 5. The manifold M inherits the coordinates x⌫ . The restriction of ⌘µ⌫ to

M is the metric ⌘̄µ⌫ . If M is flat and in the span of the first four coordinates, then we can

choose ⌘̄µ⌫ = diag(1,�1,�1,�, 1, 0, 0). Often we think of taking covariant derivatives of

tensors on a curved manifold M , which requires parallel translation of tensors so that they

are defined within the tangent space of the manifold. Covariant derivatives with respect

to the metric on the manifold are still well defined. We can also, however, determine the

rate of change of a tensor with respect to distances in the 6-space ⌦. Because the tensor is

defined with respect to the tangent space of ⌦, no parallel translation is required and we

can use ordinary partial derivatives with respect to x⌫ . If T is a tensor on M , we will define

the rate of change of T in a direction perpendicular to the manifold to be zero. Let v̄µ be

the projection of vµ onto M . In this case we can find @µT , and the rate of change in the

direction of vector vµ is vµ(@µT ) = v̄µ(@µT ). For example, in terms of ordinary partials, the

inherited metric can be written

⌘̄µ⌫ = x↵
,µx↵,⌫ (1)

Here, x↵ are the coordinates on the manifold M , inherited from the coordinates of ⌦.
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C. Branched manifolds

Branched paths on M allow for interference in calculations and thus for a quantum

theory [19]. An embedded branched n-manifold is an embedded n-complex such that each

point has a well-defined n-dimensional tangent space. In this theory we use M , a branched

4-manifold embedded in a 6-dimensional Minkowski space. We define B to be a branch of M

if B is a closed unbranched 4-manifold without boundary and B is contained in M . In Fig. 1

we see a branched 1+1 manifold Y in the last diagram. The t coordinate is timelike, and

the x and y coordinates are spacelike. The branches B1 and B2 making up Y are shown in

blue in the first two diagrams. The manifold Y is embedded in a 2+1 Minkowski space. The

branches separate on the dashed line segments, and on these segments the tangent spaces

of B1 and B2 coincide. The black curves represent the paths of knots on Y . In this figure,

branch B1 has infinite extent, as does B2. They are separate for only a finite time. Where

distinct branches Bi intersect, the tangent spaces of the branches must be consistent; this

may pose a problem only where the branches B1 and B2 separate. Eventually we will be

performing sums over multiple histories, and each branch will represent a history.
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y
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x

y

t

x

y

FIG. 1: The first two diagrams show two branches of a 1+1 manifold Y , shown in the third
diagram. Y consists of branches B1 and B2, and Y is embedded in a 2+1 Minkowski space. The
branches separate on the dashed line. On the dashed line, the tangent space of B1 is the same as
that of B2. The black curves are the paths of knots on Y .

D. Constraints

So far we have not introduced any constraints on the manifold M or A⌫ or ⇢. First we

introduce a metric gµ⌫ that is distinct from ⌘̄µ⌫ . We will use the vector field A⌫ and the
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conformal weight ⇢ to define the metric [20]

gµ⌫ = ⇢2A↵,µA
↵
,⌫ (2)

In any local neighborhood, we can think of A⌫ as being analogous to a coordinate system

and the metric gµ⌫ as a measurement of the rate at which A⌫ changes, weighted by ⇢. The

picture of A⌫ as a coordinate system will be a helpful metaphor. We constrain A⌫ by the

equation

det(A↵,µA
↵
,⌫) = �1 (3)

The tensor A↵,µA↵
,⌫ has six dimensions and rank 2. As a matrix in six dimensions, it

has determinant zero, but considered as a tensor on the 4-dimensional tangent space

of M , the determinant is non-zero, and that is the determinant we use here. For ex-

ample, A⌫ = x⌫ always satisfies the condition regardless of manifold geometry because

det(x↵,µx↵
,⌫) = det(⌘̄µ⌫) = �1.

We can determine the Riemann and the Ricci tensors for M relative to gµ⌫ . Now we

require that the Ricci tensor be flat. We write R̂µ⌫ to indicate Ricci curvature relative to

the metric gµ⌫ (in contrast to Ricci curvature relative to ⌘̄µ⌫ which we write Rµ⌫). Then the

constraining equation of the manifold is

R̂µ⌫ = 0 (4)

We define a branch weight as follows

w = (� det(g))1/2 = ⇢4 (5)

Ricci flatness implies that the translation of an infinitesimal ball along initially parallel

geodesics will preserve the volume of the ball [21]. Therefore the weight w of the ball

is preserved by translation along geodesics of gµ⌫ . The manifold M is branched, and we

assume that the weight is also preserved at branchings. This implies the conformal weight

⇢ changes at branchings such that the weight w is additive. Ricci flatness R̂µ⌫ = 0 therefore

extends in a natural way to the branched manifold M . We introduce the assumption that

the manifold can branch only a finite number of times by introducing the constraint
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w � 1 (6)

A branch with initial weight w can therefore branch no more than w times. In Fig. 2 we

see branched manifold Y , as well as a spacelike slice through that manifold in the bottom

diagram. Just at the branch separation, the separate branches have weights w1 and w2

(green dots), while at the combination the weight is w3 = w1 +w2 (red dot). The thickness

of the line represents the weight.

FIG. 2: We take a slice through a branched
manifold Y . The bottom of the diagram shows that
slice. At the branch separation, the branches have
weights w1 and w2. The weights are additive such
that the combined branch has weight w3 = w1 + w2.
The thickness of the slice represents the weight but
does not correspond to an actual thickness.

As we discussed, Ricci flatness, R̂µ⌫ = 0, implies that the translation of an infinitesimal

ball along initially parallel geodesics preserves the ball’s volume with respect to gµ⌫ . If a

section of the manifold were to increase in volume over time, we can conserve the integrated

weight over the volume by decreasing the weight over the volume. We see this in Fig. 3

where the manifold stretches and the weight w compensates for the stretching.

The branch weight w is conserved at branching, and therefore branching reduces the

weight on each branch. We see this in Fig. 4 where a branched 1+1-manifold stretches. As

the volume increases, the weight w decreases to compensate for it. The weight is constrained

by w � 1. As w approaches 1, the only way to continue to extend the volume is by removing

weight from the branches and then by reducing the number of branches. When there is only

one branch and w = 1, it is no longer possible to increase the volume. Thus the constraint

R̂µ⌫ = 0 implies an exchange between branching and volume.

We have introduced the metric gµ⌫ = ⇢2A↵,µA↵
,⌫ constrained by det(A↵,µA↵

,⌫) = �1,

R̂µ⌫ = 0, and w = (� det(g))1/2 = ⇢4 � 1. We will introduce another constraint as follows:

Let ⌘+ be the set of points at positive distance from p and in the future of p relative to ⌘µ⌫ ,

as shown in the first diagram of Fig. 5. Let g+ be the set of points at positive distance from
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FIG. 3: In the left diagram we see a flat 1+1 manifold in which the thickness of the horizontal
blue lines represents the weight w in a sequence of spacelike slices. In the middle diagram, the
manifold stretches over time in the direction of the x-axis. The weight w reduces to compensate
for the increased volume. The diagram on the right is the sequence of slices from the middle
diagram. The total weight in each slice is conserved while the volume increases.

FIG. 4: In the left diagram we see a flat 1+1 manifold. In the middle diagram, the manifold is
branched such that the branches separate on the dashed line. The manifold stretches over time in
the direction of the x-axis. The weight w reduces to compensate for the increased volume until
there can only be one branch. The diagram on the right is the sequence of slices from the middle
diagram showing both weight and branching. The total weight in each slice is conserved while the
volume increases.

p and in the future of p relative to gµ⌫ , as shown in the second diagram. We require that

the sets ⌘+ and g+ intersect, as shown in the third diagram. The e↵ect of this constraint is

to set a limit on A⌫
,µ.
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FIG. 5: We examine causal cones in a small region such that the geometry and A

⌫ field are
approximately linear. Points in gray have x⌫ displacement �x⌫�x

⌫ � 0. Points in green have A⌫

displacement �A⌫�A

⌫ � 0. The constraint requires that the future A

⌫ cone intersects the future
x

⌫ cone.

III. ASSUMPTIONS

The assumptions are the following:

• We assume a Minkowski 6-space ⌦. The metric on ⌦ is ⌘µ⌫ = diag(1,�1,�1,�1,�1,�1).

The coordinates are x⌫ .

• We assume a branched 4-manifold M embedded in ⌦. A branch of M is any

closed unbranched 4-manifold B without boundary that is contained inM . The metric

⌘̄µ⌫ on M is inherited from ⌦. For convenience of coordinates we assume that, if M is

flat, then M is in the subspace spanned by x0, x1, x2, x3.

• We assume non-self-intersection of each branch of M . For any branch B, the

branch B cannot intersect itself. This is necessary to prevent knots from spontaneously

untying.

• We assume a vector field A⌫
. The field satisfies det(A↵,µA↵

,⌫) = �1.

• We assume a conformal weight ⇢. Then we define the metric gµ⌫ = ⇢2A↵,µA↵
,⌫

and a Ricci curvature R̂µ⌫ based on gµ⌫ .

• We assume a constraint on gµ⌫ relative to ⌘µ⌫. The metrics gµ⌫ and ⌘µ⌫ define

sets g+ and ⌘+, and we assume that g+ must intersect ⌘+.

• We assume Ricci flatness R̂µ⌫ = 0 for gµ⌫.

• We assume that the weight w = (� det(g))1/2 = ⇢4 is conserved at branching.
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• We assume a lower limit w � 1. This implies that the manifold can branch only

a finite number of times.

IV. CALCULATION IN PRINCIPLE

A physical theory must produce predictions for the results of experiments or at least, as

in the case of a quantum theory, the probabilities of certain outcomes. In this section we

present an overview of calculating the probability that an electron, starting at p at time t1

will be measured at q at time t2, as in a two-slit experiment. The formalism for calculating

other probabilities, such as for an electron-positron pair to form a muon and antimuon,

involves the addition of other factors.

Calculations in this theory resemble Feynman’s sum over histories, except that Feynman’s

paths cover a continuum of spacetime, and paths in this theory are discrete. For the electron

mentioned before, we represent it as a knot in the spacetime manifoldM . The manifold M is

dynamical, branching and recombining continually. Although there are some constraints on

the structure of the manifold, it is underconstrained. Of all the configurations the manifold

might take, it tends to take one of maximum entropy [22].

The manifold branches, and knots on the manifold separate along with the branches (as

we saw in Fig. 1). The knots on the various branches are free to rotate and grow or shrink

in the x4 and x5 coordinates. We express the magnitude of the knot in the x4 and x5

coordinates by ⇠ and the phase angle of the knot by ✓. We describe the knot geometry [23]

by the amplitude a = ⇠ei✓. When branches recombine, knots on the branches recombine,

and the amplitude of the resulting knot depends on the incoming branches and knots. The

dynamics of manifold branching and knot recombination determine the paths that yield a

desired event or interaction. For example, we could determine the amplitude for an electron

starting at p at time t1 to be measured in a region dV around q at time t2. The number of

amplitudes in the sum is quite large but not infinite.

We can alternatively approximate the amplitudes on a collection of branches by a complex

amplitude  , which we will call the quantum amplitude. When collections of branches

combine, the quantum amplitude is additive, so that  sum =  1 +  2. We can calculate the

probability using the quantum amplitude, summing over all paths that produce the event or

interaction. Later (Section VII) we will show how this approximation reproduces the path
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integral of quantum mechanics [24].

The primary di↵erence between this theory and standard quantum mechanics is that

this theory involves a discrete and finite sum, while quantum mechanics involves a sum

over a continuum. We can clarify this statistical description of the branched manifold by

introducing an analogy with heat transfer in a crystalline solid. We can model the solid as

atoms that transfer momentum during collisions. Carried out in detail, such a calculation

is intractable, requiring knowledge of initial conditions that is never available. Nevertheless

this model closely resembles the physics. We can also model the solid with a continuous

approximation, that is, using the heat equation. This model is not as physical, but it is

tractable. In this paper we will show that the dynamics of the discrete, interacting branches,

which we claim reflects the physics, can be approximated in a continuous expression, the

Feynman path integral. Because we are modeling a system with a finite number of branches,

our calculations do not yield the usual infinities [25].

V. LAGRANGIAN

Instead of following the physics tradition of simply stating an expression for a Lagrangian,

we will seek to derive a Lagrangian by considering what condition will maximize the entropy

of M .

A. Branch cohesion

The probability of an event is proportional to the number of branches that result in that

event. Recombination increases the number of branches. In the first diagram of Fig. 6, two

branches result in the event, the left branch and the right branch. In the middle diagram of

Fig. 6, four branches result in the event: left-left, left-right, right-left, and right-right. In the

last diagram of Fig. 6, many branches result in the particular event. Recombination increases

as branches become closer, so that probability increases as branches become closer. Branches

must have the same topology in order to recombine. Therefore, branch recombination can

occur only if the knots on the branches match when the branches recombine. As we can see

from Fig. 6, as the number of recombinations increases, the entropy also increases.
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FIG. 6: These are three diagrams of a branched 0+1 manifold. On the left there are just two
branches. In the middle there are four branches: left-left, left-right, right-left, and right-right.
Staying close increases the number of branches and therefore increases the probability. The
manifold maximizes entropy by keeping the branches close, as on the right.

B. Modeling M with an unbranched manifold

Because the branches of M stay close to each other, it is possible to approximate the

shape of M with an unbranched manifold. We will define �M as the unbranched manifold

with A⌫ field such that M is as close as possible to �M in both geometry and A⌫ field. Let

the weight w on �M be the sum of the weights on the branches of M . In Fig. 7 we see

a model of such an approximation in that the thick blue band represents a 0+1 branched

manifold C. The black curve represents the manifold �C . We define the Lagrangian L on

�M to be the maximum entropy that M can achieve when it is close to �M . The branched

manifold M maximizes entropy, and we can find �M to maximize the entropy and thus the

Lagrangian. Once we derive the Lagrangian L, we will be able to characterize the behavior

of M by finding the unbranched manifold �M that maximizes L [26].

t

x

FIG. 7: The blue line represents the branches of a branched
0+1-manifold C. The black line is the manifold �C such that C is as
close as possible to �C . The weight w on �C is equal to the sum of the
weights on the branches of C.
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C. Entropy and curvature

We begin by considering a 1-dimensional manifold C with a fixed length and a fixed

boundary. If the manifold is stretched tight, then its entropy is very low, as we see in the

first diagram of Fig. 8. Here the blue curve represents the manifold C. The entropy of C

is maximized when C is as close as possible to the straight line connecting its boundary

points, as we see in the last diagram of Fig. 8. If C is a manifold of fixed n-volume with

fixed boundary, then the entropy of C is maximized when C is as close as possible to the

manifold �C of minimal volume with the same boundary. In order for the manifold �C to

have minimal volume, it is necessary that the quantity
R
�C

R d�C be minimized or that the

action S[�C ] =
R
�C

�R d�C be maximized, where R is the scalar curvature.

FIG. 8: A curve C has fixed endpoints and fixed length. The
entropy of C is maximized when C is as close as possible to the
straight line connecting its endpoints.

Now we consider a branched 1-manifold C that has a fixed total weight
R
C
w dC and a

fixed boundary. Again, if the manifold is stretched tight then its entropy is very low. Because

the entropy increases with an increasing number of branches, the manifold maximizes its

entropy by being as close as possible to the straight line connecting its boundary points.

In Fig. 9 we see that the stretched manifold has only one branch, while the unstretched

manifold has multiple branches and therefore greater entropy. A n-dimensional branched

manifold maximizes its entropy by being as close as possible to the minimal volume manifold

with the same boundary. This implies the action S[�C ] =
R
�C

�R d�C is maximized [27].

FIG. 9: A branched curve C has fixed endpoints and fixed
length. The entropy of C is maximized when C is as close as
possible to the straight line connecting its endpoints.

In Section XIB of the Appendix we show that the amount of recombination is propor-

tional to the number of branches. The number of branches is linear in the weight w. The
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amount of recombination is therefore linear in w. The entropy is linear in the amount of

recombination. Therefore, the entropy is linear in weight w, and the action as a function of

geometry is

S[�M ] =

Z

�M

�wR d�M (7)

D. Entropy and field

The A⌫ field onM is constrained as described in Section IID. The metric gµ⌫ = ⇢2A↵,µA↵
,⌫

and the metric ⌘µ⌫ have future causal cones g+ and ⌘+ that must intersect. This constraint

on the metric gµ⌫ limits the range of A⌫
,µ. In the left diagram of Fig. 10, the A0 coordinate

and the t coordinate nearly coincide, and the future causal cones ⌘+ and g+ nearly coincide.

Curves of constant A0 are not quite the same as lines of constant t. The large number of

variations in A0 indicates a large entropy. In the right diagram of Fig. 10, the A⌫ field is

closer to its limit. In the figure, the variations in A0 must not have the e↵ect of causing

g+ to no longer intersect ⌘+. This limits the magnitude of A⌫
,µ and reduces the entropy in

A⌫ . To summarize, the constraint on future and past causal cones sets a constraint on the

metric gµ⌫ , and this limits the range of A⌫
,µ. Furthermore, as A⌫

,µ approaches this limit, the

entropy decreases.

x

t

y x

t

y

FIG. 10: These are two diagrams of sets of constant A0. Ricci flatness R̂µ⌫ = 0 allows random
variation of the field A

⌫ . The constraint on gµ⌫ relative to ⌘µ⌫ limits A⌫
,µ. On the left, there is a

weak electric field, and A

⌫
,µ is far from its limit. The entropy is large. On the right, there is a

strong electric field, and A

⌫
,µ is close to its limit. The entropy is small.

So far we have introduced A⌫ as a fundamental dynamical variable and connected it to

the metric gµ⌫ . The field A⌫ plays another role in this theory, and it is no coincidence we

called it A⌫ ; it is the 6-dimensional analog to the electromagnetic potential. Thus we can
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write an analogous 6-dimensional electromagnetic field tensor on M :

F µ⌫ = A⌫,µ � Aµ,⌫ (8)

We want to derive entropy as a function of F µ⌫ . In order to do this we need to translate

the constraint that the future cone g+ must intersect the future cone ⌘+ into a condition on

F µ⌫ . We begin by considering a weak field limit for A⌫ so that F µ⌫ is small.

By eigenvector decomposition, A⌫
,µ can be described as scaling of vectors and rotations.

Only rotations can reduce the intersection of g+ and ⌘+ or even cause them not to intersect.

Therefore, to leading order, only rotations a↵ect entropy. Note in Fig. 11 that a greater

rotation leads to a smaller intersection of g+ and ⌘+ and in Fig. 10 that this leads to less

entropy. In general a matrix Q can be decomposed into symmetric and antisymmetric

components, Q = S +A, where S = (1/2)(Q+QT ) and A = (1/2)(Q�QT ). In the case of

an infinitesimal rotation matrix, we have Q ⇡ I + A for infinitesimal antisymmetric A.

Since we define F µ⌫ = A⌫,µ � Aµ,⌫ in analogy with electromagnetic theory, and it is

an antisymmetric tensor, it is the rotational component of A⌫
,µ. The Lorentz invariant

magnitude of the rotational component of A⌫
,µ is F µ⌫Fµ⌫ .

As the electric field becomes large, either A0
,⌫ or A

⌫
,0 becomes large, and the future causal

cone g+ is rotated relative to the future causal cone ⌘+. Entropy decreases. Thus we expect

that entropy is proportional to F µ⌫Fµ⌫ . The quantity F µ⌫Fµ⌫ decreases on every branch, so

we expect entropy to be proportional to the number of branches or, rather, to the branch

weight w. We therefore write the linearized Lagrangian as the entropy L = w(1/2)F µ⌫Fµ⌫

and the action as

S[�M ] =

Z

�M

1

2
wF µ⌫Fµ⌫ d�M (9)

According to eqn. (9), the quantity S[�M ] does not diverge no matter how large F µ⌫ is.

We know, however, that as the future causal cone g+ begins to lose its intersection with ⌘+,

the entropy, the Lagrangian, and the action S[�M ] must diverge. Hence the relationship

between the Lagrangian (and action) and F µ⌫Fµ⌫ must be nonlinear. Equation (9) represents

the lowest order approximation of the actual (nonlinear) expression.
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FIG. 11: In an electric field, the quantities A0,⌫ or A⌫,0 are non-zero and the causal cone of gµ⌫
is rotated relative to the causal cone of ⌘µ⌫ . The causal cone of gµ⌫ must intersect the causal cone
of ⌘µ⌫ . This constraint limits the range of A⌫

,µ and a↵ects the entropy in the A

⌫ field.

E. Lagrangian and energy

Including the e↵ects of both the geometry and the A⌫ field, we write the Lagrangian on

�M as

L = w
⇣1
2
F µ⌫Fµ⌫ �R

⌘
(10)

and the corresponding action as

S[�M ] =

Z

�M

w
⇣1
2
F µ⌫Fµ⌫ �R

⌘
d�M (11)

Here we have combined eqns. (7) and (9). The first term is F µ⌫Fµ⌫ , familiar from electro-

magnetism. The second term is scalar curvature R, familiar from general relativity. We

will see later how these terms generate the properties of electromagnetism and gravity with

which we are familiar.

We can use eqn. (11) to obtain the energy-momentum tensor. We defined the manifold �M

as the unbranched manifold such that M is as close as possible to �M , where M maximizes

entropy. The manifold �M does not necessarily coincide with flat space, but we may want

to express the measure d�M in terms of the flat space measure dtdV .

If an element of d�M moves with a velocity � relative to flat spacetime, then we write

d�M =
1

�
dtdV (12)

We denote the energy-momentum of some matter-energy at rest as T µ⌫
restd�M . We can boost

to another frame in order to find the energy-momentum T µ⌫d�M . We can see this illustrated
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in Fig. 12. In the left diagram, we see a manifold at rest, while in the right diagram we see

a manifold in motion. If some matter-energy has energy-momentum T µ⌫
rest in the manifold in

the left diagram, it will have energy-momentum T µ⌫ in the manifold in the right diagram,

where T µ⌫ is the Lorentz transformation of T µ⌫
rest. If the manifold moves in a direction that is

not tangent to the manifold, for example, if �M has motion given by ~� = (1, 0, 0, 0,��, 0),

then we write

T µ⌫d�M =

2

666666666664

�2T 00
rest T 01

rest T 02
rest T 03

rest ��2T 00
rest 0

T 10
rest T 11

rest T 12
rest T 13

rest 0 0

T 20
rest T 21

rest T 22
rest T 23

rest 0 0

T 30
rest T 31

rest T 32
rest T 33

rest 0 0

��2T 00
rest 0 0 0 �2�2T 00

rest 0

0 0 0 0 0 0

3

777777777775

⇣1
�

⌘
dtdV (13)

The change of measure from d�M to dtdV can confuse the quantity T µ⌫ but we can correct

that by referring to the action S that is the integral over space and time. For example, to

compare the energy, we can use the integral over space and time,
R
E dt =

R
�T 00

restdtdV , and

see that, on some small volume dV , we have E = �T 00
restdV . For a volume dV of spacetime,

the energy is �T 00
restdV and the momentum is ��T 00

restdV in the direction of motion. The

familiar expression for rest mass, momentum, and total energy results from motion that is

not in the direction of the tangent space of �M at dV . Thus, knots have rest mass because

the tangent space of the knot is not parallel to flat spacetime. When a knot moves parallel

to spacetime, parts of its geometry extend in directions x4 and x5, and its motion is not in

the direction of the tangent space on those parts [28]. See Fig. 13.

x

t

yx

t

y x

t

y

FIG. 12: The left diagram is a section of the manifold at rest. In the middle and right diagrams
we show a section of the manifold in motion in the �y direction. The energy-momentum tensor
T

µ⌫ is the Lorentz transformation of Tµ⌫
rest, the energy-momentum in the rest frame.

16



v
v

FIG. 13: A knot in the manifold is not flat. If the knot is in motion with velocity v then there
are points on the knot where that velocity is not in the tangent space. This implies that Lorentz
transformations of the energy-momentum tensor at those points correspond to rest mass.

VI. ELEMENTARY FERMIONS AS KNOTS

Elementary fermions all have the same topology, R3#(S1⇥P 2), which we will refer to as

a knot and which we will describe in this section. This topology is significant because the

equation R̂µ⌫ = 0 strongly constrains the way that the spacetime manifold M can change

topology. The manifold M can, however, change topology to produce pairs of R3#(S1⇥P 2).

We first describe the knot R3#(S1⇥P 2) and then show how to create pairs of R3#(S1⇥P 2)

subject to R̂µ⌫ = 0. Subsequently we show how R3#(S1⇥P 2) has properties corresponding

to the elementary fermions [29–32].

A. Fermion topological properties

To describe the topology of an elementary fermion R3#(S1⇥P 2), we begin by considering

a simpler case in two dimensions, R2#P 2. To make R2#P 2 we begin with R2�D2, the plane

with a disk removed. Then we identify the points on the boundary of the disk such that each

point is identified with the point that is diametrically opposite. We see this illustrated in

Fig. 14. The resulting topology is R2#P 2, and it is non-orientable. If we follow a path that

passes through the P 2 then we find that the orientation of a coordinate frame translated

along that path is reversed. Likewise, if we cut a narrow strip around that path, the result

is a Möbius strip.

To make R3#(S1 ⇥ P 2) we perform a similar procedure. In cylindrical coordinates, we

remove a solid torus T centered around the circle at z = 0 and r = a. In every constant

� slice we have a removed disk, as in the case of R2#P 2. In each slice we perform the same

point identification of diametrically opposite points. The result is R3#(S1 ⇥ P 2). We see
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this illustrated in Fig. 15.

We note that R3#(S1⇥P 2) is also non-orientable. This implies that there is no consistent

coordinate frame on the manifold that is based on the rotation group SO(3). However, as

with all non-orientable manifolds, we can use a coordinate frame that is based on the double

cover of the rotation group. Instead of using the Lorentz transformations SO(3) we use the

group SU(2), as we do for elementary fermions.

p

p
q

q

FIG. 14: On the left is R2 �D

2. The green circle is the boundary of the removed D

2. We
identify each point on the boundary with the point that is diametrically opposite, for example the
points p and q shown here. This makes R2#P

2. On the right is R2#P

2 with a particular path
through the P

2 shown in blue. We see that the outer blue circle connects to the inner blue circle
across the P

2. Translating a coordinate frame along that path reverses the orientation. Cutting a
strip around that path produces a Möbius strip [33].

ϕ
FIG. 15: On the left is R2#P

2. On the right we show a slice through R3#(S1 ⇥ P

2) at angle �.
In that slice we have R2#P

2.

B. Toroidal coordinates

R3 has toroidal coordinates (⌧, �,�) that relate to cylindrical coordinates (r, z,�) as fol-

lows:
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r = a
sinh ⌧

cosh ⌧ � cos �

z = a
sin �

cosh ⌧ � cos �

(14)

The sets of constant ⌧ are tori centered around a circle of radius a. At distance zero from

the circle we have ⌧ = 1. At infinite distance from the circle we have ⌧ = 0. The sets of

constant � are spheres such that their intersection with sets of constant ⌧ are orthogonal.

Close to the circle, the coordinate � is a polar angle around the circle. Toroidal coordinates

are an orthogonal coordinate system [34–37]. Their properties assist with field equations.

We see sets of constant ⌧ and � illustrated in Fig. 16.

FIG. 16: This is a diagram of bipolar coordinates.
The diagram shows sets of constant ⌧ in blue and sets
of constant � in red in the rz plane. The value of ⌧
increases to infinity as the size of the blue circles goes
to zero. We extend to 3-dimensional toroidal
coordinates by including the polar angle � that has
the same form as the polar angle of cylindrical
coordinates.

C. Mapping coordinates

We use a map from 3 dimensions to 5 dimensions to describe an elementary fermion

R3#(S1 ⇥ P 2). The coordinates of the 3-space are toroidal coordinates (⌧, �,�) and the

coordinates of the 5-space are a mix of toroidal and Cartesian coordinates (⌧, �,�, x4, x5).

If we denote by T the solid torus ⌧ > 1, then we can map from R3 � T to R5 using

X(⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⌧ sin(2�), ⌧ cos(2�)

⌘
(15)

The domain of the map is R3 � T , which is R3 with the solid torus T removed, where
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⌧ > 1. The map stretches R3 � T to cover the missing torus using ⌧ ! ⌧/(1 � ⌧), so

that points on the surface of the torus (⌧ = 1) map to the circle at the center of the torus

(⌧ = 1). Not only that, the map makes each point on the boundary of T identical to the

point that is diametrically opposite it. This happens because we have

X(1, � + ⇡,�) = (1, � + ⇡,�, sin(2� + 2⇡), cos(2� + 2⇡))

= (1, �,�, sin(2� + 2⇡), cos(2� + 2⇡))

= (1, �,�, sin(2�), cos(2�))

= X(1, �,�) (16)

(The second equality is due to change of the � coordinate, which is a polar coordinate such

that all values of � are equivalent at ⌧ = 1.) We see this illustrated in Fig. 17.

The map X produces a knot R3#(S1⇥P 2). In addition, however, the condition R̂µ⌫ = 0

places a constraint on the conformal weight ⇢. See Section XIC in the Appendix for details.

FIG. 17: On the left is R2 �D

2 with polar angle �. On the right is R3 � T , in toroidal
coordinates, with a slice at � = �0. At the green circle we have ⌧ = 1. The map X makes
opposite points on the circumference of the green circle identical. This identification of
diametrically opposite points creates the topology R2#P

2 in the left diagram and the topology
R3#(S1 ⇥ P

2) in the right diagram.

D. Topology change on M

In this theory we assume that, with respect to gµ⌫ , the manifold is Ricci flat, R̂µ⌫ = 0.

To understand how this relates to particles, knots, and topology change, it helps to compare

this assumption to the typical assumption of knot theory [38].

20



In knot theory it is typically assumed that the manifold must be locally flat. This means

that, with respect to the metric ⌘̄µ⌫ , the Riemann curvature R↵�µ⌫ of M must be finite.

Local flatness prevents the degenerate case that any knot could shrink continuously down

to a point, thus disappearing. Likewise, the same process could happen in reverse, thus

producing any knot. We see this illustrated in Fig. 18. If, however, we do assume that M is

locally flat with respect to ⌘̄µ⌫ , then no topological change is possible [39], and then there

could be no particle/anti-particle pair production of knots.

K

FIG. 18: Any knot K, on the left, can be continuously shrunk down to point, thus disappearing.
Likewise the same process can happen in reverse, producing any knot from a flat manifold. As
the knot shrinks, the Riemann curvature becomes infinite. In knot theory, it is assumed that the
Riemann curvature must be finite, which prevents this process. In this theory we assume only
that Ricci curvature is zero, R̂µ⌫ = 0.

In this theory, we do not assume local flatness with respect to ⌘̄µ⌫ , but we assume Ricci

flatness R̂µ⌫ = 0 with respect to gµ⌫ . This allows limited topological change, producing knots

of the form R3#(S1 ⇥ P 2). We next show these knots can be created subject to R̂µ⌫ = 0.

E. Ricci flat pair annihilation and pair creation

The dynamics of pair annihilation and creation is an important part of this theory, so we

will take a moment to explore the details of this process. We will look at the annihilation

of a pair of topologies R3#(S1 ⇥ P 2) subject to the condition R̂µ⌫ = 0.

In order to see a simple picture of this, consider Fig. 19. In the first diagram we see

two R2#P 2 topologies coming together. The arrows indicate the direction of A0
,⌫ (actually,

two components of the electric field). The diagram shows points p and q, each of which is

represented in two places in the diagram. In the second diagram the A0
,⌫ field is quite strong

between the particles. In the third diagram we see points p and q coincide, and the third

and fourth diagrams are equivalent. The topology and geometry are then simply R2. In this

way we see two R2#P 2 topologies annihilate, much like the annihilation of an electron and
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a positron [40].

p

p

q

q

pp

qq

p

p
p p

FIG. 19: We bring together two P

2 to annihilate. Annihilation requires that the metric gµ⌫

becomes degenerate on the piece of the manifold between the two P

2. This implies that there is
an electric field between the two, indicated by the purple arrows.

More formally, we can annihilate pairs of R2#P 2 subject to R̂µ⌫ = 0. In the above

discussion we need points p and q to coincide, as in the third diagram of Fig. 19. In the

second diagram of Fig. 19, p and q are separated by a spacelike vector c⌫ . In Fig. 20, p and

q are separated by a spacelike vector according to the metric ⌘µ⌫ . We can choose A0
,⌫ in

order to rotate the light cone at p, so that the light cone for gµ⌫ at p contains q. In this

case, gµ⌫cµc⌫ = 0. This corresponds to the third diagram in Fig. 19.

FIG. 20: Changing the A

⌫ field changes the metric gµ⌫ . In the
diagram there is an electric field and the gµ⌫ distance between
the points p and q is zero.

This annihilation occurs in one slice of �. We can construct such an annihilation in every

slice of �. Thus the topology of two particles R3#(S1 ⇥ P 2)#(S1 ⇥ P 2) can convert to the

topology of no particles, which is R3, while maintaining the condition R̂µ⌫ = 0 throughout

the process. In order to maintain R̂µ⌫ = 0, we see that A0
,⌫ , the electric field, must grow

large between the particles before they annihilate.

The process of pair creation is simply the reverse of the annihilation process. During

pair creation we see that an A0
,⌫ field is created around each knot R3#(S1 ⇥ P 2). Each

knot subsequently retains this A0
,⌫ field as the topologies separate. For the creation of
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particle/anti-particle pairs this implies opposite charge. See, however Section VI I for dis-

cussion of charged lepton and neutrino pair creation by a W boson.

F. Generations

We have a knot, R3#(S1 ⇥ P 2), that corresponds to elementary fermions [41]. We have

described that knot using a map from R3 � T to R5:

X(⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⌧ sin(2�), ⌧ cos(2�)

⌘
(17)

There are other ways of mapping to the knot R3#(S1 ⇥ P 2). We can modify the map so

that we have

X(⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⌧ sin(2� + n�), ⌧ cos(2� + n�)

⌘
(18)

In each slice of constant � there is a map of R2#P 2 in R4 that has the properties we

portrayed in Fig. 14. As � varies from 0 to 2⇡, the map rotates n times in the coordinates

x4 and x5. We call such a map R3#(S1 ⇥ P 2)n. For every value of n � 0, the maps of

R3#(S1 ⇥ P 2)n are distinct as embeddings. This means that, if m 6= n, there is no way

to continuously change R3#(S1 ⇥ P 2)m into R3#(S1 ⇥ P 2)n without self-intersection. We

propose, for example, that an electron is a charged knot with n = 0; a muon, n = 1; a tau,

n = 2.

G. Quarks, linked R3#(S1 ⇥ P

2)

Two or three of these knots R3#(S1⇥P 2) can link [42]. If a knot R3#(S1⇥P 2) is linked

to another such knot, then it represents a quark. We first describe in outline how such

topologies can link to each other, and later we show how these linkings have the properties

of quarks [43].

We provide a simple description how two R3#(S1 ⇥ P 2) might link by proceeding in

stages. Our first goal is to link a pair of P 2 in the 2-dimensional manifold R2#P 2#P 2

embedded in 4-dimensional space. First we build a knot R2#P 2 by considering R2 in polar

coordinates, and we cut out the disk D2, which consists of all points such that r < 1. Then
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we map R2 �D2 to R4 using Xb, such that the coordinate system of R4 is polar in the first

two coordinates and Cartesian in the last two, (r, ✓, x4, x5).

Xb(r, ✓) = (g(r), ✓, b sin(2✓), b cos(2✓)) (19)

where

g(r) =

8
<

:
2r � 2 if r < 2

r otherwise

The function g(r) pulls the boundary of the disk together, because g(1) = 0. The points

that are diametrically opposite to each other are mapped to the same point in R4. In this

way the map r ! g(r) performs the same purpose as the toroidal coordinates ⌧ ! ⌧/(1� ⌧)

in eqn. (15). The x4 and x5 coordinates of the map are scaled by the constant b everywhere.

The result is R2#P 2. Next, we can use two maps X1 and X2, as in the left figure of Fig. 21.

The map X1 is scaled by b = 1, and the map X2 is scaled by b = 2. The maps X1 and X2

are both maps from R2 � D2 to R4. They do not intersect each other but they cannot be

separated without intersection. We now truncate X1 and X2 to half-planes and join them

at the boundary, as in the middle figure of Fig. 21. The result is R2#P 2#P 2 and the P 2

are linked. If that manifold changes continuously without self-intersection, then the P 2 will

remain linked. For example, we can unfold the joined half-planes, as in the right diagram

of Fig. 21. Finally, if we fiber the linked pair of P 2 over a circle, that is, rotate the map in

FIG. 21: On the left are 2 copies of R2#P

2. Though the diagram does not indicate it, we
assume that they are linked maps X1 and X2. In the middle we truncate the maps to half-planes
and attach at the boundary (at the top) to make R2#P

2#P

2. Then we unfold the R2#P

2#P

2.
If the unfolding avoids self-intersection then the P

2 remain linked.
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the � direction, the result is a linked pair R3#(S1 ⇥ P 2)#(S1 ⇥ P 2).

We can also link three times: R3#(S1 ⇥ P 2)#(S1 ⇥ P 2)#(S1 ⇥ P 2), as we see in Fig. 22.

ϕ ϕ
FIG. 22: On the left we see an individual R3#(S1 ⇥ P

2) represented, so that the � slice shows a
R2#P

2. On the right R3#(S1 ⇥ P

2)#(S1 ⇥ P

2)#(S1 ⇥ P

2) is represented so that the � slice
shows a R2#P

2#P

2#P

2. The diagram does not show the 5-dimensional embedding geometry of
the R3#(S1 ⇥ P

2) or the 4-dimensional embedding geometry of the � slice. Therefore it is not
possible to distinguish from the diagram whether the knots are linked, but if they are linked then
they are quarks.

If we have a pair of topologies represented by the linked pair R3#(S1 ⇥ P 2)n#(S1 ⇥ P 2)n

so that the quarks have opposite charge (and same generation n), the pair can annihilate. For

a link of three, R3#(S1 ⇥ P 2)#(S1 ⇥ P 2)#(S1 ⇥ P 2), annihilation of any pair is impossible

because the annihilation would pass through an intersection with the third quark.

H. Charge

We noted at the end of Section VIE that, during the creation of fermions, an A0
,⌫ field

develops, and this field is preserved on one or both of the resulting fermions. If a fermion

has a charge, then surrounding the charge we must have a non-zero divergence of the electric

field [44]. We see this in Fig. 23, which shows the knot R3#(S1 ⇥ P 2). The first diagram

shows the “top view” of R3#(S1⇥P 2). In this diagram the plane is a slice with coordinates

x1 and x2 as shown. The green circle represents the torus X(1, �,�) (where X is the map

associated with R3#(S1 ⇥ P 2)). The torus has zero volume. A line in the diagram passes

through the knot at two points, seen as vertical green lines in the second diagram.

The second diagram has axes x0 and x1. We plot curves of constant A0. We see from

Fig. 19 that the gradient A0
,⌫ comes to a cusp on X(1, �,�), and we represent this cusp at
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the vertical lines in Fig. 23. The field cusp has curvature that, by itself, would violate the

constraint R̂µ⌫ = 0. We will show in future work that the geometry of the knot R3#(S1⇥P 2)

has a corresponding opposite curvature at the cusp that compensates for the field curvature

and restores R̂µ⌫ = 0. Because of this relation between the field and the particle geometry,

the charge is geometrically stuck on the particle unless there is an interaction with another

particle. We develop an additional description of field curvature and a demonstration that

particles have integer charge more fully in [18, 45].

FIG. 23: In the left figure, we see a “top view” of a R3#(S1 ⇥ P

2) with coordinates x1 and x

2

as shown. The green circle represents the torus X(1,�,�) where X is the map associated with
R3#(S1 ⇥ P

2). Relative to the map X, the slice is at an angle of constant �, and the angle � is
shown. The dark line is a constant x2 slice that passes through the R3#(S1 ⇥ P

2) at two points.
We then show that slice in x

0 and x

1 coordinates. The blue curves are sets of constant A0. The
gradient of those lines is the electric field A

0
,⌫ .

In the case of quarks, the relationship between field curvature and geometric curvature

is complicated by the fact that there are multiple R3#(S1 ⇥ P 2) whose various curvatures

interact with each other. In this paper, we simply assume that quarks have charges of ±1/3

or ±2/3 and that particles have integer charge.

I. Weak decay

As we discussed in the previous section, a charged particle has both a field cusp and a

corresponding geometric cusp. The constraint R̂µ⌫ = 0 implies the field cusp cannot be

moved o↵ the knot without also moving the geometric cusp. The geometric cusp can only

exist on a knot with the topology R3#(S1 ⇥ P 2). Therefore, removing the charge from a

knot R3#(S1 ⇥ P 2) requires interaction with another knot of form R3#(S1 ⇥ P 2). This is

a weak interaction.
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We describe, for example, the weak decay of a neutron. A down quark with charge �1/3

decays to an up quark with charge +2/3, and in the process an electron and an electron

antineutrino are created. As the down quark becomes an up quark, the charge changes by +1,

implying a change in the field and geometry. Conservation of charge requires a corresponding

change of charge �1 nearby, and this is accomplished by pair creation, specifically, by

the creation of an electron and an antineutrino. We saw in Section VIE how a pair of

R3#(S1 ⇥ P 2) can be created if there is a strong electric field between them, implying they

have di↵erent charge. The combination of electric field and geometric curvature that create

the pair we call a W boson.

J. Generation change

The topology R3#(S1 ⇥ P 2)n is distinct for every n � 0. Each value of n corresponds to

one generation of elementary fermions. For any m 6= n (with m � 0 and n � 0) the em-

beddings R3#(S1 ⇥ P 2)m and R3#(S1 ⇥ P 2)n are distinct; there is no way to continuously

change one into the other without self-intersection. We can, however, construct an embed-

ding that satisfies R̂µ⌫ = 0 and makes a transition from m to n, so that the physics will

represent a transition from a particle in one generation to a particle another. The transition

is represented by the sequence of maps

Xm(⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⌧ sin(2� +m�), ⌧ cos(2� +m�)

⌘
(20a)

Xm⇤(⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⌧ | sin(�/2)| sin(2� +m�), ⌧ | sin(�/2)| cos(2� +m�)

⌘
(20b)

Xn⇤(⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⌧ | sin(�/2)| sin(2� + n�), ⌧ | sin(�/2)| cos(2� + n�)

⌘
(20c)

Xn(⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⌧ sin(2� + n�), ⌧ cos(2� + n�)

⌘
(20d)

The sequence of maps is shown in Fig. 24. We suppress � (� = constant) and show ⌧ and �,

while the thickness of the ring is a representation of the magnitude of displacement in the

x4 and x5 coordinates. First, we make a continuous transition from the map in eqn. (20a)

to that in eqn. (20b). In the second diagram of the figure, representing eqn. (20b), the

thickness of the ring goes to zero at � = 0 because of the scaling factor | sin(�/2)| = 0. The

geometry can rotate in the � angle, and the � rotation on opposite sides of � = 0 can be
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independent. This allows the R3#(S1 ⇥ P 2)n to untwist or twist around the contraction

at � = 0. We make a continuous transition to the third diagram, representing eqn. (20c).

Finally, we make a continuous transition from the map in eqn. (20c) to that in eqn. (20d).

In this way, a R3#(S1 ⇥ P 2)m can make transition to a R3#(S1 ⇥ P 2)n.

FIG. 24: In these diagrams we see the “top view” of a transition from a R3#(S1 ⇥ P

2)m to a
R3#(S1 ⇥ P

2)n. Each diagram matches the corresponding map of eqns. (20). The thickness of
the green circle indicates the magnitude of extension into the x

4 and x

5 dimensions. We take a
2-dimensional slice through the R3#(S1 ⇥ P

2) and the angle � is shown. In the first diagram we
see a knot R3#(S1 ⇥ P

2)m, with the arrow indicating the number of twists with respect to �. In
the second diagram, we contract the geometry by a factor of | sin(�/2)|. At � = 0 we have
| sin(�/2)| = 0. This allows the knot to rotate independently around the point of contraction
where � = 0. In the third diagram, the knot has rotated around the point of contraction until the
number of twists has changed from m to n. In the fourth diagram, we expand the point of
contraction back, and there are n twists.

If there is a slice in which the P 2 contracts to a point, we call this process a P-contraction

and call the topology R3#(S1 ⇥ P 2)⇤. If the R3#(S1 ⇥ P 2) is charged and unlinked then it

cannot P-contract. The geometric curvature cannot compensate for field curvature at the P-

contraction, and it therefore would not satisfy R̂µ⌫ = 0 at the P-contraction. This prevents

a spontaneous transition from an muon to an electron, for example. See Section XID and

XIF in the Appendix for details. Uncharged knots R3#(S1 ⇥ P 2) can P-contract, and this

provides a mechanism by which neutrinos may change from one generation to another.

In the case of a quark, if the knot R3#(S1 ⇥ P 2) is charged and linked, then it cannot

P-contract for two reasons: the charge is an obstruction at the P-contraction, and the P-

contraction itself would pass through intersection with the other quarks. Nevertheless a

weak decay of a quark involving a generation change may occur as long as all the linked

quarks are involved. For weak interaction involving quark generation change, the quark

must pass through an uncharged state by production of particles that conserve charge.

Because the product particle’s total charge must be an integer, the quark must change
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charge by an integer amount. Therefore quark decay converts between up-type and down-

type. It also creates a W boson, conserving charge. In the intermediate state where the

quark is uncharged, it can convert to an R3#(S1 ⇥ P 2)n of di↵erent generation n. To avoid

intersection with the other quarks, all of the quarks must P-contract in the same � slice so

that they are all R3#(S1 ⇥ P 2)⇤ and are all P-contracted at the same point. At that point,

the fields of the quarks and the W boson add to zero in order to maintain Ricci flatness.

For example, consider the decay of ⇤0 to a proton, an electron, and an electron antineu-

trino, that is, the decay of a strange quark to an up quark, an electron, and its antineutrino.

To change generations, the strange quark must P-contract. To prevent intersection, the

other quarks in the ⇤0 must also P-contract at the same location. To maintain the con-

straint R̂µ⌫ = 0 at the P-contraction, there must be some combination of field and geometric

curvature that compensates for the field and geometry of the quarks. That combination of

field and geometric curvature is a W boson, which results in the production of an elec-

tron/antineutrino pair.

K. Particle properties

1. Neutrinos

An uncharged unlinked knot R3#(S1 ⇥ P 2) is a neutrino. Since it has no charge, the

embedding R3#(S1⇥P 2)m may freely change generation m to any n, for n � 0. Only three

generations, however, have been observed. See Section XIG in the Appendix for discussion.

2. Charged leptons

A charged unlinked R3#(S1⇥P 2) is a charged lepton. Only three generations of charged

leptons have been observed. Further exploration of the theory may show that generations

with n > 2 are not seen because of energy and stability or are disallowed for other reasons.

The charged leptons have the interesting property that they appear pointlike in collisions.

In this theory a fermion is a knot of finite size. In Section XIH in the Appendix we discuss

the size of the knot. As a charged lepton approaches another lepton, the radius of the

charged lepton decreases. See Section XIH in the Appendix for details.
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3. Quarks

A charged linked R3#(S1 ⇥ P 2) is a quark. It remains to be shown that linked

R3#(S1 ⇥ P 2) must have charges of ±1/3 or ±2/3. Only three generations of quark have

been observed. Again, further exploration of the theory may show that generations with

n > 2 are not seen because of energy and stability or are disallowed for other reasons.

In the previous section we described how interaction of charged leptons with other parti-

cles makes them appear pointlike in collisions. By comparison, the size of quarks is influenced

by other particles to a lesser degree than charged leptons. Quarks are linked to each other,

and their proximity to each other requires relativistic motion and electromagnetic fields to

maintain the constraint R̂µ⌫ = 0. Interaction with another particle has a relatively smaller

e↵ect on quark geometry.

TABLE I: The elementary fermions

(S1 ⇥ P 2)0 (S1 ⇥ P 2)1 (S1 ⇥ P 2)2

uncharged ⌫
e

⌫
µ

⌫
⌧

charged e µ ⌧

linked, charged 2/3 u c t

linked, charged 1/3 d s b

VII. QUANTUM MECHANICS

A. Overview of branch interaction

The probability that an event occurs is determined by the branches corresponding to

that event, and, in turn, this depends on the interaction between manifold branches. This

interaction produces the interference that is familiar in quantum mechanics [46–48].

We use the terms “particle” and “knot”. An electron, for example, is a particle. A knot

is the topological description of a structure on a branch. In these terms, one real particle is

represented by a knot on every branch, and one virtual particle is represented by a knot on

some of the branches. This is illustrated in Fig. 25.

For almost all of this Section VII we will describe the mathematics involved with one real

particle. We describe the geometry of the knot with a complex amplitude. When branches
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FIG. 25: The three diagrams show the branched manifold Y decomposed into constituent
branches B1 and B2. The real particles on Y have one knot on both B1 and B2. The virtual
particles on Y have one knot on some of the branches (in this case, B2).

recombine, the knots recombine according to a weighted average of their amplitudes. It

would be intractable to keep track of all the individual branches and knots in a calculation.

Instead we will approximate the particle geometry for all of the branches by developing

dynamics on the unbranched manifold �M , introduced in Section VB. Then we will show

that the branch interactions can be described using a path integral on �M , equivalent to

the path integral of quantum mechanics [49–51].

When two branches recombine, they must be topologically consistent, so that knots on one

branch correspond to knots on the other branch. Furthermore, they must be geometrically

consistent. Since the knots on the recombining branches may have di↵erent geometries, the

recombination forces them to match, leading to particle interference.

In Fig. 26 the branched manifold Y has two branches B1 and B2. A single particle is

represented by two knots, and the knot on B1 takes a di↵erent path than the knot on B2.

The geometric characteristics of the knot on B1 develop di↵erently from those of the knot

on B2. When the branches recombine, the knots on each of the branches recombine to a

knot with geometry that is determined by the geometry of the knots on B1 and B2. To

understand how knot geometry is a↵ected by recombination, we begin by describing the

geometric characteristics of R3#(S1 ⇥ P 2) that correspond to quantum amplitude.
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FIG. 26: A single particle is represented by a knot on each of the branches. When the branches
recombine, the knots recombine. Particle interference results from the way in which the knot
geometry is a↵ected by that recombination.

B. Particle geometry and quantum amplitude

In eqn. (15) we described knot geometry as

X(⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⌧ sin(2�), ⌧ cos(2�)

⌘

We note that the magnitude and orientation (phase angle) of the map relative to the x4 and

x5 coordinates can be chosen arbitrarily. Thus we may characterize a knot geometry [52] by

a single complex amplitude a = ⇠ei✓, and write the map X(a) or

X(a; ⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⇠⌧ sin(2� + ✓), ⇠⌧ cos(2� + ✓)

⌘
(21)

Branch weight w = (� det(g))1/2 also plays a role in quantum amplitude, but we must

be careful as to how we include it. First we note that weight is a function of position w(x),

and we may denote the weight on branch B1 as

w1(x) = k1w0(x) (22)

where

lim
x!1

w0(x) = 1 (23)

and k1 is the weight coe�cient. The standard weight w0(x) is thus defined at all points

on the manifold and depends on the geometry of the knots; it is merely rescaled from the

original weight w(x). At any point x the weight coe�cient on any branch Bj is given by
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kj = wj(x)/w0(x). We note that a branch with weight coe�cient k could branch k times

into branches with standard weight w0. In this sense, a branch with weight coe�cient k is

equivalent to k copies of the same branch. This consideration justifies the name “weight

coe�cient”.

Suppose two branches B1 and B2, each with a knot, recombine, so that the knots must also

recombine. We will assume the knots have maps X(a1) and X(a2) with weights w1 = k1w0

and w2 = k2w0. The amplitude a3 of the recombined branch B3 is the weighted average of

the amplitudes a1 and a2

a3 =
k1a1 + k2a2
k1 + k2

(24)

The map of the branch is X(a3). Branch weight is additive at recombination, and therefore

the weight coe�cient is additive at recombination, so that k3 = k1 + k2, or in general

ksum =
X

j

kj (25)

See the discussion after eqn. (5). We see this illustrated Fig. 27. If the branch B3 splits

again into separate branches B4 and B5, then the amplitudes of those branches retain the

same weighted average, (k4 + k5)�1(k4a4 + k5a5) = a3, and they retain the same total weight

coe�cient k4 + k5 = k3.

FIG. 27: The first diagram shows two blue dots indicating the amplitudes a1 and a2 of two
knots, X(a1) and X(a2), with weights w1 = k1w0 and w2 = k2w0. If those two knots recombine,
they recombine to the weighted average X(a3) with a3 = (k1 + k2)�1(k1a1 + k2a2), indicated by
the green dot.

Branches maximize entropy by recombining frequently, which implies that branches stay

close in order to recombine (see Section VA). In order for branches to recombine, the

branches must be topologically consistent, and their geometries must be consistent as well.

This means that the amplitudes of knots must match before recombining, and this is more

likely when the knot amplitudes are similar shortly before recombination. Thus a collection
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of branches with recombining knots will tend to contain knots of similar amplitudes aj. On

the other hand, we expect knot amplitudes in a collection of branches to diverge from the

mean simply because of entropy. Over time we expect the knot amplitudes in the branches

to converge to a distribution that maximizes entropy. The weighted average of the knot

amplitudes is given by [53, 54]

ā =

P
j kjajP
j kj

(26)

and this value is preserved during branch recombination. We see this illustrated in Fig. 28.

Likewise the sum of the weight coe�cients
P

j kj is preserved during branch recombination.

FIG. 28: The first diagram shows a distribution of the amplitudes of many knots. The weighted
average ā = (

P
j kj)

�1P
j kjaj is shown by the point. When pairs of knots recombine, they

recombine to their weighted averages. After successive recombination and branching, the relative
entropic influences determine an equilibrium distribution shown in the second diagram. The
quantum amplitude is  =

P
j kjaj = (

P
j kj)ā. The total weight

P
j kj and the weighted average

ā are preserved during recombination, and therefore the quantum amplitude  is well-defined.

In writing a path integral, we will not keep track of all the branches and knots on M

individually, but we will model their dynamics using a function on the unbranched manifold

�M . We define the quantum amplitude  as a complex scalar function on �M . At any point

x on �M , we will define Bj as the collection of branches that have a knot near x. We define

the quantum amplitude to be

 (x) =
X

j

kjaj (27)

With  so defined, we see that we may rewrite  as

 = (
X

j

kj)ā (28)

using eqn. (26). Where two branches of M recombine, both
P

j kj and ā are preserved by
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the recombination, and therefore  is well-defined at the corresponding location on �M . We

distinguish between an amplitude a of a single knot on M and a quantum amplitude  of a

collection of knots.

We note that the quantum amplitude  is additive in the following way: If there are

multiple disjoint collections of branches Cm each with its own quantum amplitude  m,

then the quantum amplitude of the union of those collections is the sum of the quantum

amplitudes of the collections, so we have

 =
X

m

 m (29)

The derivation is straightforward. See Section XI I in the Appendix for details.

FIG. 29: The first diagram shows the amplitudes of multiple collections Cm of knots. Each
collection individually may or may not be in equilibrium. The black point is the weighted average
of all the knot amplitudes in all the collections. If those collections Cm begin to recombine they
form knots with amplitudes that are weighted averages of knots in Cm, as in the second diagram.
The recombining knots converge to an equilibrium distribution with the same weighted average
amplitude. The quantum amplitude in all three diagrams is  =

P
m  m.

In Fig. 29 we see an illustration of how this recombination occurs. In the left diagram we

see the original distribution of amplitudes for the three collections of branches Cm. Pairs of

branches from all of the Cm recombine to their weighted average amplitudes, illustrated in

the middle diagram of Fig. 29. The distribution of branches converges to a final equilibrium

distribution, illustrated in the right diagram of Fig. 29. Here the weighted average amplitude

of the final equilibrium distribution is the weighted average amplitude of the branches of

the collections Cm, written ā = (
P

j kj)
�1

P
j kjaj. Its quantum amplitude is the sum of the

amplitudes of the collections,  =
P

m  m.
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C. Phase

The discussion of knot amplitude has not yet included time x0, or t. We allow the

amplitude a to be a function of t, so that we have a(t) = ⇠(t)ei✓(t), and we have

X(a(t); t, ⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⇠(t)⌧ sin(2� + ✓(t)), ⇠(t)⌧ cos(2� + ✓(t))

⌘
(30)

To determine how the knot’s phase angle changes with time, we return to the description

of dynamics on M . Near a knot, fields reduce the entropy of the manifold relative to the

vacuum. If the knot is rotating in x4 and x5, then this rotation introduces a factor 1/�

into d�M in the Lagrangian of eqn. (11). Knots rotate in the co-dimension with angular

frequency ! because this reduces the impact of the fields in reducing the entropy. Thus we

have

X(t, ⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⌧ sin(2� + !t), ⌧ cos(2� + !t)

⌘
(31)

The angle advances at a rate ! that maximizes entropy. If E is the energy of the particle,

we will show here that E is proportional to !.

As the branches of the manifold M recombine, two e↵ects govern the maximization of

entropy. On the one hand, frequent recombination of branches increases entropy, as we saw

in Section VA. On the other hand, entropy increases as the positions and momenta of the

branches fill up phase space. In this case, the cohesion e↵ect of recombination reduces the

phase space they take up and reduces the entropy. On the one hand, the branches cohere,

on the other, they di↵use.

When making a measurement with a real device, we often register a number of quantum

states. In this theory we describe that as including a number of branches, all of which

contribute to the result. For example, we could imagine a device that measures a particle’s

location in phase space. If the measurement device has accuracy �x in position and �p in

momentum, then the best measurement we could hope for has �x�p = ~/2. We hypothesize

that this limit is the result of multiple branches contributing to the measurement as a

consequence of branch cohesion. We therefore interpret this limit as the amount of cohesion

between branches.

Energy and time have a relationship that is analogous to position and momentum. We

cannot, however, write �E�t = ~/2 in the same way as �x�p = ~/2 because t does not
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correspond to an operator. We can, however, consider an observable A with expectation

value hAi and standard deviation �A. If E is the energy of a system, then we have

�A
⇣���

d hAi
dt

���
⌘�1

�E =
~
2

(32)

for a best possible measurement. We consider a number of branches. We will call E the

energy of a knot on each branch and call A the phase angle ✓ of the knot. Then we have

! = dh✓i/dt. The knots have a maximally entropic distribution of energies given by [55]

P (E) = �e��E (33)

for some � determined by the knot topology, field potentials, and other details. We calcu-

late the average energy hEi = ��1 and standard deviation �E = ��1. Therefore we have

�E = hEi. Then we have

�✓
⇣d h✓i

dt

⌘�1

�E =
~
2

(34a)

�✓ !
�1 hEi = ~

2
(34b)

hEi = ~!
2�✓

(34c)

We see that the expected value of energy hEi is proportional to the angular frequency !.

If the standard deviation of angle is �✓ = 1/2 then we have the familiar relation hEi = ~!,
but deriving �✓ = 1/2 from the statistics of branch recombination remains to be shown in a

future work. Thus we have derived how the phase angle ✓(t) of the amplitude a(t) = ⇠(t)ei✓(t)

changes with time.

D. Probability

In this section we calculate the probability associated with particle position using a

simplified model of branch recombination. For example, in the first diagram of Fig. 30 we

see a branched manifold with two branches and the paths of a particle on the manifold. We

may want to know, for example, the probability of measuring a particle at point q rather

than at point r on manifold �M , shown in blue in the second diagram. In general, the
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manifold may have many branches and the particle knots may follow many paths. In that

case, to obtain the probability of finding the particle at q we use a number of spacelike slices,

each slice containing a large number J of points. Between the J points on one slice and

the J points on the next slice there are J2 discrete paths that a knot may take. This is

illustrated in the third diagram, which shows �M with the knot paths in gray and points of

recombination in green.

FIG. 30: The first diagram shows a simple branched manifold on which one particle takes two
di↵erent paths on di↵erent branches. We use �M we model the particles of M . The description
includes the probability of measuring a particle at particular locations, for example, at points q
and r, as in the second diagram. We restrict the knots to following discrete paths that only
recombine at discrete locations then model those paths on �M , as in the diagram on the right.

The left diagram of Fig. 31 shows such a model in which J is three and the number of

spacelike slices is three. The right diagram shows a particular location at which the paths

recombine. If we were to make a measurement of the location of the particle, the probability

that we would find the particle at that location is determined by the branches that contain

the knot at that location. The probability is proportional to the number of branches with

knots coming into the location times the number of branches with knots going out. If each

path had just one knot on it, then this would be J2; however, each path may have multiple

branches associated with it, each with a knot on that path.

In Fig. 32 we show again the point of knot recombination in the left diagram. The

middle diagram shows blue lines representing the branches that have a knot. Those branches

recombine at the green rectangle. By the rules of branch recombination, any incoming branch

can be paired to an outgoing branch in a valid combination. For example, the diagram on

the right shows a particular pairing. The number of branches is equal to the number of

valid combinations, which is the number of incoming branches times the number of outgoing

branches. This format does not have a ready way of expressing the number of branches in all
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FIG. 31: In the left diagram we show a simple model consisting of a discrete set of possible knot
paths and a discrete set of possible knot recombination locations. In the right diagram, we
magnify one of the recombination locations. The probability of measuring the knot at that
location is determined by the branches that have a knot at that location.

of the incoming paths, and this number is not conserved in recombination. In Section VIIB,

however, we defined the weight coe�cient of a branch Bj as kj = wj/w0. We noted that

such a branch could divide into kj branches of standard weight w0. For this reason we can

say that the number of branches coming into the location is proportional to the sum of their

weight coe�cients
P

j kj. Furthermore, this expression is preserved during recombination

and separation, and the total number of branch pairings is proportional to the sum squared.

Therefore the probability is P / (
P

j kj)
2.

FIG. 32: The left diagram shows a green rectangle where knots recombine, as well as the knot
paths that lead into and out of it. The middle diagram shows the branches, in blue, that lead
into and out of the recombination. The total number of possibilities P includes all choices of
branches in and branches out. For example, the diagram on the right shows one such pair. The
number of branches is proportional to

P
j kj , and therefore P / (

P
j kj)

2.

The probability of measuring a particle at a location is determined not just by the number

of branches with the corresponding knot but also by the amount of state space available for

the knot at recombination. This is to say that the probability is greater if the amount of

“area” in the x4 and x5 coordinates occupied by knot amplitudes is larger. (The reason

for quotation marks about the word “area” will soon be apparent.) In Fig. 33 we see two
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di↵erent equilibrium distributions of knots. Each knot in the equilibrium distribution has

a complex amplitude that moves freely within the equilibrium distribution. The size of the

equilibrium distribution in state space therefore determines the size of the state space for

each of the knots, and the probability is proportional to the size of the state space.

FIG. 33: The diagrams show the state space for two di↵erent equilibrium distributions of knots.
The diagrams on the left have ⇠1 = |ā1| and the diagrams on the right have ⇠2 = |ā2|. The size of
the green rectangle indicates the size of the state space for knot amplitudes of both incoming and
outgoing branches. For both incoming and outgoing branches, the size of the state space is
proportional to |ā|. Therefore the probability is proportional to the size of the total state space,
P / |ā|2.

To calculate the size of the state space, we use the standard deviations �✓ and �⇠. In the

previous section we assumed that �✓ is constant. We can calculate �⇠ here using the time

uncertainty relation:

�⇠
⇣d h⇠i

dt

⌘�1

�E =
~
2

(35)

For an equilibrium distribution, the expectation value h⇠i is constant, and we have dh⇠i/dt=0.

Therefore we have �⇠�E = 0 and �⇠ = 0. The equilibrium distribution converges to having

no dispersion of the magnitude ⇠ = |a| of its knots. The equilibrium distribution of branches

in state space is an arc in which the magnitude spread �⇠ is infinitesimally small, and the

angle spread is |a|�✓ = ⇠�✓. In Fig. 33 we see the state space for equilibrium distributions

with two di↵erent magnitudes. In the bottom half of Fig. 33 we see a simplified diagram

showing the branches coming into the recombination and the branches exiting from it. The

width of the green bar indicates the size of the equilibrium distribution (corresponding to

⇠�✓). We note that branches coming in to the recombination can have any amplitude
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within the range of the equilibrium distribution, and branches exiting the recombination

can likewise have any amplitude within the range of the equilibrium distribution, with no

correlation to the amplitude before recombination. The size of the state space is the range of

possibilities for the knot amplitudes, which is the product of the range before recombination

times the range after recombination. Therefore the size of the state space is P / (⇠�✓)2.

The magnitude of the weighted average amplitude |ā| is less than the magnitude of the

amplitudes that constitute the equilibrium |a|, as we see in Fig. 34. Since �✓ is constant,

we still have P / |ā|2.

FIG. 34: The diagram on the left shows an equilibrium distribution with knot magnitudes
⇠ = |a|. Note the infinitesimal spread �⇠. The diagram on the right shows that the weighted
average amplitude ā has slightly smaller magnitude, |ā| < |a|. Since �✓ is the same for every
equilibrium distribution, we still have |ā| / |a|.

There are two di↵erent contributions to the probability of an event, P / (
P

j kj)
2 and

P / |ā|2. Combining the two, we have the familiar relation between probability and quantum

amplitude  ,

P / (
X

j

kj)
2|ā|2 =

���(
X

j

kj)ā
���
2

P / | |2 (36)

E. Path integral

As we mentioned earlier, it would be intractable to keep track of all the individual

branches and knots in a calculation. In this section we will demonstrate some steps in

deriving an approximation for a transition amplitude between states on M . This approxi-

mation involves a path integral on the unbranched manifold �M . Knots on M can interfere

only if they can recombine. Knots can recombine only if they have the same topology, and
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this implies that they represent the same type of particle. Including multiple particles allows

for the possibility of pair annihilation, pair creation, and virtual particle pairs. We showed

in Section VIE that the constraint R̂µ⌫ = 0 allows for pair creation and annihilation. The

rate of production of virtual particle pairs is determined by entropy maximization. The

particles we have described so far have all been elementary fermions, which have topology

R3#(S1 ⇥ P 2). We will describe the elementary bosons in the next section, Section VIII.

Every branch can be classified by the interaction of knots on that branch and is represented

by a Feynman diagram. In this theory, the transition amplitude is determined by sum-

ming amplitudes over all the branches, which is equivalent to summing over histories, or

performing a path integral [56, 57].

The manifold M has many interacting branches. Our goal is to make calculations

tractable by finding a continuous approximation that describes the interaction of the discrete

branches. In Section VIIB we introduced amplitude  =
P

j kjaj for a single particle on

�M , a quantity that has the properties of quantum amplitude. In particular, the probability

of making a measurement and discovering a particle at a particular location is | |2.

The phase of the knots changes as a function of time and of the knot’s path. Let D(�t)

be the operator that advances the phase of the knot during time �t. If qi is a position,

we will call |qii an eigenfunction in position space such that q|qii = qi|qii, where q is the

position operator. The amplitude of a transition from qi to qj is hqj|D(�t)|qii. A change

of basis yields that the amplitude of a transition from a state |�ii to |�ji is h�j|D(�t)|�ii.

If we consider two states |�i and |�i separated in time by T , then we can represent the

amplitude of a transition by a path integral. We divide the time interval T into N spacelike

slices. Then we have

h�|D(T )|�i = h�|D(T/N)...D(T/N)|�i (37)

We may insert 1 =
R
dqj|qjihqj| into this expression, thus allowing the particle to take

any path.

h�|D(T )|�i =
⇣Y

j

Z
dqj

⌘
h�|D(T/N)|qN�1i...hq1|D(T/N)|�i (38)

In eqn. (34) we derived hEi / !, which we assume to be hEi = ~!. With the hint that

hEi = ~!, we might guess that H = ~ d⇥/dt, where H is the Hamiltonian and ⇥ is the
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operator yielding the phase angle. In this case, the operator that advances the quantum

phase is D(�t) = e�iH�t/~. We have the equation

h�|e�iHT/~|�i =
⇣Y

j

Z
dqj

⌘
h�|e�iHT/(N~)|qN�1i...hq1|e�iHT/(N~)|�i (39)

where

H = ~ d⇥

dt
(40)

As N goes to infinity, we obtain the path integral for one particle on the right. Some

extra formalism is needed to include multiple particles and virtual particles. This produces

an expression analogous to the path integral of quantum mechanics.

In Section VII we have demonstrated how the assumptions of this theory, with its knots

and multiple branches, produce the path integral of quantummechanics as an approximation.

VIII. INTERACTIONS

The dynamics of the branched manifold M results from maximization of entropy [58]. In

Section V we showed how entropy maximization can be modeled on an unbranched manifold

�M with an action S[�M ] =
R
�M

w((1/2)F µ⌫Fµ⌫ �R) d�M . We claimed in Section VD that

A⌫ is the 6-dimensional analog of the electromagnetic potential with electromagnetic field

tensor F µ⌫ = A⌫,µ � Aµ,⌫ . In this section we will justify this claim. We show how the R

term generates the gravitational interaction. Likewise, we will show how particle geometry

interacts with the Lagrangian to produce the strong force and electroweak unification.

A. Electromagnetism

The Lagrangian has the term (1/2)wF µ⌫Fµ⌫ and higher order terms, although we will

consider only the first term. In Section VD we related the maximization of (1/2)wF µ⌫Fµ⌫

to the maximization of the entropy in the A⌫ field. The A⌫ field has entropy in its random

field fluctuations, and those field fluctuations are virtual photons. If the branch weight w is

constant, then the term is proportional to (1/2)F µ⌫Fµ⌫ . This Lagrangian is the same as that

which leads to classical electromagnetism. Electromagnetism is therefore a consequence of

maximizing the entropy in virtual photons [59].
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Real photons demonstrate interference as well as quantization. Interference is a natural

consequence of the Lagrangian term proportional to (1/2)F µ⌫Fµ⌫ , but it remains to be

shown how field solutions can be quantized. The Lagrangian term is (1/2)wF µ⌫Fµ⌫ with

F µ⌫ = A⌫,µ�Aµ,⌫ and w = (� det(g))�1/2, while gµ⌫ = ⇢2A↵,µA↵
,⌫ is constrained by R̂µ⌫ = 0.

We propose that such a nonlinear equation has solutions that are solitons of finite e↵ective

width, and these solitons represent real photons [60, 61]. In that case, a plane wave could

decompose into photons such that the photons have di↵erent locations on the branches of

M . Summing the photons over the branches would re-create the initial plane wave. The

measured location of a photon would be a probabilistic result of the interaction of the

branches.

Far from knots, a small region of the manifold is approximately flat like R4, and the

Lagrangian (1/2)F µ⌫Fµ⌫ is a good approximation of electromagnetism. In that case we will

use a coordinate frame such that the two dimensions x4 and x5 are perpendicular to M

everywhere in the region we are considering. A rotation of the coordinates x4 and x5 does

not a↵ect the physics in that region. Such a gauge transformation, represented by SO(2) or

U(1), leaves the manifold and electromagnetic field unchanged. We are familiar with this

gauge group from classical electromagnetism.

B. Electroweak

If a knot, representing a fermion, is moving on the manifold M , then near the knot the

velocity vector does not lie in the tangent space of the manifold. This is because the knot

itself is not flat, like R4. In the left-hand diagram of Fig. 35 we see a rough representation

of the knot in the x1x2 plane with its velocity in the x1 direction. In the right-hand diagram

we see the knot in the x1x4 plane, and the velocity vector points in a direction that is not

in the tangent space. If the knot is charged, then there is energy in the field. In Section V

E we saw that a Lorentz transformation perpendicular to the manifold implies expressions

for energy and momentum that transform like a four-vector, implying a finite rest mass

in the rest frame of the particle. In this case the velocity of the knot has a component

perpendicular to the manifold, so the energy in the field is part of the rest energy of the

knot.

So a charged particle is the source of field F µ⌫ , and, from the analysis above, the trans-
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FIG. 35: A knot in the manifold is not flat. If the knot is in motion with velocity v then there
are points on the knot where the velocity is not in the tangent space. This implies that Lorentz
transformations of the energy-momentum tensor at those points corresponds to rest mass.

formation of the field yields a part of the rest energy. The scalar curvature term in the

Lagrangian (eqn. (11)) also contributes to the rest energy. Any fermion is represented by a

knot with a particular topology, implying a geometry and a curvature in the manifold. A

disturbance of the geometry and curvature of a knot will a↵ect the Higgs field. In particular,

if a particle collides with another particle, the geometry around the first particle may vibrate

without energy loss. We propose that such a vibration represents a virtual Higgs boson. If

the vibration separates from the particle as a transverse wave on spacetime, it will decay to

other particles. Such a vibration is a real Higgs boson.

The description of weak decay in Section VI I showed that the W boson is a combination

of the A⌫ field and geometry. The Z boson, by contrast, is a purely geometric e↵ect. Elastic

collision of a neutrino with another elementary particle causes a deformation of the particle

geometry. The restoring force returns the particle to its initial shape and results in a transfer

of momentum. We call that interaction an exchange of a virtual Z boson. We see that the

W and Z bosons both have geometry, and therefore they have have mass because there are

points on the bosons where their tangent space is not parallel to flat space. The geometry

of the bosons has finite e↵ective length. Therefore the e↵ective length of the massive boson

field is also finite. By contrast, in Section VIIIA we discussed photons, which occur on

regions of the manifold that are flat.

In electromagnetism the manifold M is flat (like R4), the tangent space is constant, and

we derived the gauge group SO(2) ⇠= U(1), as we saw in Section VIIIA. If a particle is

present, the knot introduces a certain topology and geometry and also non-constant tangent

space, and yet we can find symmetries, or gauge groups, that leave the physics unchanged.

To that end we can find some components of the tangent space of M that are una↵ected

by rotations in x4 and x5, as in our discussion of electromagnetism. These components are
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represented by the left-pointing arrow in Fig. 36. Such a U(1) transformation in x4 and x5

leaves the corresponding projection of F µ⌫ unchanged. We can find other components of

the tangent space of M that are perpendicular to x1, x2, and x3. These components are

represented by the arrow pointing vertically in Fig. 36. The projection of F µ⌫ onto the x4x5

plane is left unchanged by SO(3) on x1x2x3, but the manifold is non-orientable, so we use

the appropriate gauge group SU(2). Thus we have the gauge group U(1)⇥ SU(2).

FIG. 36: We take a slice through a knot. Vectors tangent to the manifold are represented by
red arrows. Far from the knot, the tangent vectors are in the span of x1 x

2 and x

3. Rotation of
the coordinates x4 and x

5 has no e↵ect on the manifold. Close to the knot, the manifold is not
flat. We decompose the tangent vectors into components that are perpendicular to flat space and
components that are parallel to flat space. The components that are perpendicular to flat space
are una↵ected by rotation of x1, x2, and x

3.

Far from particles the spacetime manifold is flat, the F µ⌫ field is massless, and the gauge

group is U(1). Close to particles the spacetime manifold is not flat, the F µ⌫ field may have

mass, and the gauge group is U(1)⇥SU(2). This matches the electroweak unification [62–64].

C. Strong

Quarks are linked knots R3#(S1 ⇥ P 2). Since a branch of the manifold cannot intersect

itself, the quarks are unable to unlink, and this results in quark confinement. When the

quarks are su�ciently close to each other, there is no mechanism by which they exert a

force on each other, resulting in asymptotic freedom. As the distance between two quarks

increases, however, the knot is stretched, and the R term in the Lagrangian produces a

geometric interaction that increases the energy. We propose that the geometric interaction

is equivalent to the exchange of a gluon.

In order to derive a symmetry group for the strong force and to derive an analogy for

the color charge, we will consider three quarks making up a hadron and, in particular, the
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five spatial coordinates describing the center of those quarks. Thus we will use the notation

qjn, where n =1, 2, and 3 identifies the quark, and j, 1  j  5, identifies the index of the

5-vector. We will choose an origin of coordinates to represent the zero-momentum frame, so

that
P

n q
j
n = 0. The quarks are linked and cannot be separated. We could create a model

in which their position vectors have some maximum magnitude, which we will take to be 1.

We could write |qjn|  1 for each qn, that is, each quark must be within distance 1 of the

center. Alternatively, we could add a (non-physical) sixth coordinate q6n to each position

vector and require |qjn| = 1 for each n. We now perform the map

(q1n, q
2
n, q

3
n, q

4
n, q

5
n, q

6
n) ! (q1n + iq2n, q

3
n + iq4n, q

5
n + iq6n) (41)

The ordinate has complex coe�cients, unit length, and zero sum, so that it is analogous to

the color charge. The transformation that preserves these properties is SU(3), so we expect

SU(3) to be the gauge transformation for three quarks that are near each other. Indeed if

three quarks are near each other, they do not exert a force on each other, and any change

of coordinates that preserves the properties in the previous paragraph will not a↵ect the

physics. Such a coordinate change will result in di↵erent complex 3-vectors of unit length

and zero sum of coordinates.

It may appear that we have ten degrees of freedom in choosing the coordinates of the

quarks, five for each of three quarks, minus five for the constraint
P

n q
j
n = 0. Adding a sixth

coordinate adds three degrees of freedom, but the constraint
P

n q
6
n = 0 removes one, that

is, it sets one of the sixth coordinates. We have three additional equations |qjn| = 1 for n =

1, 2, and 3. Two such equations constrain the other sixth components, but the last equation

must constrain one of the ten degrees of freedom with 1  j  5. Thus there are nine

degrees of freedom when determining the geometry near linked knots. This is in contrast

to the 8-dimensional group SU(3). More work needs to be done to show the relationship

between knot physics and the strong force, but this section shows how quark confinement,

asymptotic freedom, and SU(3) emerge from the elements of knot physics [65–79].
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ϕ ϕ
FIG. 37: On the left is an individual R3#(S1 ⇥ P

2). On the right there is
R3#(S1 ⇥ P

2)#(S1 ⇥ P

2)#(S1 ⇥ P

2). If they are linked they cannot be separated.

FIG. 38: The “top view” of three linked quarks is shown. Each
quark is a di↵erent color and the center point of each quark is
indicated by a smaller circle of the same color. The center of the
particle is the white circle. The quark centers are displaced from
the particle center by 5-vectors qjn, where n labels the quark and j

labels the spatial coordinate.

D. Gravity

1. Classical gravity

In eqn. (11) we see that the Lagrangian contains the term �wR, which is the same form

as the Lagrangian that generates general relativity. Hence we expect this theory to generate

general relativity in the classical limit [80, 81].

2. Geometry

We want to see how this term a↵ects the geometry of the manifold. Matter and energy

impose order on the manifold and, in this sense, reduce entropy. If we denote by Lm the

e↵ect of matter and energy on the Lagrangian, we may write the action as

S[�M ] =

Z

�M

w(Lm �R) d�M (42)
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Here we include all the sources in the term Lm. If the branch weight w is constant, then we

have the Lagrangian of general relativity L = Lm �R.

To maximize entropy, a macroscopic region with matter and energy moves in the co-

dimension. The region rotates in the coordinates x4 and x5, and the rotation reduces its

proper time, introducing the factor 1/� to d�M . Reducing the proper time reduces the e↵ect

of matter and energy on the action S[�M ]. In Section VIIC we derived that a knot will

rotate in dimensions x4 and x5. The gravitational rotation is much larger than the quantum

scale, so that it is not the rotation of individual branches but rather the collective rotation

of all the branches, as in Fig. 39. In Fig. 39 we see a spacelike 2-dimensional slice of M with

a region of matter and energy. The entropy of the region is reduced by an amount Lm by the

introduction of matter. To reduce the e↵ect of the matter and energy on the Lagrangian,

the region rotates in x4 and x5. In the diagram we take a slice, indicated by the horizontal

line. In the diagram on the right, we see that slice of the manifold in the dimensions x1, x4,

and x5. The slice of the manifold extends into the dimensions x4 and x5, and it is rotating.

Its rotation reduces the proper time and therefore reduces the measure d�M . In this way,

the manifold maximizes entropy.

FIG. 39: The diagram on the left shows a spacelike 2-dimensional slice of M . There is a region
with matter and energy. The matter and energy reduce the entropy by an amount Lm. The
horizontal line indicates a slice through the region. That slice is shown on the right with its
extension into x

4 and x

5. The manifold rotates in the dimensions x4 and x

5, and this rotation
reduces its proper time.

3. Dark matter

The branch weight w determines the number of branches in a given region. Over small

cosmological distances branch density will tend to spread evenly as entropy maximizes. Thus
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w becomes approximately constant.

The large-scale distribution, on the scale of galaxies, may not be uniform. These varia-

tions have a gravitational e↵ect and are not propagated by a particle. They would appear to

produce the properties of dark matter. The way that branch weight produces the properties

of dark matter is shown in [82].

4. Parity breaking

In Fig. 39 we see rotation of the spacetime manifold in the co-dimension. The rotation is

of the form (x0, x1, x2, x3) 7! (x0, x1, x2, x3, b sin(kjxj), b cos(kjxj)) where j = 0, 1, 2, 3, and

b is the amplitude. To maximize entropy, the manifold rotates in the same direction every-

where. (For proof, see Section XI J in the Appendix.) We call this spontaneous gravitational

parity breaking. The way that gravitational parity breaking leads to neutrino helicity parity

breaking is shown in [83].

IX. CONCLUSION

In this paper we have described a theory in which physics takes place on a branched

4-dimensional spacetime manifold M embedded in a 6-dimensional Minkowski space ⌦. The

manifold M has a conformal weight ⇢ and a field A⌫ , from which we derive the metric gµ⌫ .

The manifold M is constrained to be Ricci flat with respect to gµ⌫ , and it observes several

other constraints, but otherwise it randomizes and assumes a shape that maximizes entropy.

The assumption of entropy maximization allows us to write a Lagrangian.

We represent fermions by topological knots R3#(S1⇥P 2) on the manifold M . Depending

on how the knot is embedded in the 6-dimensional space ⌦ and depending on the properties of

A⌫ on the knot, the knot may represent various charged or uncharged leptons. Furthermore,

if the knot is linked to other knots, then it represents a quark. These knots assume the

properties of the familiar particles.

The manifold M branches and recombines continually, and the knots on M branch and

recombine as well. This recombination leads to interference e↵ects. Using an approxima-

tion of the theory, we have shown that it reproduces the probabilistic results of quantum

mechanics.
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Near a knot, the geometry produces a gauge group SU(2) ⇥ U(1), exactly like the elec-

troweak gauge group. When we consider the properties of linked knots in a baryon, they

produce the gauge group SU(3), just like that for the strong force. The Lagrangian for the

theory contains a term that matches that for general relativity, so in a suitable regime the

theory reproduces gravitation. These and other clues indicate that in suitable regimes the

theory reproduces the properties of the four forces, although more work is needed.

This theory shows great promise in being able to make calculations that are out of reach

for other theories of quantum gravity. Many such calculations would require much labor

and computer time. The calculation of the fine structure constant, however, provides a

notable exception, and one of us [Ellgen] has presented its calculation from first principles

in a companion paper [18]. Similar calculations may well be within reach.
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XI. APPENDIX

A. Collapse of state

This theory explains what happens when events on a quantum scale are magnified to a

macroscopic scale. When elementary quantum mechanics predicts a solution of the super-

position of two or more states, the state that is measured is determined by entropy.

Entropy is proportional to the rate of branch recombination. Branches can recombine

only when they have matching knots. If branches have knots that do not match, then

they cannot recombine. Without recombination the entropy is less. Entropy maximization

therefore implies that branches will tend to create states that are similar enough to allow

recombination.

Consider the example of a measurement of particle location such that the particle is

equally likely to be found in either of two potential wells. The measuring apparatus magnifies

the e↵ect of the state to macroscopic level, and it indicates the location of the particle. In

Fig. 40 we see a depiction of this process. Initially, one collection of branches C1 have the
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FIG. 40: The branched manifold M is shown separated into two collections of branches C1 and
C2 that are in two di↵erent states S1 and S2 inside the dotted line. If every intermediate state
between S1 and S2 has low entropy then this prevents recombination between C1 and C2 inside
the dotted line. If C1 and C2 cannot recombine, then this reduces the entropy from a case in
which all the branches are in S1 or S2. Eventually the collections C1 and C2 do collapse to one of
the states S1 or S2, so that they can resume recombination. In the diagram, C1 and C2 are in
increasingly divergent states S1 and S2 that later collapse to a single state.

particle in potential well number 1, state S1, and another collection of branches C2 have

the particle in well 2, state S2. At the time of measurement, there is an interaction with

the particle in the well. The branches of C1 begin the magnifying process to indicate the

particle’s location in well 1, state S1, and the branches of C2 begin the process to indicate

well 2, state S2. Then C1 and C2 are in increasingly di↵erent states S1 and S2. The branches

of C1 and C2 cannot recombine where their states are di↵erent. This implies a reduction of

the entropy of recombination. All of the intermediate states between S1 and S2 are at low

entropy, and therefore disfavored, but entropy increases as branches from S1 (or S2) pass

through the intermediate states to S2 (or S1). Then C1 and C2 collapse to a single state,

either S1 or S2. This happens on the quantum scale. By the time the measurement has

been magnified to macroscopic size, the state has already collapsed.

B. Entropy of scalar curvature is S = �wR

The branched manifold M has entropy in its branching. Because of the constraint

R̂µ⌫ = 0, increasing the volume of the branches of M decreases the number of branches,

as in Fig. 41 and in the discussion following eqn. (23). The total weight w is conserved.

The manifold M is centered around the unbranched manifold �M . With fixed boundary,

decreasing the volume of �M increases the number of branches of M . In Fig. 42 a branched

1-manifold C with fixed endpoints changes geometry to approach the straight line connect-
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ing the endpoints. We can say that C is centered around an unbranched manifold �C (not

shown in the diagram) and that �C approaches the straight line. The number of possible

branches on C is maximized when �C is exactly equal to the straight line.

FIG. 41: In the left diagram we see a flat 1+1 manifold. In the middle diagram, the manifold is
branched such that the branches separate on the dashed line. The manifold stretches over time in
the direction of the x-axis. The weight w reduces to compensate for the increased volume until
there can only be one branch. The diagram on the right is the sequence of slices from the middle
diagram showing both weight and branching. The total weight in each slice is conserved while the
volume increases.

FIG. 42: A branched curve C has fixed endpoints and fixed
length. The entropy of C is maximized when C is as close as
possible to the straight line connecting its endpoints.

If the number of states of M is P then the entropy of M is

S = lnP (43)

The number of states of M is linear in the number of branches, and we see in Fig. 43 that

the number of branches increases as the amount of recombination increases. On M there

are many branches recombining. To determine the entropy in these recombinations, we

determine how the branches are involved in the recombinations. Directly calculating the

number of branches of M is intractable (see the third diagram of Fig. 43). Instead, we

will approximate the number of branches in M by assuming that k branches recombine and

separate repeatedly. If we have just k branches recombining with each other over time �t,

then the number of states is P / kf�t, where f is the frequency of the recombinations. We
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FIG. 43: These are three diagrams of a branched 0+1 manifold. On the left there are just two
branches. In the middle there are four branches: left-left, left-right, right-left, and right-right.
Staying close increases the number of branches and therefore increases the probability. The
manifold maximizes entropy by keeping the branches close, as on the right.

see this by applying the branch counting technique shown in Fig. 43. We see in Fig. 44 that

the manifold has some total weight w. The total number of branches in M is proportional

to w. We can say that there are w/k recombinations happening in parallel. We include

FIG. 44: This is a cross-section of the branched manifold M . The total number of branches of
M is proportional to the total weight of all the branches of M . This is equal to the weight w on
�M (we define w on �M as the sum of the weights w on the branches of M). Looking at a small
piece of the cross section we see that there are many branches recombining. Let k be the average
number of branches in any particular recombination. Then there are w/k recombinations
happening in parallel. Let the frequency of recombinations be f .

all the branches of M by including w/k interactions happening in parallel, each interaction

containing k branches, all happening with frequency f . Since each interaction has kf�t

possibilities, the number of states is

P / (kf�t)w/k = kf�t(w/k) (44)
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Then the entropy over time �t is

S�t = lnP /
⇣fw

k

⌘
�t ln k (45)

The numbers k and f are constant, and therefore we have S = lnP / w. The result, that

S / w, does not depend on any choice of k or f , nor does it depend on our model.

If we stretch the branched manifold M , then �M has a corresponding change in volume,

V ! V 0. The constraint R̂µ⌫ = 0 implies �M has a change of weight w ! w0 such that

w0V 0 = wV . For a fixed boundary on an infinitesimal ball, a small change in the scalar

curvature R increases the volume by V 0 ⇡ V (1 + R). Then the weight is a↵ected by

w0V (1 +R) ⇡ wV , which implies

w0 ⇡ w/(1 +R) (46)

Therefore the entropy is related to scalar curvature by S ⇡ w/(1 + R). Linearizing around

R = 0 we have S ⇡ w � wR. Considering only the variation in R we have S ⇡ �wR.

C. Ricci flatness of R3#(S1 ⇥ P

2)

1. Flatness in two dimensions

In Section VI we described a procedure for creating the knot R3#(S1⇥P 2), and through-

out the paper we have introduced coordinates for the knot on M . In this section we will

derive conditions on ⇢ that will assure Ricci flatness, R̂µ⌫ = 0.

We begin by finding Ricci flat solutions for R2#P 2, the 2-dimensional case. To make

R2#P 2 we remove a disk from a plane and set each point on the disk boundary identical to

the point that is diametrically opposite. Although the disk with the plane removed, R2�D2,

is flat, when we identify points to create R2#P 2, it is no longer flat unless we meet certain

conditions for ⇢. We draw a circle on the manifold around the P 2 as in the left diagram of

Fig. 45. We cut along the circle to produce a manifold with boundary, which we call M2, as

in the middle diagram of Fig. 45. Then we apply the Gauss-Bonnet theorem to M2,

Z

M2

R̂dA+

Z

@M2

kgds = 2⇡�(M2) (47)
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In this equation, the symbols are the conventional ones for this theorem. The geodesic

curvature kg provides a measure of how much a curve deviates from a geodesic in a manifold,

and the Euler characteristic � depends only on the topology of the manifold. We have

R̂ = 0 on M2. The Euler characteristic of P 2 is �(P 2) = 1. The Euler characteristic of

M2 (equivalent to P 2 �D2) is �(M2) = 0. The geodesic curvature kg = 0 at every radius.

Zero geodesic curvature requires that perpendicular lines passing through the circles do not

diverge relative to gµ⌫ . We conclude that the red lines in the right diagram of Fig. 45 span

an equal length on each circle. Therefore, on a flat R2#P 2 the circumference is constant

at every radius, as illustrated in the right diagram of Fig. 45. The manifold has the same

geometry as a cylinder. If we considerM2 as an embedding, in the same sense as the mapping

X(a; ⌧, �,�) =
⇣ ⌧

1� ⌧
, �,�, ⇠⌧ sin(2� + ✓), ⇠⌧ cos(2� + ✓)

⌘
(48)

then we can describe the geometry of M2 in terms of the magnitude ⇠. In the degenerate case

that the magnitude ⇠ goes to zero, M2 approaches a flat disk, and the weight ⇢ compensates

for the geometry such that C⇢ = b for circumference C and constant b. In the right diagram

of Fig. 45 we see a R2#P 2 with a few circles shown as examples of circumferences around the

P 2. Ricci flatness requires that those circles have constant circumference, with conformal

weight ⇢ such that ⇢ = b/C.

FIG. 45: In the left diagram, we see a R2#P

2 with a circle drawn around it. We cut on the
circle to produce the manifold M2, as shown in the middle diagram. If R̂ = 0 on the interior of
M2, then, by the Gauss-Bonnet theorem, the geodesic curvature on the boundary of M2 is kg = 0.
This is true for any circular boundary we draw. For example, in the right diagram we see some
examples of circular boundaries on which the geodesic curvature is zero. Zero geodesic curvature
requires that perpendicular lines passing through the circles do not diverge relative to gµ⌫ . For
example, the red lines shown do not diverge. We conclude that the red lines span an equal length
on each circle. Therefore any such circle has constant circumference relative to gµ⌫ , with
conformal weight ⇢ such that C⇢ = b.
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We now consider a more general solution for Ricci flatness on R2. In two dimensions, for

any harmonic function , if a metric ⌘̄µ⌫ is Ricci flat then the metric e2⌘̄µ⌫ is also Ricci flat

[84]. In our case we start with Ricci flat ⌘̄µ⌫ , and we construct a harmonic function . For

multiple source points pi there is a harmonic function

(x) =
X

i

� ln(d(pi, x)) (49)

where d(pi, x) is the distance from pi to x. Then we set

⇢ = e (50)

and

gµ⌫ = ⇢2⌘̄µ⌫ (51)

is a Ricci flat metric. If there is only one source, this solution exactly matches the solution we

obtained before for the degenerate P 2, which was ⇢ = e = 1/d = b/C. Thus we can replace

the points pi by a degenerate P 2 (one for which its embedding has magnitude ⇠ = 0). If the

magnitude ⇠ increases, then the displacement of the embedding into x4 and x5 increases,

which increases the length of a path around the P 2. Therefore, increasing the magnitude ⇠

increases the circumference C. Ricci flatness requires that the weighted circumference C⇢

is constant, and therefore ⇢ must change to preserve the weighted circumference C⇢.

Next let us consider the case of R2 with natural metric ⌘̄µ⌫ = diag(1, 1). In this slice let

us assume there is a P 2 with ⇠ = 0 at the point p1 = (1, 0) and at the point p2 = (�1, 0), as

in the left diagram of Fig. 46. (Later we will use this plane as the slice � = 0,� = ⇡ through

R3#(S1 ⇥ P 2), but we completely suppress the third dimension for the moment.) We begin

by finding the harmonic function (x) =
P

i � ln(d(pi, x)) and then setting ⇢ = e. Now we

use the metric ⇢2⌘̄µ⌫ with degenerate P 2 at each of the points pi. In the right diagram of

Fig. 46 we see bipolar coordinates, which are the 2-dimensional version of toroidal coordi-

nates with � angle suppressed. The circles in blue are the same as the circles of constant ⌧

in toroidal coordinates. Relative to ⇢2⌘̄µ⌫ , these circles have constant circumference C⇢. We

can increase the magnitude ⇠ of both of the P 2 as desired, compensating for the geometry by

reducing ⇢ as needed. Bipolar coordinates give an isometric mapping between the cylinder

R ⇥ S1 and the Ricci flat R2#P 2#P 2. The blue circles of Fig. 46 are mapped from the
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circles of the cylinder corresponding to the S1 fiber. The red circles of Fig. 46 are mapped

from the parallel lines of the cylinder corresponding to the R fiber.

FIG. 46: We see a R2#P

2#P

2 with a P

2 at the point p1 = (1, 0) and at the point p2 = (�1, 0).
We will later use this as a slice through a R3#(S1 ⇥ P

2). The diagram on the right shows bipolar
coordinates centered around p1 and p2. Bipolar coordinates are the 2-dimensional version of
toroidal coordinates with the � coordinate suppressed. The circles of constant ⌧ , shown in blue,
have constant circumference relative to ⇢2⌘̄µ⌫ . The circles of constant �, shown in red, are also
geodesics relative to ⇢2⌘̄µ⌫ .

2. Flatness in 2+1 dimensions

Now we introduce the time dimension. The usual inherited metric for a flat manifold

is ⌘̄µ⌫ = diag(1,�1,�1). Introducing the manifold R ⇥ (R2#P 2#P 2), we have P 2 on the

manifold at p1 = (t, 1, 0) and p2 = (t,�1, 0). We can scale the metric as above to get

⇢2⌘̄µ⌫ . Volume in three dimensions, however, scales as ⇢3, and we find that the time di-

mension makes the conformal scaling no longer Ricci flat. If we want to write a volume

element, then we must compensate for the time dimension, so we use symmetry and motion.

Rather than beginning with initial metric ⌘̄µ⌫ = diag(1,�1,�1), we introduce an embed-

ding of the manifold that is in motion with some velocity � in x4 and x5. We set � such

that � = ⇢. If we describe the metric using a coordinate chart, then the inherited met-

ric is hµ⌫ = diag(1/�2,�1,�1) = diag(1/⇢2,�1,�1). Thus the metric includes the factor

⇢(�t/�) = �t, and the metric becomes ⇢2hµ⌫ , which is Ricci flat.

In the previous section, we mapped isometrically to the manifold R2#P 2#P 2 from the

cylinder S1 ⇥ R. Here, we can map isometrically to this manifold R ⇥ (R2#P 2#P 2) from

R⇥ (R⇥S1). The manifold R⇥ (R⇥S1) with its natural metric is Ricci flat. Therefore this

manifold with its embedding and conformal weight is also Ricci flat. Again, the magnitude ⇠
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of the P 2 can be expanded, and ⇢ is reduced to compensate. Now that ⇢ is linked to motion

through ⇢ = �, we see that reducing ⇢ reduces the velocity.

3. Flatness in 3+1 dimensions

Introducing the third spatial dimension, we again find that adjustments are necessary

to produce Ricci flatness. The Weyl metric gives a description of any axially symmetric

Ricci flat geometry in terms of two potential functions, U and V . In cylindrical coordinates

(t, r, z,�) the Weyl metric is

ds2 = e2Udt2 � e�2U(r2d�2 + e2V (dr2 + dz2)) (52)

The potential function U satisfies the Laplacian

r2U = U,zz + U,rr + (1/r)U,r = 0 (53)

and the potential function V is related in the following way

V,r = r((U,r)
2 � (U,z)

2) (54a)

V,z = 2rU,rU,z (54b)

We can extend the description that we used for 2+1 dimensions by saying that the

harmonic function  is analogous to the potential function U . For 3+1 dimensions, we use

a harmonic function  whose source is the degenerate S1 ⇥ P 2. The function  is uniquely

determined by its source, up to a constant factor. The function U , which also satisfies the

Laplacian, is proportional to . Subsequently we can solve for V in terms of U .

Ideally we would solve for exact solutions U and V . Here, we will sketch a derivation of

approximations for U and V . For additional discussion see [18]. To derive an approximation,

we consider a slice of R4 with constant t and constant �, and we observe the behavior of U

and V near the degenerate S1⇥P 2 at (r, z,�) = (1, 0, 0). Furthermore, we consider behavior
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only along the r coordinate, so that z = 0. In this case, we have

U = � ln |r � 1| (55a)

V,r = r(U,r))
2 = r

⇣ d

dr
(� ln |r � 1|)

⌘2

(55b)

For eqn. (55a) we have used eqn. (49). In the limit of approaching the degenerate S1 ⇥ P 2,

the radial term r is approximately constant in comparison to the derivatives. We therefore

have

V,r = (U,r)
2 =

⇣
� d

dr
ln |r � 1|

⌘2

=
⇣ 1

r � 1

⌘2

(56)

V = � 1

r � 1
(57)

We obtain the same result by performing the integral in eqn. (56) exactly and ignoring the

smaller term near the S1 ⇥ P 2. Near the S1 ⇥ P 2, the e↵ect of the function V dominates

over that of U = � ln |r� 1|. Just inside the torus, two nearby points with slightly di↵erent

r will have a large ds according to eqn. (52), since r . 1 and V � 0. Just outside the torus,

two nearby points with slightly di↵erent r will have a small ds since r & 1 and V ⌧ 0. As

we go from the inside of the ring to the outside, the sign of V changes, and we see that,

in the limit as we approach the degenerate S1 ⇥ P 2, the average value of V is zero. The

potential U has the correct asymptotic behavior for both the near case, as we approach the

degenerate S1⇥P 2, and the far case as we approach asymptotic flatness at infinite distance.

In the near case, the spacelike components of the metric have conformal weight ⇢ that scales

like 1/r and preserves Ricci flatness on the S1 ⇥ P 2 in the same way as the 2-dimensional

case. In the far case, the spacelike components of the metric have conformal weight ⇢ that

scales like e1/r in the same way as a metric for any compact source with flat background.

We therefore take as an approximation that V = 0 everywhere and that we can obtain this

approximation from the Weyl metric by a coordinate transformation. (See [85] for some

discussion of such a coordinate transformation.) We therefore arrive at the conformastatic

metric

ds2 = e�2dt2 � e2(r2d�2 + dr2 + dz2) (58)

such that  is a harmonic function, where we note that  is proportional to any harmonic
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function U whose source is the degenerate S1 ⇥ P 2.

In the previous section we had the problem that introducing the time dimension added

a factor ⇢ to the volume element, and we dealt with that problem by adding motion to the

embedding. Here we are introducing the � dimension, and this adds another factor ⇢ to the

volume element. The volume element of the manifold is dV/�, and therefore if the manifold

M is oriented such that � = ⇢2, then a factor � will compensate for the factors of ⇢ in both

the t and � coordinate. By comparison, in the 2+1 case, the conformal weight scales dt2 by

⇢2 and the embedding introduces a factor � = ⇢, so that we have

⇢2
⇣dt
�

⌘2

= ⇢2
⇣ 1

⇢2

⌘
dt2 = dt2 (59)

In the 3+1 case, the dt2 term scales by ⇢2 and the embedding introduces a factor � = ⇢2, so

that we have

⇢2
⇣ 1

⇢4

⌘
dt2 =

⇣ 1

⇢2

⌘
dt2 = e�2dt2 (60)

where we have used eqn. (50). Again, the P 2 geometry can be expanded, and ⇢ compensates

such that circumference is conserved. Likewise, as ⇢ reduces, � = ⇢2 implies that the velocity

of motion also reduces.

FIG. 47: On the left is R2 with degenerate P

2 at (r, z,�) = (1, 0, 0) and (r, z,�) = (1, 0,⇡). The
harmonic function  is (x) =

P
i� ln(d(pi, x)). On the right is a d� slice from R3 with

corresponding harmonic function  that is weighted by rd�. The dots indicate the location of the
degenerate S

1 ⇥ P

2 in this d� slice.

We call the distance from a point to the particle d. In three spatial dimensions, far away

from a particle  scales as 1/d. Therefore limd!1 e = limd!1 e1/d = 1. This is in contrast

to the 2-dimensional solution where  scales like � ln(d), and ⇢ converges to zero at infinite

distance. Therefore, in three dimensions it makes sense to say that at infinite distance ⇢ = 1

and � = ⇢2 = 1.
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D. Obstruction to single R3#(S1 ⇥ P

2) annihilation

In Section VIE we described how a pair of particles could annihilate while maintaining

Ricci flatness. In Section VI J we described the P-contraction, and in so doing it may seem

as if we introduced a way in which a single lepton could disappear while maintaining Ricci

flatness.

The knot R3#(S1 ⇥ P 2) can P-contract to R3#(S1 ⇥ P 2)⇤. The P-contraction can still

satisfy R̂µ⌫ = 0, meaning there is a ⇢ distribution such that the metric gµ⌫ is Ricci flat on

R3#(S1 ⇥ P 2)⇤. Suppose we could extend this P-contraction such that the R3#(S1 ⇥ P 2)

is P-contracted at every angle �. This process would annihilate the R3#(S1 ⇥ P 2) without

needing to interact with another particle. What prevents this?

In the Appendix Section XIC we described how R3#(S1⇥P 2) can satisfy the constraint

R̂µ⌫ = 0. The solution requires motion such that the Lorentz factor � is related to the

conformal weight ⇢ by � = ⇢2. Assume that the knot R3#(S1 ⇥ P 2)⇤ is P-contracted over

some non-zero length (more than just one point). Then the manifold has no extension into

x4 and x5 along that length. Along the P-contracted segment, the rotational motion of the

R3#(S1 ⇥P 2)⇤ is motion of the manifold parallel to itself, which is equivalent to no motion

and � = 1. Therefore the rotation of R3#(S1 ⇥ P 2)⇤ does not compensate for ⇢ along the

P-contracted segment in the way we worked out in the Appendix Section XIC. This implies

that the manifold does not satisfy R̂µ⌫ = 0 there. This implies that it is not possible to P-

contract a R3#(S1 ⇥P 2)⇤ on a segment of non-zero length. Therefore P-contraction cannot

annihilate an individual R3#(S1 ⇥ P 2).

E. Quark charge

We might wonder why we do not find in nature a quark without a charge. Is there a

theoretical reason that a quark must have a charge? We address that question here. In a

hadron the quarks are packed closely together, and the topology of the knots a↵ects the

curvature of the manifold. If the quarks are charged, the electromagnetic field changes

the metric gµ⌫ = ⇢2A↵,µA↵
,⌫ and allows the constraint R̂µ⌫ = 0 to be maintained. Quarks

have a complicated relationship between geometry and field, which explains how there can

be multiple solutions for the charges of the quarks. Experimentally, there have been no
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indications of uncharged quarks, suggesting that the electric field is either necessary or

maximizes entropy in all observed cases.

F. Obstruction to charged and unlinked P-contraction

In Section VI J we introduced the P-contraction, in which a knot may spontaneously

change from one generation to another, for example, a muon neutrino to an electron neutrino

or a strange to a down. We stipulated that the knot must be uncharged, and we outlined

a mechanism by which a linked knot might become uncharged before its P-contraction. In

this section we discuss why a charged, unlinked knot cannot P-contract.

The electric field appears in the metric gµ⌫ = ⇢2A↵,µA↵
,⌫ through derivatives of the A⌫

field, namely through A0
,⌫ and A⌫

,0. On a charged knot R3#(S1 ⇥ P 2), the A0
,⌫ derivatives

come to a cusp on the knot. On the cusp, the second derivatives of A⌫ are infinite. To

preserve the constraint R̂µ⌫ = 0, there must be a geometric cusp with opposite curvature at

the same location. See [18] for details. At a P-contraction, the knot R3#(S1⇥P 2)⇤ contracts

the amplitude of the P 2 down to a point. If the knot were charged, then the cusp of the

geometric curvature would have to also contract to a point. There is no way to contract that

geometric curvature to a point, and therefore a charged R3#(S1 ⇥ P 2) cannot P-contract

by itself.

G. Generation limits

It is possible that further exploration of the theory will show that generations of neutrinos

for n > 2 are disallowed. Here we present a possible explanation that neutrinos with n > 2

are not observed.

Let us assume neutrinos have mass of the order 0.1 eV/c2. The mass cannot be less than

the energy E from spin angular momentum L. We model the knot R3#(S1 ⇥ P 2) as a

spinning ring of infinitesimal thickness. In the rest frame of the neutrino, the rotation of the

ring is relativistic, and the integral of the magnitude of that momentum is approximately

p ⇡ E

c
= 0.1 eV/c (61)
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If r is the length scale of the knot, then we have

pr ⇡ L (62)

and

pr ⇡ ~
2

(63)

From this we obtain r ⇡ 1 ⇥ 10�6 m, and the time-scale for light to traverse the neutrino

in its own rest frame is 3⇥ 10�15 s. According to one model [86] for the masses and mixing

angles of the neutrinos, the tau neutrino and the muon neutrino oscillate over a distance

given by
D

E
⇡ 500 km/GeV (64)

where E is the energy of the neutrino. If we use the rest energy of the neutrino 0.1 eV,

then we can write the following for a time-scale in the rest frame of the neutrino: ⌧ = �t/�,

where �t is the time for an oscillation to occur in the lab frame

⌧ =
�t

�
=

D

c�
=
�mD

Ec�
=

Dm

Ec

⌧ =
⇣5⇥ 105 m

109 eV

⌘⇣ 0.1 eV

3⇥ 108 m/s

⌘
⇡ 2⇥ 10�13 s (65)

In the rest frame of the neutrino, the oscillation happens on a time scale that is comparable

to the time for light to traverse the neutrino. For oscillations between generations n = 2

and higher the transition may occur too fast for the particle to establish a mass eigenstate.

We therefore expect three distinguishable generations of neutrino masses corresponding to

R3#(S1 ⇥ P 2)0, R3#(S1 ⇥ P 2)1, and R3#(S1 ⇥ P 2)n for n � 2.

Further exploration of the theory may show that generations of charged fermions with

n > 2 are not seen because of energy and stability or are disallowed for other reasons.

H. Particle size

Charged leptons have always appeared pointlike in collision experiments, but the assump-

tion of pointlike charged particles has presented a number of theoretical problems. In this

theory a fermion is represented by a knot, and a knot has a finite size. We saw how to find
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an estimate of the size of a knot in Section XIG. We can calculate a lower bound for the

size of a charged fermion far from other particles. Consider, for example, an electron, which

has mass 0.5 MeV/c2. In the neutrino calculation we assumed the rest energy was almost

all due to angular momentum, while in the case of the electron, the rest energy is an upper

bound for angular momentum energy. In this case we obtain r & 2⇥ 10�13 m.

In this theory the geometry of a knot, and thus its size, depends on its proximity to other

knots. We showed in Section XIC that the conformal weight ⇢ can be described in terms of

a harmonic function  such that ⇢ = e. The harmonic function  increases as it approaches

the knot R3#(S1 ⇥ P 2). If there are multiple knots R3#(S1 ⇥ P 2), then each contributes

its own harmonic function i, and the conformal weight is ⇢ = exp(
P

i i). As a charged

knot is approached by another charged knot, the value of ⇢ near that knot increases. The

paper [18] describes the relationship between charge, field strength, and conformal weight

⇢. In that paper we see that an increase of the conformal weight would imply an increase of

the charge of the knot. To conserve charge, the diameter of the knot reduces as the distance

to other knots reduces. As distance goes to zero, the size of the charged lepton knot goes to

zero. Therefore the electron appears to be pointlike in collisions.

Quarks, by contrast, are linked to other knots and are constantly in close proximity.

The constraint R̂µ⌫ = 0 requires that the quarks are in relative motion so that the Lorentz

factor � can counter the e↵ect of proximity on the conformal weight ⇢. Interaction of quarks

with other particles has a smaller e↵ect on their apparent size.

I. Recombination of branches is equivalent to addition of quantum amplitudes  

If multiple collections of branches with knots recombine, the quantum amplitude of the

union of the recombining collections is equal to the sum of the quantum amplitudes of

the individual collections. To show this, we use multiple indices such that we have multiple

collections of branches Cm, each of which consists of branches Bmn that have knot amplitudes

amn and weight coe�cients kmn.

In each of the collections Cm individually, there are total weight coe�cients km, weighted

average amplitudes ām, and quantum amplitudes  m as follows
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km =
X

n

kmn (66)

ām = (
X

n

kmn)
�1(

X

n

kmnamn) (67)

 m = (
X

n

kmnamn) = kmām (68)

See eqns. (25), (26), (27), and (28) in the text. If all the branches in all of the collections

Cm recombine, then they have a total weight coe�cient k, weighted average amplitude ā,

and quantum amplitude  as follows.

k =
X

m

X

n

kmn =
X

m

km (69)

ā = (
X

m

X

n

kmn)
�1(

X

m

X

n

kmnamn) = (
X

m

km)
�1(

X

m

kmām) (70)

 = (
X

m

X

n

kmnamn) = (
X

m

X

n

kmn)ā = (
X

m

km)(
X

m

km)
�1(

X

m

kmām) = (
X

m

kmām) =
X

m

 m

(71)

Therefore the quantum amplitude of the union of all the branches in all the collections Cm is

the sum of the quantum amplitudes,  =
P

m  m. Likewise, the quantum amplitude of the

union has the same relationship to the weighted average of the union,  = (
P

m kmām) = kā.

J. The Lagrangian is optimized by a single rotation direction in the co-dimension

Particle dynamics and gravitational dynamics both result in rotation of the manifold of

the form (x0, x1, x2, x3) 7! (x0, x1, x2, x3, b sin(kjxj), b cos(kjxj)) where j = 0, 1, 2, 3, and b

is the amplitude. The Lagrangian is maximized when the average velocity of rotation is

maximized. We show here that the average velocity of rotation is maximized when the

direction of rotation is the same for every contributing source, that is, when the sign of k0

is the same for all sources.

If we introduce a single rotational source, then we can say its motion is of the form
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(t, x1, x2, x3, f 4, f 5) in f 4 and f 5. We can express the motion using a complex number such

that f 4 + f 5i = r1ei!1t. The linearized Ricci flatness constraint is approximately a wave

equation, and the motion from the rotational source propagates outward like a wave. That

motion can have one of two directions with either !1 > 0 or !1 < 0. The velocity is therefore

v =
d

dt

�
r1e

i!1t
�
= i!1r1e

i!1t (72)

Even for a single source, there is some variation in the magnitude r1 and the angular

velocity !1. We construct a probability distribution to model the displacement r1ei!1t. We

also construct a probability distribution to model the velocity i!1r1ei!1t associated with

each displacement. The left diagram of Fig. 48 is a piece of the manifold with a source of

rotational motion shown by the black point and the magnitude of the motion that it induces

shown in green. We take a sample of that motion at the blue point. Sampling that motion

at the blue point over time generates a probability distribution P (x4, x5) for the probability

of finding the point with those x4 and x5 coordinates. That distribution is shown in the

middle diagram. The motion of the point is correlated to its position, and for every value of

(x4, x5) there is a probability distribution of velocities V (x4, x5). The diagram on the right

shows the expected value of V (x4, x5) at each value of x4 and x5.

FIG. 48: On the left, there is a single source for rotational motion on the manifold, the black
point. The magnitude of the rotational motion is shown in green. We take a sample of that
motion at the point shown in blue. The middle diagram shows the probability distribution for
displacement at that point. The distribution corresponds to r1e

i!1t with variation of r1 and !1.
The diagram on the right shows the expected value of the velocity of rotation corresponding to
each value of the displacement. The distribution corresponds to i!1r1e

i!1t with variation of r1
and !1.

We now create the displacement and velocity probability distributions that result from

multiple sources. For both displacement and velocity, the distribution of the sum is the
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convolution of the individual distributions. Now if we assume that we can choose the direc-

tion of rotation of each of the sources, then we maximize the Lagrangian by maximizing the

magnitude of the velocities in the combined velocity distribution. This results from having

all the contributing rotational sources rotating in the same direction.
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