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1 The main result

Theorem 1.1. Let n be a natural number greater than two . Let r be the smallest odd prime num-
ber such that r - n and n2 6≡ 1 (mod r) . Let P (a)

n (x) =
(
1
2

)
·
((

x−
√
x2 + a

)n
+
(
x+
√
x2 + a

)n)
, where a is an integer coprime to n . Then n is a prime number if and only if P (a)

n (x) ≡ xn

(mod xr − 1, n) .

Proof of necessity :
It is true that if n is a prime number, then P

(a)
n (x) ≡ xn (mod xr − 1, n).

We have, by the binomial theorem,

P (a)
n (x) =

1

2

((
x−
√
x2 + a

)n
+
(
x+
√
x2 + a

)n)

=
1

2

n∑
i=0

(
n

i

)
xn−i

((
−
√
x2 + a

)i

+

(√
x2 + a

)i)

=

(n−1)/2∑
j=0

(
n

2j

)
xn−2j(x2 + a)j

= xn +

(n−1)/2∑
j=1

(
n

2j

)
xn−2j(x2 + a)j

Since
(
n
m

)
≡ 0 (mod n) for 1 ≤ m ≤ n−1, there exists a polynomial f with integer coefficients

such that
P (a)
n (x) = xn + 0× (xr − 1) + nf
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from which
P (a)
n (x) ≡ xn (mod xr − 1, n)

follows. �

—
Proof of sufficiency :
It is true that if P (a)

n (x) ≡ xn (mod xr − 1, n), then n is a prime number.
Suppose that n is an even number. Then, there exist a polynomial f with integer coefficients

and an integer s such that

P (a)
n (x) =

n/2∑
i=0

(
n

2i

)
xn−2i(x2 + a)i = xn + s(xr − 1) + nf

Considering [xn] where [xk] denotes the coefficient of xk in P
(a)
n (x), we get

n/2∑
i=0

(
n

2i

)
≡ 1 (mod n),

i.e.
2n−1 ≡ 1 (mod n)

which is impossible.
So, n has to be an odd number.

There exist a polynomial g =
n∑

i=0

aix
i where ai are integers and an integer t such that

P (a)
n (x) =

(n−1)/2∑
j=0

(
n

2j

)
xn−2j(x2 + a)j = xn + t(xr − 1) + ng

Considering [x0], we have

0 = −t+ na0 =⇒ t = na0

So, we see that there exists a polynomial h with integer coefficients such that

P (a)
n (x) =

(n−1)/2∑
j=0

(
n

2j

)
xn−2j(x2 + a)j = xn + nh (1)

It follows that [xk] ≡ 0 (mod n) for all k such that 0 ≤ k ≤ n− 1.
Now, (1) can be written as

P (a)
n (x) =

(n−1)/2∑
j=0

j∑
k=0

(
n

2j

)(
j

k

)
xn−2(j−k)aj−k = xn + nh
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So, we see that

[x3] ≡ 0 (mod n)

=⇒
((

n

n− 3

)(
(n− 3)/2

0

)
+

(
n

n− 1

)(
(n− 1)/2

1

))
a(n−3)/2 ≡ 0 (mod n)

=⇒
(

n

n− 3

)
≡ 0 (mod n)

since gcd(a, n) = 1.
Also, we have

[x5] ≡ 0 (mod n)

=⇒
((

n

n− 5

)(
(n− 5)/2

0

)
+

(
n

n− 3

)(
(n− 3)/2

1

)
+

(
n

n− 1

)(
(n− 1)/2

2

))
a(n−5)/2 ≡ 0 (mod n)

=⇒
(

n

n− 5

)
≡ 0 (mod n)

So, we can get (one can prove by induction)

[x3] ≡ [x5] ≡ [x7] ≡ · · · ≡ [xn−2] ≡ 0 (mod n)

=⇒
(

n

n− 3

)
≡
(

n

n− 5

)
≡
(

n

n− 7

)
≡ · · · ≡

(
n

2

)
≡ 0 (mod n)

=⇒
(
n

2

)
≡
(
n

3

)
≡
(
n

4

)
· · · ≡

(
n

n− 2

)
≡ 0 (mod n) (2)

Suppose here that n =
m∏
i=1

pbii is a composite number where p1p2 · · · pm are primes and bi are

positive integers.
Let [[N ]] be the number of prime factor pi in N .
Then, we have the followings :
+ [[1!]] = [[2!]] = · · · = [[(pi − 1)!]] = 0

+ [[pi!]] = 1

+ [[(n− 1)!]] = [[(n− 2)!]] = · · · = [[(n− pi)!]]

Using these, we see that(
n

1

)
=

n!

1!(n− 1)!
= n,

(
n

2

)
=

n!

2!(n− 2)!
, · · · ,

(
n

pi − 1

)
=

n!

(pi − 1)!(n− (pi − 1))!
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are divisible by pbii , and that (
n

pi

)
=

n!

pi!(n− pi)!

is not divisible by pbii .
Therefore, we see that(
n

1

)
=

n!

1!(n− 1)!
= n,

(
n

2

)
=

n!

2!(n− 2)!
, · · · ,

(
n

p1 − 1

)
=

n!

(p1 − 1)!(n− (p1 − 1))!

are divisible by n, and that (
n

p1

)
=

n

p1!(n− p1)!

is not divisible by n, which contradicts (2).
It follows that n is a prime number. �
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