SR - QM - 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
The SRQM Interpretation of Quantum Mechanics
s A Tensor Study of Physical 4-Vectors e

Using Special Relativity (SR) as a starting point, then noting a few empirical
4-Vector facts, one can derive the Principles that are normally considered to be
Axioms of Quantum Mechanics (QM).

Since many of the QM Axioms are rather obscure, this seems a more logical and
understandable paradigm than QM as a separate theory from SR, and sheds light
on the origin and meaning of the QM Principles.

The SRQM or [SR—QM] Interpretation of Quantum Mechanics
A Tensor Study of Physical 4-Vectors

or: Why General Relativity (GR) is *NOT* wrong
e or: Don’t bet against Einstein ;)

i e or: QM, the easy way... A

ex. Firefox Web Browser

SRQM: A treatise of SR—QM by John B. Wilson ver 2019-Jul-03 .2
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SR — QM - 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
The SRQM Interpretation of Quantum Mechanics
s A Tensor Study of Physical 4-Vectors s

4-Vectors are a fantastic language/tool for describing the physics of both relativistic and quantum phenomena.

They easily show many interesting properties and relations of our Universe, and do so in a simple and concise
mathematical way. Due to their tensorial nature, these SR 4-Vectors are automatically coordinate-frame invariant,
and can be used to generate *ALL* of the physical SR Lorentz Scalar tensors and higher-index-count SR tensors.
Let me repeat: You can mathematically build *ALL* the Lorentz Scalars and larger SR tensors from SR 4-Vectors.

4-Vectors are likewise easily shown to be related to the standard 3-vectors that are used in
Newtonian classical mechanics, Maxwellian classical electromagnetism, and standard quantum theory.

Why 4-Vectors as opposed to some of the more abstract mathematical approaches to QM?
Because the components of 4-Vectors are things that can actually be empirically measured. Experiment is the
ultimate arbiter of which theories actually correspond to reality. If your quantum logics and string theories give
no testable/measurable predictions, then they are basically useless for real physics.

In this treatise, | will demonstrate how 4-Vectors are used in the context of Special Relativity,
and then show that their use in Relativistic Quantum Mechanics is really not fundamentally different.
Quantum Principles then emerge in a natural and elegant way.

| also introduce the SRQM Diagramming Method, an instructive graphical charting-method, which visually shows
how the SRQM 4-Vectors, Lorentz 4-Scalars, and 4-Tensors are all related to each other. This symbolic
representation clarifies a lot of physics and is a great tool for understanding and teaching.

SRQM: A treatise of SR—QM by John B. Wilson
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SR —- QM

SRQM

Some Physics Abbreviations

A Tensor Study -
of Physical 4-Vectors o a I o n

GR = General Relativity

SR = Special Relativity

CM = Classical Mechanics

EM = ElectroMagnetism

QM = Quantum Mechanics

RQM = Relativistic Quantum Mechanics
NRQM = Non-Relativistic Quantum Mechanics
QFT = Quantum Field Theory

QED = Quantum ElectroDynamics

RWE = Relativistic Wave Equation

KG = Klein-Gordon (Relativistic Quantum) Eqn
PDE = Partial Differential Equation

H = The Hamiltonian = y(P+U)

L = The Lagrangian = -(Pt-U)/y

V = 3-gradient = ( ) = ( )
d=4-Gradient=0"=("/c,-V) ; du=("'c,V)
S = The Action (4-TotalMomentum P+ = -9[S] )
® = The Phase (4-TotalWaveVector Ky = -9[d] )
T = Proper Time (Invariant Rest Time) = t,

B = Relativistic Beta = v/c = {0..1}A ; v = 3-velocity = {0..c}in

y = Relativistic Gamma = 1/\[1-B?] = 1/~N[1-B-B] = {1..}

D = Relativistic Doppler = 1/[y(1-|B|cos[O])]

8" = § = §; = 13 = {1 if i=j, else 0} 3D Kronecker delta

o= o"= 8= lw) = {1 if u=v, else 0} 4D Kronecker Delta
n"—nw—Diag[1,-I3)]« = Minkowski “Flat SpaceTime” Metric
"= &", = Diag[1, I;3] = Interesting Index Raise:Lower Matchup
¢l = 3D Levi-Civita anti-symmetric permutation symbol

e"»s = 4D Levi-Civita Anti-symmetric Permutation Symbol

{other upper:lower index combinations possible for Levi-Civita symbol}

Tensor-Index & 4-Vector Notation:

Al=a= ( ): 3-vector [Latin index {1..3}]
A=A=(, ): 4-Vector [Greek index {0..3}]

A"B, = AB" = A-B: Einstein Sum : Dot Product : Inner Product
A'B" = A®B: Tensor Product : Outer Product

A'B" - A'B¥ = AAB: Wedge Product : Exterior Product

A"B' - A¥BY = O0"": (2,0)-Zero Tensor

A"B' - B'A* = [A",B'] = [A,B]: Commutation

A"BY - BYA" = 7?7

SRQM = The [SR—QM] Interpretation of Quantum Mechanics, by John B. Wilson

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
o £ The SRQM Interpretation: Links —

of Physical 4-Vectors Jo . Wilso

See also:

nttp://scirealm.org/SRQM.html (it discussion)
nttp://scirealm.org/SRQM-RoadMap.html (main sram website)
nttp://scirealm.org/4Vectors.html @-vector study)
nttp://scirealm.org/SRQM-Tensors.html (rensor & 4-vector calculator)
1ttp://SCirea m.org/SCiCaICUIator.htmI (Complex-capable RPN Calculator)

or Google “SRQM”

http://scirealm.org/SRQM.pdf (his document)

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
SRQM Diagramming Method

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
The SRQM Diagramming Method shows the properties and relationships of various SRQM Diagramming Method

physical objects in a graphical way. This “flowchart” method aids understanding.

SpaceTime Dimension

ﬁ wﬁace Tensor Invariant
Representation: 4-Scalars bycellipses) 4-Vectors by [rectanales| 4-Tensors byloctagons! J[R]=¢"[R"]=n""
Physical/mathematical equations and descriptions inside each shape/object. —Diag[1,-1,-1,-1]=Diag[1,-6"]
Sometimes there will be additional clarifying descriptions around a shape/object. Minkowski Metric

Relationships: Lorentz Scalar Products or tensor compositions of different 4-Vectors are on A 4-Tensor 4-Displacement

simple lines between the related 4-Vectors. Lorentz Scalar Products of a single 4-Vector, _ : —
or Invariants of Tensors, are next to that object and highlighted in a different color. gzc(-}ar/afl_evn’; 4-Vector AR=(cAtAr)
t )

Flow: Objects that are some function of a Lorentz Scalar with another 4-Vector or :
4-Tensor are on lines with arrows indicating the direction of flow. (ex. multiplication) R=(ct,r)=<Event>
Properties: Some objects will also have a symbol representing its properties nearby, and .
sometimes there will be color highlighting within the object to emphasize temporal-spatial ) N

properties. | typically use : , _ ' i /a1 yd/dt[..]
‘m w 4-Divergence = d/drtl[..

Alternate ways of writing 4-Vector expressions in physics: Dot inmer Product. TE R ProperTime
(A-B) is a 4-Vector style, which uses vector-notation (ex. inner product "dot=-" or exterior Tensor Invariant  Tensor Invariant Derivative
product "wedge=2"), and is typically more compact, always using bold UPPERCASE to Affnre SpaceTime .

represent the 4-Vector, ex. (A-B) = (A"n,,B"), and bold lowercase to represent 3-vectors, "/-neanty  Dimension Eomaie A I\Veloc
ex. (a-b) = (a'5yb"). Most 3-vector rules have analogues in 4-Vector mathematics. ey d_i(gcl:t;/
(A"nu.B") is a Ricci Calculus style, which uses tensor-index-notation and is useful for more 4-Momentum @ ﬂm =dR/dt
complicated expressions, especially to clarify those expressions involving tensors with P=(mc,p)=(E/c,p)=m,U S -
more than one index, such as the Faraday EM Tensor F* = (¢"A" - 8'A") = (@ * A) Speed of Light (c)

SR 4-Tensor SR 4-Vector V] — v — =
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (V°,v) SR 4-Scalar Trace[T"] = nw;rl; =TV, = '|'0 X
(0,0)-Tensor S V-V = Vi V= [(v)” - vev] = (Vo)

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR — QM 4-Vector SRQM Interpretation

SRQM Study: Physical/Mathematical Tensors
Tensor Types: 4-Scalar, 4-Vector, 4-Tensor
s Component Types: , ,

John B. Wilson

: _ = SR:Minkowski Metric

: . Each 4D index = {0,1..3} = Tensor Rank 4

Matrix Format SRQM Diagram Format Inde S ) IR] =R =n"=V"+H" >

(R CERRCRSTEIEIM  Diag[1,-1,-1,-1] = Diag[1,-1;3] = Diag[1,-6"]
SR 4-Scalar S SR 4-Scalar Diagram Ellipse: = 4 SpaceTime Dimensions {in Cartesian form} "Particle Physics” Conventi
4- | i
s (0,0)-Tensor Mgf;f&gé?g“ (m,n)-Tensor has:
Lorentz Scalar S 4° = 1 component (m) upper-ndices SR:Lorentz Transform

(n) lower-indices aV[RP'] = 6R“v/aRV = AIJ'V

M — Iy M. A AQ — AP — SH
SR 4-Vector V* SR 4-Vector WNMRENMN SR 4-CoVector = “Dual” 4-Vector Ay S Py Sy = S 9
v TV VERY: (1 ,0)-Tenosor N :-Vectors, 1 index ' (0,1)-Tensor aka. One-Form ;
V=V = (V)= (v',v) = (V,V) RN C, = nwC° = (c,) = (Co,C) — (C1,Cx,Cy,Cy)

— (V, V5V, V) 4" = 4 components = (c,-¢) = (c°,-C') — (C',-C,-CY,~C?)
oR=0,R"=4
SR 4-Tensor T" SR 4-Tensor Dimension
TO | o TO2 TO3 (2,0)-Tensor SR SR
T | | Tz | e ™ = Mixed 4-Tensor § Mixed 4-Tensor Lowered 4-Tensor
[T T%] Diagram Octagon: RUEALEUESS (1,1)-Tensor (0,2)-Tensor
T T T2 7% [T, 7] 4-Tensors, 2 index T =N T™ T =N T T = NupMvo T

R =R - -
[T, T, T% 17 i [ To®,To ] [ T%,T%] [ oo, Tox ]
[T, T, 79,77 [T, T¥] [ To,Tk] [ Tio, T ]
[Tyt,TyX’Tyy,TyZ] = = =
[th’sz’sz’Tzz]

Temporal region:
Spatial region:

Mixed TimeSpace region:
The mnemonic being red and blue mixed make purple

[ +TOO, +T0k] [ +T00, _TOk] [ +T00, _TOk]
[ T ’ -Tk ] [ +T7i0 ’ -Tk ] [_TJO ’ + K ]

SR 4-Tensor SR 4-Vector

u v K —V = (O SR 4-Scalar Technically, all these objects are “SR 4-Tensors”, but we usually reserve Trace[T*™] =N, TV =T =T
(2,0)-Tensor T* (1,0)-Tensor V¥ =V = (V,v) i the name “4-Tensor” for objects with 2 or more indices, and use VAV = VeV = (V) - vv] = (V)2
(1,1)-Tensor T* or T,¥ SR 4-CoVector (0,0)-Tensor S . ; ; : Nuv o
’ , T Vi, = (ot orentz Scala the (m,n)-Tensor notation to specify all the objects more precisely. = Lorentz Scalar



SR - QM

4-Vector SRQM Interpretation

SRQM Study: PhysicallMathematical Tensors
Tensor Types: 4-Scalar, 4-Vector, 4-Tensor

i - Examples — Venn Diagram

Physical 4-Tensors: Objects which have Inva

SR 4-ScalarC_ Speed-of-Light (c) ProperTime paceTime

(0,0)-Tensors

C_RestMass (moi ) U-0=d/dz=yd/dt J-R=0,R"=4

Lorentz Scalar S Planck’s Const (h Derivative Dimensio

SR 4-Vector 4-Position
(1,0)-Tensors R=R"=(ct,r)=<Event>
W=V = (vW) = (VO,v) = (VO,V) —(ct,x,y,z)
- (Vti ’ ) )

e ————————

2 index-count Tensors:
MinkowskKi
SR 4-Tensor | 9[R]=¢"[R']=n""
(2,0)-Tensors Metric

™ =

[T T Faraday EM 4-Tensorj

[0 L Fer = oA - PAC = 9 A A

Higher index-count Tensors:

SR 4-Vector
(1,0)-Tensor V* =V = (V°,v)
SR 4-CoVector
(0,1)-Tensor V, = (Vo,-V)

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,¥
(0,2)-Tensor T,

SR 4-Scalar
(0,0)-Tensor S
| orentz Scalar,

4-Momentum SR 4-CoVector = “Dual” 4-Vector
P=P"=(mc,p)=moU (0,1)-Tensors aka. One-Forms
=(E/c,p)=(E./c*)U Cu = NwC’ = (cy) = (Co,0) — (CuCs,

= (c’,-¢) = (¢",-¢) — (c'-¢",

Projection Tensors P",
SR Mixed 4-Tensor (Temporal Projection V“V)

Gradient One-Form
8,=(8/c,V)
,C2) —(8/¢,,,9,.9,)
,-C’) =(9cat,9ax,93y,9137)

SR Lowered 4-Tensor

SI'1P, 1_)-'r§er_1rsp.’<)3rs ( Spatial Projection H, ) (0,2)-Tensors
v = vV - (olo]
= ‘ Lorentz Boost I“" = NN T
— Lorentz A —B¥, - Lowered Minkowski
[Tolhd o=, [ Too, Tox ] BIRI=N
[To,Tk] Transforms (Lorent/z\ pl?ari;){!nverse) [To ,Ti] Metric
Riemann Curvature Tensor Weyl (Conformal) Curvature Tensor
RPouv = 9y Pus - Ao + TPMe — TPl — 0%, for SR “Flat” Minkowski SpaceTime CPsu = Traceless part of Riemann [R%,]

Ricci Decomposition of Riemann Tensor

[} — QP scalar part; p semi-traceless part p traceless part
Ruuv_sapv( )+E0pv( )+C0uv( )

Trace[T"] =N, T" =T, =T
V-V = Vi, VY = [(VO) - vev] = (V!
= Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SRQM Study: Physical 4-Vectors
e O0MeE SR 4-Vectors and Symbols ...,

of Physical 4-Vectors John B. Wilson

4-Gradient Gradient 4-Vector 4-Momentum
0=0"=(9/c,-V) & =(9/c,-V) A P= P“—(mc p)= (mc mu)=m,U Q- > F=ii;z°(ré(70 ) = v
—’(a/c"ax"a -0,) 3,=(9/c,V) =dg/dr |
U Rl Rl dlAl Gradient One-Form 4-WaveVector
K=K"= (UJ/C k)=(w.,/c? )}J = = 4-MassFlux

4-MomentumDensity

4-Displacement
AR=AR"=(cAt,Ar)=R2-R1 finite} O—e
dR=d sz(Cdt, d r) {infintesimal}

G=G"=(p,c.9)=p,(c,u)
A=A¥=(¢/c,a)=(@/c})U - = =m,N=n,m,U P

4-(EM)VectorPotential

Aen=Aen"=(Pen/C,aEm) 4-HeatEnergyFlux

4-(Vector)PotentialMomentum . Q=Q"=(p.c,q)=p¢(c,u)
Q=Q'= (qcp/c qa)=(V/c,q) e | > =E.N=n,E,U=c’G

R=R"= (Ct I") <Event> Lorentz Invariant,
but not

Poincaré Invariant

4-Velocity §4-UnitTemporal
U=U"=y(c,u) | T=T"=y(1,B) 4-ChargeFlux : 4-CurrentDensity Sent pure=Sent_pure”

=dR/dt=cT | =y(1,u/c)=Ulc J=J"=(pc,j)=p(c,u)=p.U Y = =(Sent_pure”,Sent_pure)
= noU= N =S N= B
4-Acceleration d d SN=nS_ U
A=A"=y(cy’,y'utya) 4-(Dust)NumberFlux ]
=dU/dt=d’R/dT’ N=N"=(nc,n)=n(c,u)=n.U 4-HeatEntropyFlux

. . . 4-ThermalVector? sent_heat=(sent_heat0ssent_heat)
AL @LELL Loz 4-Inverse TemperatureMomentum =S_ N+Q/T;=S_ N+E.N/T,

IRI='[RI=n"§ AR, 0=0'= (6°,0)= (clkeT, u/ksT)=(Bo/0)U ' =No(S_ +E/T,)U
Metric Transfor ent

4-PureEntropyFlux

SR 4-Tensor SR 4-Vector i V] — v — —
(2,0)-Tensor T (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar 4-Vector V = V¥ = (V")= (V V') = (V V) Trace[T"] =n, T" =T, =T

(1,1)-Tensor T, or T, SR 4-CoVector (0,0)-Tensor S SR 4-Vector V = \V* = (scalar * ¢*',3-vector) VAV = Vi VY = [(V)F - vev] = (i)
, orentz Scala = Lorentz Scalar




SR - QM 4-Vector SRQM Interpretation

SRQM Study: Physical 4-Tensors
e O0ME SR 4-Tensors and Symbols ...

of Physical 4-Vectors John B. Wilson

«—Discrete Continuous—

SR:Lorentz t X Yy z
Transforms t] -sinh[6] 0 0]
X [-sinh[B] cosh[B8] 0 0]
y[ O 0 1 0] i
z[ 0 0 1]

L ” t x y z SR:Minkowski Metric 7
oren = e = JIR] = "R’ = n* = V" + Z
Transform x[0 1 0 0] k& ’ ’ x[0 cos[6] -sin[6] 0] 0' (8i-n'n; )cos(B)-( ln* )sin(8)+n'n;
N STH, = y[0O O 1 0] y [0 sin[B] cos[6] 0]

z[0O 0 0 1] z[0 1]

/1 Lorentz Transform 4,[R"]=/\",
R=3.R"=4 : [ A%,/ ] temporal- mixed
"Particle Physics” Convention ime;sio ) [ Ao ,\'j ] components

Symmetric

Perfect Fluid Faraday EM 4-AngularMomentum
T = (Peo)V* + (-Po) FoP = AP - PA" =9 A A M@® = X°PP - XBP® = X A P

0 -elc

t X ¥y z
t[ 0 -eYc -elc -e’lc]f +elc -€l b
x[+e/c 0 -b*  +b']
y[+e'c +b* 0  -b]
Z[+e¥c b +b* 0] z[+cn? +F - 0]

0 -elc
+e'/c -V*a
4-Tensor 4-Tensor 4-Tensor

Symmetric Anti-symmetric Anti-symmetric

t X 'y z
t[ 0 -cn* -cn’ -cn?]
x[+ten* 0+ -]

y[+cn' £ 0 +F]

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T (1,0)-Tensor V* =V = (V°,v)

SR 4-Scalar 4-Vector V = V* = (v*)= (V°,V)) = (V°,v) Trace[T"] = ny

(0,0)-Tensor S SR 4-Vector V = V* = (scalar * ¢c*',3-vector) V-V = Vi Vv = (v

(1,1)-Tensor T* or T, SR 4-CoVector
= Lorentz

(0,2)-Tensor T, (0,1)-Tensor V, = (Vo,-V)

| orentz Scalar,



4-Vector SRQM Interpretation

SRQM Study: Physical 4-Tensors
e 20ME SR 4-Tensors and Symbols ...

Tr[T"]=Peo-3Ps Perfect Fluid o (Cold Matter)-Dust
T = (Peo) V" + (-Po) \ T — (Peo) V"

paceTime ey ‘ :
0-R=0,R"=4 . t | '
Dimensio & _ _ Temporal “Vertical”
Projection
i i P — VW =TVTY

—Diag[1,0]
SR:Minkowski Metric
4-Tensor 4-Tensor
Symmetric

JR] =d"R"=n" = V" +
—Diag[1,-1-]=Diag[1,-3"] Sygmetic
Null-Dust=Photon Gas Lambda Vacuum
T — (Peo)V"" + (-Peo/3) ™ — (peo)n™ = (AN

4-Tensor
Symmetric

"Particle Physics” Convention
Symmetric
4-Tensor 4-Tensor o . ”
Symmetric Spatial _Hor_lzontal
Projection

Symmetric
Faraday EM EM Stress-Energy Tensor Zero:Nothing Vacuum PH _, HEY = niv - THTY
af — qa a— =N - TT
Fe#=&'A° - PA° =0 " A T — (1/) [F*F'a-(1/4)n" FogF?] ™ — 0" —Diag0,| - ]=Diag[0,-5']

t X \ z X y z
s*/c sY/c s?c :
] - 00

t[ 0 -e¥c -ellc -e*/c]|ff +elc €l b
x[te/c 0 b +b’] -0% -g% -0% ] A
y [te’lc +b* 0 -b*|§ 0 -elc o -gY -0% ] i 0 -5l
z [+e*lc b’ +b* 0 J@+e'/c -V*a 0% -0¥ -0% |
SAlETEEr 4-Tensor 4-Tensor 4-Tensor
Anti-symmetric Symmetric Symmetric Symmetric

SR 4-Tensor SR 4-Vector i V] = v —
(2,0)-Tensor T+ §(1,0)-Tensor V* = V = (V°,v) SR 4-Scalar 4-Vector V = V¥ = (V)= (V°,v) = (V°,v) Trace g n”v;ri il
(0,0)-Tensor S SR 4-Vector V = V¥ = (scalar * c*',3-vector) VAV = Vina V' = I(V) S

= Lorentz Scalar

(1,1)-Tensor T or T, SR 4-CoVector
(0,2)-Tensor Ty, (0,1)-Tensor V,, = (Vo,-v) L orentz Scalar




SR —- QM

SRQM Diagram:
Special Relativity — Quantum Mechanics
RoadMap of SR—QM

A Tensor Study
of Physical 4-Vectors

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4

SR SpaceTime Metric A
SR Lorentz Transforms RV]= ™
SR Action — 4-Momentum n

SR Phase — 4-\WaveVector
4-Gradient 0"
)2 6=(8t/c,—V)=-iK

B[RYI=AY,
Minkowski B --orentz

SR Proper Time Metric

SR & QM Waves
0-9=(0, /c)*-V-V
= -(Moc/h)? = -(wo/c
= (81/0)2

U-0=d/dt=yd/dt
Derivative

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

*START HERE* 4-Position=Location of SR <Events>/in SpaceTime

4-Position R"
R=(ct,r)=<Event>

4-Velocity=Motion
of SRI<Events>
in SpaceTime as

U-ar..]
yd/dt[..]

R:-R=(ct)*r-r both particles & waves
2
(CT) ProperTime
Derivative 4-Ve|OCity ¥
U=y(c,u)=dR/dt
Matter Wave

U-U=y*(c*u-u)

Velocit
SR d’Alembertian & a[q) -K.qu)phase free -P.staction free eoflyh =¢? . (C)2
_ , ’ ’ group  phase
Klein-Gordon Relativistic phiasefres SR Phase SR Action @ Einstein
Quantum Wave Relation ) o Comvpillex E = mc? = ymyc®= yE,
Schrédinger QWE is ;fi'_afg]es -3[S |=P Rest Angular
{lv|]<<c} limit of KG K=id actionfree Frequency

**[ SR N QM ]**
Pr = -3[S]

MA----->

4-WaveVector=Substantiation 4-WaveVector K

of SR Wave <Events> .
oscillations proportional to K=(w/c,k)=(w/c,wn/Vphase)

mass:energy & 3-momentum =(1/cF,n/x)=(w,/c?)U=P/h
K-K=(w/c)-k-k
= (Mot/h)? = (Wfo)? =

(1/cTF, )2

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(0,0)-Tensor S

orentz Scala

SR 4- CoVector

(1,1)-Tensor T*, or T,

Hamilton-Jacobi

Rest Energy:Mass

4-Momentum=Substantiation
of SR Particle <Events>
mass:energy & 3-momentum

4-Momentum P*
P=(mc,p)=(E/c,p)=m,U

Einstein, de Broglie

P P-P=(E/c)?
“F=(E/C)-pp
(1/n) _ 2 _ 2
Planck:Dirac Constant - (mOC = (EO/C)
Existing SR Rules Trace[T"] = n, T =T =T
Quantur.n Principles VAV = Vi V= (V)7 - vev] = (Vo)?
= Lorentz Scalar
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SR —- QM

SRQM:

4-Vector SRQM Interpretation
of QM

e OR—QM Interpretation Simplified . %=

of Physical 4-Vectors

SRQM: The [SR—QM] Interpretation of Quantum Mechanics

SR Axioms: Invariant Interval + (c) as Physical Constant lead to SR,
although technically SR is itself the low-curvature limiting-case of GR

http://scirealm. org/SRQM pdf

{c,T,m.,h,i}: All Empirically Measured SR Lorentz Invariants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants
4-Position R = (ct,r) = (R'R) = (ct)’
4-Velocity U =v(c,u) = (U-9)R=dR/dt (U-U) = (c)?
4-Momentum P=(Elc,n) =moU (P-P) = (moC)?
4-WaveVector K= (w/ck) =Ph (K-K) = (moc/h)?
4-Gradient d=(d/c,-V) =-iK (0

|v|<<C

9) = -(moc/h)? = KG Eqn — RQM—QM

SR + Emipirically Measured Physical Constants lead to RQM via the Klein-Gordon Eqgn,

and thence to QM via the low-velocity limit { [v|] << c }, giving the Schrodinger Eqn.

The relation also leads to the Dirac, Maxwell, Pauli, Proca, Weyl, & Scalar \Wave QM Eqgns.

SRQM: A treatise of SR—QM by John B. Wilson
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A Tensor Study
of Physical 4-Vectors

SR —- QM

4-Vector SRQM Interpretation
of QM

SRQM 4-Vector Topics Covered

Mostly SR Stuff

4-Vector Basics

Paradigm Assumptions, Where is Quantum Gravity?

Minkowski SpaceTime, <Events>, WorldLines, Minkowski Metric
4-Scalars, 4-Vectors, 4-Tensors & Tensor Invariants

SR 4-Vector Connections

SR Lorentz Transforms, CPT Symmetry, Trace Identification, Antimatter
Fundamental Physical Constants = Lorentz Scalar Invariants
Projection Tensors: Temporal (V) & Spatial (H)

Stress-Energy Tensors, Perfect Fluids, Special Cases (Dust,Radiation,etc)
Invariant Intervals, Measurement, Causality, Relativity

SpaceTime Kinematics & Dynamics, ProperTime Derivative

Einstein’s E = mc? = ym.c?*= yE,, Rest Mass, Rest Energy, Invariants
SpaceTime Orthogonality: Time-like velocity, Space-like acceleration
Relativity of Simultaneity, Time Dilation, Length Contraction

SR Motion * Lorentz Scalar = Interesting Physical 4-Vector

SR Conservation Laws & Local Continuity Equations, Symmetries
Relativistic Doppler Effect, Relativistic Aberration Effect

SR Wave-Particle Relation, Invariant d’Alembertian, SR Waves
SpaceTime is 4D: 9:‘R=9,R"=4, A\, ,A"'=4, Tr[n"]=4, A = A" = (a°,a',a%,a°)
Minimal Coupling = Interaction with a (Vector)Potential

Conservation of 4-TotalMomentum

SR Hamiltonian:Lagrangian Connection

Lagrangian, Lagrangian Density

Hamilton-Jacobi Equation (differential), Relativistic Action (integral)
Euler-Lagrange Equations

Relativistic Equations of Motion, Lorentz Force Equation

c¢? Invariant Relations, The Speed-of-Light (c)

SRQM = The [SR—QM] Interpretation of Quantum Mechanics

SR & QM via 4-Vector Diagrams ...

John B. Wilson

Mostly QM & SRQM Stuff

Relativistic Quantum Wave Equations

Klein-Gordon Equation/Relation

RoadMap from SR to QM: SR—QM, SRQM 4-Vector Connections

QM Schrddinger Relation

QM Axioms? - No, (QM Principles derived from SR) = SRQM
Relativistic Wave Equations: based on mass & spin & velocity
Klein-Gordon, Dirac, Proca, Maxwell, Weyl, Pauli, Schrodinger, etc.
Classical Limits |v|<<c

Photon Polarization

Linear PDE’'s—

{Principle of Superposition, Hilbert Space, <Bra|,|Ket> Notation}
Canonical QM Commutation Relations — derived from SR

Heisenberg Uncertainty Principle (due to non-zero commutation)

Pauli Exclusion Principle (Fermion), Bose Aggregation Principle (Boson)
Complex 4-Vectors

CPT Theorem, Lorentz Invariance, Poincaré Invariance, Isometry
Hermetian Generators, Unitarity, Anti-Unitarity

QM — Classical Correspondence Principle, similar to SR — Classical
Quantum Probability

The Compton Effect = Photon:Electron Interaction (neglecting Spin Effects)
Photon Diffraction, Crystal-Electron Diffraction, The Kapitza-Dirac Effect
The h Relation, Einstein-de Broglie, Planck:Dirac

The Aharonov-Bohm Effect, The Josephson Junction Effect

Noether’'s Theorem, Continuous Symmetries, Conservation Laws
Dimensionless Quantities

Quantum Relativity: GR is *NOT* wrong, *Never bet against Einstein* :)
Quantum Mechanics is Derivable from Special Relativity, SR—QM, SRQM

= Special Relativity = QuantUmiSISC eRes | SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, PAradigm Background Assumptions garty) ...

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

Relativistic Physics **IS NOT** the generalization of Classical Physics.
Classical Physics **IS** the low-velocity limiting-case approximation of Relativistic Physics { |v| << c }.

This includes (Newtonian) Classical Mechanics and Classical QM, (meaning the non-relativistic Schrodinger QM Equation).
Classical EM is for the most part already compatible with Special Relativity.
However, Classical EM doesn't include intrinsic spin, even though spin is a result of SR Poincaré Invariance, not QM.

So far, in all of my research, if there was a way to get a result classically,
then there was usually a much simpler way to get the result using 4-Vectors and SRQM relativistic thinking.
Likewise, a lot of QM results make much more sense when approached from SRQM.

Einstein Energy:Mass Eqn: P = m,U — { : } Einstein-de Broglie Relation: P = hK — { : }
Hamiltonian: H = y(Pt-U) (relativisic; — (T + V) = (Exinetic + Epotentlal) {Classicalimitonly, u| <<} COmplex Plane-wave Relation: K = i0 — { : }
Lagrangian: L = '(PTU)/'Y { Relativistic} =™ (T - V) = (Ekmetlc - Epotent|al) { Classical-limit only, |u| << c} SChrOdlnger Relatlons P |ha - { }

SR Wave Eqngiterential format): Kr = -0[DPphase] = Pr/h — { ; } Canonical QM Commutation Relations inc. QM Time-Energy:
Hamilton-Jacobi Eqn(diﬂeremia| format)- PT = -a[Sacﬁon] = hKT — { . } [P“ XV] Iﬁr]“v — { . }
Action Equation gegral format): AS.cion = ~JpanP1 *dX = ~[oan(Pr *U)dt = [oanL dt  Minimal Coupling: P = Pr - gA — {

SR/QM Wave Equation integral format): APphase = -JPpathKT -dX = AS,cion/h Josephson Junction Relation giferential format): A = -(h/q)a[ACDpot]
Euler-Lagrange Equation: (U = (d/dt)R) — (dr = (d/dt)dy) Aharonov-Bohm Relation jnegrai formay: APpot = ~(q/R)panA-dX
Hamilton’s Equations: (d/dt)[X] = (6/0P+)[H.] & (d/dt)[P+] = (9/0X)[H,] Compton Scattering:

d’Alembertian Wave Equation: -9 = (8/c)*- V-V Klein-Gordon Relativistic Quantum Wave Eqn: 9-9 = -(m.c/h)?

4-Vector formulations are all extremely easy to derive in SRQM and are all relativistically covariant.

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, PAradigm Background Assumptions gartz) ... .

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

Likewise, SR 4D Physical 4-Vectors *ARE NOT* generalizations of Classical/Quantum 3D Physical 3-vectors.
While a “mathematical” Euclidean (n+1)D-vector is the generalization of a Euclidean (n)D-vector,
the “physical” analogy ends there.

Minkowskian SR 4-Vectors *ARE* the primitive elements of 4D Minkowski SR SpaceTime.
Classical/Quantum Physical 3-vectors are just the spatial components of SR Physical 4-Vectors.
There is also a fundamentally-related Classical/Quantum Physics scalar related to each 3-vector,

which is just the temporal component scalar of a given SR Physical 4-Vector.

ex. 4-Position R = (rV,r) = (ct,r) — (ct, ) : 4-Momentum P = (pY,p) = (E/c,p) — (E/c, )
These Classical/Quantum {scalar}+{3-vector} are the dual { H{ } components
of a single SR 4-Vector = ( : )
with SR lightspeed factor (c*') to give correct overall dimensional units.
While different observers may see different "values" of the

Classical/Quantum components (v°,v',v?,v?) from their point-of-view in SpaceTime,
each will see the same actual SR 4-Vector V and its magnitude |V| at a given <Event>in SpaceTime.

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, P@radigm Background Assumptions garts) ... .

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

We will **NOT** be employing the commonly-(mis)used Newtonian classical limits {c—«} and {h—0}.
Neither of these is a valid physical assumption, for the following reasons:
[1]
Both (c) and (h) are unchanging Physical Constants and Lorentz Invariants.
Taking a limit where these change is non-physical. They are CONSTANT.

Many, many experiments verify that these constants have not changed over the lifetime of the universe.
This is one reason for the 2019 Redefinition of SI Base Units on Fundamental Constants (c,h,e,kgs,Na,Kcp,Avcs).
[2]

Let E = pc. If c—>=, then E—«. Then Classical EM light rays/waves have infinite energy.

Let E = hw. If h—0, then E—0. Then Classical EM light rays/waves have zero energy.

Obviously neither of these is true in the Newtonian limit.
In Classical EM and Classical Mechanics, (c) remains a large but finite constant.
Likewise, (h) remains very small but never becomes zero.

The correct way to take the limits is via:
The low-velocity non-relativistic limit { |v| << c }, which is a physically-occurring situation.
The Hamilton-Jacobi non-quantum limit { h| V -p| << (p-p) }, which is a physically-occurring situation.

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, P@radigm Background Assumptions gartg) ..,

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

We will *NOT* be implementing the common {—lazy and extremely misguided} convention of setting physical constants
to the value of (dimensionless) unity, often called “Natural Units”, to hide them from equations; or using mass (m) instead of (m,) as the RestMass.
Likewise for other components vs Lorentz Scalars with naughts, like energy (E) vs (E,) as the RestEnergy.

One sees this very often in the literature. The usual excuse cited is “For the sake of brevity”.
Well, the “sake of brevity” forsakes “clarity”

The *ONLY™ situation in which setting constants to unity is practical or advisable is in numerical simulation.
When teaching physics, or trying to understand physics, it helps when equations are dimensionally correct.
In other words, the technique of dimensional analysis is a powerful tool that should not be disdained.
i.e. Brevity aids speed of computation, Clarity aids understanding.

The situation of using “naught = ,” for rest-values, such as (m,) for RestMass and (E.) for RestEnergy:
Is intrinsic to SR, is a very good idea, absolutely adds clarity, identifies Lorentz Scalar Invariants, and will be explained in more detail later.
Essentially, the relativistic gamma (y) pairs with a (Lorentz scalar:rest value ,) to make a relativistic component: m = ym,, E = yE,

(mc,p)
= (E/c,p)

It is damn hard enough just to get the minus-signs right in GR/SR, as there are different metric-conventions available.
BTW, | prefer the “Particle Physics” Metric-Convention (+,-,-,-). {Makes rest values positive, fewer minus signs to deal with}

4-Momentum P = P* = (mc,p) = moU = mey(c,u) = ymo(c,u) = m(c,u) = (mc,mu) =
= (E/c,p) = (Eo/c®)U = (Ed/c?)y(c,u) = y(Ed/c?)(c,u) = (E/c?)(c,u) = (E/c, )

Show the physical constants and naughts in the work. They deserve the respect and you will benefit.
You can always set constants to unity later, when you are doing your numerical simulations.

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, P@radigm Background Assumptions gars) .. .

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

Many physics books say that the Electric field E and the Magnetic field B 4-Gradient
d="=(9/c,-V) Faraday EM

are the “real” physical objects, and that the EM scalar-potential ¢ and
the EM 3-vector-potential A are just “calculational/mathematical” artifacts.

Tensor
—(d/c,-9,,-0,,-9,) FoB = 9P . AT
A =dMA

H

All of these physical EM properties: {E,B,,A} are actually just the components of SR tensors, [F* F* FY F2]
and as such, their magnitudes will vary in different observers’ reference-frames. [P P> FY P9
The truly SR invariant physical objects are: [P F™ FY ¥
The 4-Gradient 9, the 4-VectorPotential A, and their combination via exterior (wedge=*) product [F* F> Fo F7]
into the Faraday EM Tensor F®* = 3°AP - oPA“ =9 A A -

: . . [ O -eYc -e'lc -e7lc]
Given this SR knowledge, we demote the physical property symbols, [+e¥c 0 -b* +b']
(the tensor components) to their lower-case equivalents {e,b,,a}. [+e'/c +b* 0 b*]
[+e*/lc -b’ +b* 0]

Neither of these statements is relativistically correct.

- components of 4-Tensor F°:
- components of 4-Tensor F°: .

component of 4-Vector A: . "H” .
components of 4-Vector A:

[ 0 ,-€lc]
[+e'lc, €l b¥]

4-(EM)VectorPotential [ 0 , -elc ]
A=A"=(p/c,a) +e'/c, -V Aa
Aen=Acn"'=(Pev/C,aem)

Note that the speed-of-light (c) plays a prominent role in the component definitions.
Also, QM requires the 4-VectorPotential A as explanation of the Aharonov-Bohm Effect.
Again, all the higher-index-count SR tensors can be built from fundamental 4-Vectors.

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, P@radigm Background Assumptions gars) ... .

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

A number of QM philosophies make the assertion that particle “properties” do not “exist” until measured.
The assertion is based on the Heisenberg Uncertainty Principle, and more specifically on quantum non-zero commutation,
in which a measurement on one property of a particle alters a non-commuting property of the same particle.

That is an incorrect analysis. Properties define particles: what they do, how they interact with other particles. Particles and their properties “exist”

independently of human intervention or observation. The correct way to analyze this is to understand what a measurement is: the arrangement of

some number of fundamental particles in a particular manner as to allow an observer to get information about one or more of the subject particle’s
properties. Typically this involves “counting” spacetime events and using SR invariant intervals as a basis of measurement.

Some properties are indeed non-commuting. This simply means that it is not possible to arrange a set of particles in such a way as to measure
(ie. obtain “complete” information about) both of the subject particle’s non-commuting properties at the same spacetime event. The measurement
arrangement events can be done at best sequentially, and the temporal order of these events makes a difference in observed results. EPR-Bell,

however, allows one to “infer” properties on a subject particle by making a measurement on a different {space-like separated but entangled} particle.

So, a better way to think about it is this: The “measurement” of a property does not “exist” until a physical setup event is arranged. Non-commuting
properties require different physical arrangements in order to be measured, and the temporally-first measurement alters the particle’s properties in a
minimum sort of way, which affects the latter measurement. All observers agree on the order of temporally-separated spacetime events.
However, individual observers may have different sets of partial information about the same particle(s).

This makes way more sense than the subjective belief that a particle’s property doesn’t exist until it is observed,
which is about as unscientific and laughable a statement as | can imagine.

*Relativity is the system of measurement that QM has been looking for*

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, P@radigm Background Assumptions gart7) ... .

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

Correct Notation is critical for understanding physics

Unfortunately, there are a number of “sloppy” notations in relativistic and quantum physics.

_Incorrect: Using T" as a Trace of tensor T', or T* as a Trace of tensor T*
| T'is just the diagonal part of 3-tensor T’, the components: T' = Diag[T"',T*, T -
Ti is the Trace of 3-tensor T': T/ = T,"+T,2+T5* = 3-trace[T'] = T"+T#+T in the Euclidean Metric E' = &'

T is just the diagonal part of 4-Tensor T, the components: T* = Diag[T®, T"", T* T*°]
T," is the Trace of 4-Tensor T*: T, = To"+T'+T,°+T3° = 4-Trace[T"] =T*-T"-T?-T* in the Minkowskian Metric n**

Incorrect: Hiding factors of (c) in relativistic equations, ex. E = m
The use of “natural units” leads to a lot of ambiguity, and one loses the ability to do dimensional analysis.
Wrong: E=m: Energy is *not* identical to mass.
Correct: E=mc?: Energy is related to mass via the speed-of-light, ie. mass is a type of concentrated energy.

Incorrect: Using m instead of m, for rest mass, Using E instead of E; for rest energy
Correct: E = mc? = ymoc? = yE,
E & m are relativistic internal components of 4-Momentum P=(mc,»)=(E/c, ) which vary in different reference-frames.
E, & m, are Lorentz Scalar Invariants, the rest values, which are the same, even in different reference-frames: P=m,U=(E./c*)U

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, P@radigm Background Assumptions gars) ... .

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

Incorrect: Using the same symbol for a tensor-index and a component
The biggest offender for this one is quantum commutation. ol T — e
Unclear because ( i ) means two different things in one equation. Wrong: [X Pl = Iﬁ§
Better: (i = [-1] ) is the imaginary unit ; { j,k } are tensor-indicies. Right: [x,p"] = ihd*
And even better: [P",X"] = ihn™
In general, any equation which uses complex-number math should reserve (i) for the imaginary, not as a tensor-index.

Incorrect: Using the 4-Gradient notation incorrectly
The 4-Gradient is a 4-Vector, a (1,0)-Tensor, which uses an upper index, and has a negative spatial component in SR.
The Gradient One-Form, its natural tensor form, a (0,1)-Tensor, uses a lower index in SR.
4-Gradient: 9=¢"=(d/c,-V) Gradient One-Form: 9,=(d/c, V)

Incorrect: Mixing styles in 4-Vector naming conventions

There is pretty much universal agreement on the 4-Momentum P=P"=(E/c,p)=(mc,p)

Do not in the same document use 4-Potential A=(®,A): This is wrong on many levels.
The correct form is 4-VectorPotential A=A"=(g/c,a), with (¢) as the scalar-potential & (a) as the 3-vector-potential

For both the 4-Momentum P _and the 4-VectorPotential A:
The Upper-Case SpaceTime 4-Vector Names match the lower-case spatial 3-vector names

There is a (c) factor in the temporal component to give overall matching dimensional units for the entire 4-\Vector
4-Vector components are typically lower-case with a few historical exceptions, mainly energy E, energy-density e

SRQM: A treatise of SR—QM by John B. Wilson
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of Physical 4-Vectors

Simple GR Axioms:
Principle of Equivalence
Invariant Interval Measure
Tensors describe Physics
SpaceTime Metric g*"

¢,G = physical constants

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

Obscure QM Axioms:
Wave-Particle Duality

Unitary Evolution

Operator Formalism

Hilbert Space Representation
Principle of Superposition
Canonical Commutation Relation
Heisenberg Uncertainty Principle

Pauli Exclusion Principle
Hermitian Generators
Correspondence Principle to CM
Born Probability Interpretation
h,h = physical constants

4-Vector SRQM Interpretation

Old Paradigm: QM (as | was taught)
e DR AND QM as separate theories

of QM

SciRealm.org
John B. Wilson

Quantum
Gravity ?77?

Multiple
Particles

SR limiting-case:

QM limiting-case:
# particles N >> 1

This was the QM paradigm that | was taught while in Grad School; everyone trying for Quantum Gravity
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It is known that QM + SR “join nicely” together to form RQM, but problems with RQM + GR...



4-Vector SRQM Interpretation

Physical Theories as Venn Diagram

Which regions are real?

of QM

SciRealm.org

of Physical 4-Vectors John B. Wilson

GR: QM:
General Relativity =~ Quantum Mechanics

S R: Gravity?

Many-Worlds Interpretations

SpeCial Re|at|V|ty Non-local interactions
GR limiting-case: g*¥ — n"" Minkowski “Flat” SpaceTime = (Curvature ~ 0) Instantaneous QM en_tangled Conne_ctlons
Instantaneous Physical Wavefunction Collapse
CM: Spacetime Dimensions >4

QM physicists think these areas, Hidden:Alternate Dimensions

anything outside of QM, doesn’t CIaSS|CaI MeChamCS Super-Symmetry
exist... SR limiting-case: |v| << ¢ String Theory

QM limiting-case: h|V-p| << (p-p) Alternate Gravity Theories
Hence the attempt to etc.

Quantize Gravity...

RQM: Quantum Mysticism...
Unsuccessful for 50+ years... Relativistic
QM Basically lots of stuff for which there is

little to no empirical evidence...



SR — QM 4-Vector SRQM Interpretation

Physical Limit-Cases as Venn Diagram
s WHICh limit-regions use which physics? _

of Physical 4-Vectors John B. Wilson

.

Instead of taking the Physical Theories as set, examine
Physical Reality and then apply various limiting-conditions.

Reality

GR limit-case: g"' — n"

QM limit-case: 1|V -p| << (p-p) Minkowski “Flat” SpaceTime : :
or y—Re[y] = (Curvature ~ 0) What do we then call the various regions?

Change by a few quanta SRQM

has negligible effect , . N
on overall state Special Relativity — Relativistic QM

Classical SR

Classical GR Classical (non-QM) RQM
Classical (non-QM) Special Relativity Relativistic QM - _ _
General Relativity If one is in Classical GR, one can get Classical SR by

CM moving toward the Minkowski SpaceTime limit.
Classical

Mechanics . : .
Qm If one is in RQM, one can get Classical SR by moving
Non-relativistic

Quantum toward the Hamilton-Jacobi non-QM limit, or to standard
Mechanics QM by moving toward the SR low-velocity limit.

As we move inwards from any region on the diagram, we
are adding more stringent conditions which give physical
limiting-cases of “larger” theories.

7
//%//, Looking at it this way, | can define SRQM to be equivalent
7 to Minkowski SpaceTime, which contains RQM, and leads

_ Large gravity to Classical SR, or QM, or CM by taking additional limits.
fields typicall Jj;;d

to relativistic speeds |v| ~ ¢

My assertion:
There is no “Quantum Gravity”

~SRimit-case; |v| << ¢ Actual GR contains SRQM and Classical GR.

SRQM: A treatise of SR—QM by John B. Wilson (SciRealm@aol.com)
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
Background: Proven Physics

of Physical 4-Vectors John B. Wilson

Both General Relativity (GR) and Special Relativity (SR) have passed very stringent tests of multiple varieties. Likewise,
Relativistic Quantum Mechanics (RQM) and Quantum Mechanics (QM) have passed all tests within their realms of validity
{generally micro-scale systems, but a few special macro-scale systems ex. Bose-Einstein condensates, superfluids, etc.}.

To date, however, there is no experimental indication that quantum effects "alter" the fundamentals of either SR or GR. Likewise,
there are no known violations, QM or otherwise, of Local Lorentz Invariance (LLI) nor of Local Position/Poincaré Invariance (LPI).
In fact, in all known experiments where both SR/GR and QM are present, QM respects the principles of SR/GR, whereas SR/GR
modify the results of QM. All tested quantum-level particles, atoms, isotopes, super-positions, spin-states, etc. obey GR's
Universality of FreeFall & Equivalence Principle and SR's { E = mc? }. Quantum-level atomic clocks are used to measure
gravitational red:blue-shift effects. i.e. GR gravitational frequency-shift (time-dilation) alters atomic=quantum-level timing.

Some might argue that QM modifies the results of SR, such as via non-commuting measurements. However, that is an alteration
of CM expectations, not SR expectations. In fact, there is a basic non-zero commutation relation fully within SR: [¢",X"] = n*
which will be derived from purely SR Principles in this treatise.

On the other hand, GR Gravity *does* induce changes in quantum interference patterns and hence modifies QM:

See the COW gravity-induced neutron QM interference experiments and the LIGO gravitational-wave detections via QM
interferometry. Likewise, SR induces fine-structure splitting of spectral lines of atoms, “quantum” spin, spin magnetic moments,
spin-statistics (fermions & bosons), antimatter, QED, Lamb shift, etc. - essentially requiring QM to be RQM to be valid.

Some QM scientists say that quantum entanglement is "non-local”, but you still can't send any real messages/signals/information/
particles faster than SR's speed-of-light (c). The only “non-local” aspect is the alteration of probabilities based on knowledge
gained via measurement. A local measurement can alter the “partial information” known about a distant (entangled) system.

QM respects the principles of SR/GR, whereas SR/GR modify the results of QM
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Simple GR Axioms:

Principle of Equivalence

Invariant Interval Measure —— GR

Tensors describe Physics
SpaceTime Metric g*"
¢,G = physical constants

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

Another fortuitous
merging??

Obscure QM Axioms:
Wave-Particle Duality

Unitary Evolution

Operator Formalism

Hilbert Space Representation
Principle of Superposition
Canonical Commutation Relation
Heisenberg Uncertainty Principle
Pauli Exclusion Principle
Hermitian Generators
Correspondence Principle to CM
Born Probability Interpretation
h,h = physical constants
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SR limiting-case:
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QM limiting-case:
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It is known that QM + SR “join nicely” together to form RQM, but problems with RQM + GR...



4-Vector SRQM Interpretation

New Paradigm: SRQM or [SR—-QM]
QM derived from SR + a few empirical facts

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

: : . (properties) (relations)
s'.m .Ie GR AX|c_>ms. SR 4-vector: SR 4-vector:
Principle of Equivalence R=(ct,r) R=<Event>
Invariant Interval Measure U=y(c,u) U=dR/dt
Tensors describe Physics P=(E/c,p) P=(m,)U

. N K=(w/c,k)
SpaceTime Metric g o=(a/c,-V)

¢,G = physical constants i / QFT
GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

Multiple
Particles

SR limiting-case:
lv| <<c

Derived RQM **Principles**:
Wave-Particle Duality

Unitary Evolution

Operator Formalism QM
Hilbert Space Representation
Principle of Superposition
Canonical Commutation Relation
Heisenberg Uncertainty Principle : e -~ QM limiting-case:

Pauli Exclusion Principle Derived QM **Principles™: {A|V-p| << (p-p)} or {w—Re[w]}
Hermitian Generators Correspondence Principle to CM Change by a few quanta has
h,h = physical constants Born Probability Interpretation negligible effect on overall state

This new paradigm explains why RQM “miraculously fits” SR, but not necessarily GR




4 O RQ preta
D »
aradio O :
U = U 0
enso d D a a )
P 4 O [ ) [ J [ J 0 B
; F - (properties) (relations)
s'.m .Ie GR AX|c_>ms. SR 4-vector & EM tensor: SR 4-vector & EM tensor: u
Prlnc!ple of Equivalence R=(ctr) A=(¢/c,a) R=<Event> A=(g./c*)U
Invariant Interval Measure —— GR U=y(c,u)  J=(cp.j) U=dR/dt  J=(p,)U=(q)N y
Tensors describe Physics P=(E/c,p) P=(mo)U K= -0[@pnase]

SpaceTime Metric g*"
¢,G = physical constants

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

K=(w/c,k) F*=[ 0 ,-e/c]

Ff=g"AP-gPA”

Derived RQM **Principles**:
Wave-Particle Duality

Unitary Evolution

Operator Formalism

Hilbert Space Representation
Principle of Superposition
Canonical Commutation Relation
Heisenberg Uncertainty Principle
Pauli Exclusion Principle
Hermitian Generators

h,h = physical constants

a=(a/c-V)  [+elc e || a=(i)k  U-FeP=(1/q)F
F=y(E'/c, ) F=dP/dc  3-F*P=(p,)J QFT
N=n(c,u) N=(n)U 38-J=0
\ / Multiple
Particles

SR limiting-case:
v <<c

Derived QM **Principles**:
Correspondence Principle to CM
Born Probability Interpretation

< QM limiting-case: LN

QM
EM w/ spin

~N

{h|V-p| << (p-p)} or {y—Re[y]}
Change by a few quanta has
negligible effect on overall state

CM q=0
EM %0

This new paradigm explains why RQM “miraculously fits” SR, but not necessarily GR




Simple GR Axioms:
Principle of Equivalence

Invariant Interval Measure
Tensors describe Physics

SpaceTime Metric g*"
¢,G = physical constants

(2O

GR

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

The entire classical SR—-EM,CM structure is based on the
limiting-case of quantum effects being negligible.

Notice that only the SR 4-Vector relation:
is missing from the Classical Interpretation...

All of the SR 4-Vectors, including (K & 9),
are still present in the Classical setting.

K is used in the Relativistic Doppler Effect and EM waves.

d is used in the SR Conservation/Continuity Equations,

Maxwell Equations, Hamilton-Jacobi, Lorenz Gauge, etc.
0=(-i)K may be somewhat controversial, but it is the equation for
complex plane-waves, which are in classical EM (in real form).

D
[ J [ J ' . 0
1€ -0 0
v v ' () [

(properties) (relations)
SR 4-vector & EM tensor: SR 4-vector & EM tensor:
R=(ctr)  A=(gp/c,a) R=<Event> A=(¢./c*)U
U=y(c,u) J=(cp,j) U=dR/dt J=(p,)U=(q)N
P=(E/C,p) ‘ P=(m,)U K= 'a[(Dphase]
K=(w/c,k) F®=[ 0 ,-elc] FaB=g9AB_gBAC
d=(d/c,-V) [+e'lc,-€lb"] o=(-)K U-F**=(1/q)F
F=y(E'/c,f) F=dP/dt  3-F**=(p,)J
N=n(c,u) N=(n,)U 8-J=0

SR g EI\RII \

SR limiting-case:
v <<c

Background Inherent Assumption

QM limiting-case:

{h|V-p| << (p-p)} or {y—Re[y]}
Hamilton-Jacobi non-quantum
Change by a few quanta has
negligible effect on overall state

CM q=0
EM %0

This {Classical=non-QM} SR—EM,CM paradigm has been working successfully for decades




SR — QM 4-Vector SRQM Interpretation

New Paradigm: |
SRQM View as Venn Diagram

of Physical 4-Vectors John B. Wilson

GR
General Relativity

SRQM
Special Relativity — Relativistic QM

GR limiting-case: g"' — n"" Minkowski “Flat” SpaceTime = (Curvature ~ 0)

QM
Non-relativistic Quantum Mechanics

SR limiting-case: |v| << c

CM

Classical Mechanics
QM limiting-case: h| V -p| << (p-p) or y—Re[y]
Change by a few quanta has negligible
effect on overall state

The SRQM view: Each level (range of validity) is a subset of the larger level.



SR — QM 4-Vector SRQM Interpretation

New Paradigm:
s, IRQM View wl EM as Venn Diagram ... .,

of Physical 4-Vectors John B. Wilson

GR
General Relativity

SRQM
Special Relativity — Relativistic QM

GR limiting-case: g"' — n"" Minkowski “Flat” SpaceTime = (Curvature ~ 0)

Qm

Change by a few quanta has negligible
effect on overall state

EM charge
A = 4-EMVectorPotential

The SRQM view: Each level (range of validity) is a subset of the larger level



SR — QM 4-Vector SRQM Interpretation

SR language beautifully expressed
with Physical 4-Vectors

of Physical 4-Vectors John B. Wilson

Newton's laws of classical physics are greatly simplified by the use of physical 3-vector notation, which converts 3 separate space components,
which may be different in various coordinate systems, into a single invariant object:
The basis values of these components can differ, yet still refer to the same overall 3-vector object.
o ] . Classical 3D objects styled this
3-vector = 3D (1,0)-tensor [l Rl R e U way to emphasize that they
i — (a ,ae,a¢) Polar/(_)yllndrlcal 3_D basis are actually just the separated
— (a',a",2") Spherical 3D basis components of SR 4-Vectors.
The triangle/wedge (3 sides)
represents splitting the

The scalar products of either type are basis-independent

t 9¥ a¥ 279} CartesaE lar A EE components into a scalar and
4-Veector = 4D (1,0)-Tensor — (at,ar,ae,az) Ca e3|an/ ectangular 4 basis 3vector.
A=Al (39 = (2081 = (20a) = (24" a?.a®) I (a',a',a’,a”) Polar/Cylindrical 4D basis
=A"=(a")=(a",a)=(a",a)=(a"a'a",a") . (a',a",a®,a®) Spherical 4D basis
. . , . Lorentz
SR is able to expand the concept of mathematical vectors into the Physical 4-Vector, Classical scalar 4-Scalar

which combines both (time) and (space) components into a single TimeSpace object:

These 4-Vectors are elements of Minkowski 4D SR SpaceTime. [m/s]
Typically there is a speed-of-light factor (c) [s] e

4-Position
in the temporal component to make the dimensional units match. (®) R=R"=(")=(ct,r) Iy
eg. R = (ct,r): overall dimensional units of [length] = SI Unit [m] 3-position = (r°,r)=(r% %, r°)
This also allows the 4-Vector name to match up with the 3-vector name. [m] r=risxy,z) =

SR 4-Vector

In this presentation: Classical 3-vector

| use the (+,-,-,-) metric signature, giving A-A = A'n, A’ = [(a°) - a-a] = (a%)®

4-Vectors will use Upper-Case Letters, ex. A; 3-vectors will use lower-case letters, ex. a

Vectors of both types will be in bold font; components and scalars in normal font and usually lower-case. 4-Vector name will match 3-vector name.
Tensor form will usually be normal font with a tensor index, ex. A" or a', with Greek TimeSpace index (0, ); Latin SpaceOnly index (' )

SR 4-Tensor SR 4-Vector - ] = W TH =
(2,0)-Tensor T*  J(1,0)-Tensor V* =V = (v*,v) SR 4-Scalar Classical (scalar j 3-vector) Trace[T*1 =Nl "= T =T "
(0,0)-Tensor S Galilean Not Lorentz VV = Vi, Ve =[(V)7 - vev] = (Vo)

orentz Scala Invariant Invariant = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector




SR — QM 4-Vector SRQM Interpretation

SR 4-Vectors & Lorentz Scalars
Frame-Invariant Equations
s SRQM Diagramming Method b

4-Vectors are type (1,0)-Tensors, Lorentz {4-}Scalars are type (0,0)-Tensors, 4-CoVectors are type (0,1)-Tensors,
(m,n)-Tensors have (m) upper-indices and (n) lower-indices. V¥, S, C,, Tofv-{mindicies} = " s}

Any equation which employs only Tensors, such as those with only 4-Vectors and Lorentz 4-Scalars, (ex. P = m,U) is automatically
Frame-Invariant, or coordinate-frame-independent. One’s frame-of-reference plays no role in the form of the overall equations.
This is also known as being “Manifestly-Invariant”. This is exactly what Einstein meant by his postulate:

“The laws of physics should have the same form for all inertial observers”. Use of the RestFrame-naught () helps show this.

4-Vector = 4D (1,0)-Tensor

A=A"=(a") = (a%a") = (a°a) = (a°a’,a*a%) — (a',a*,a",a’)

The components (a°,a’,a?,a%) of the 4-Vector A can vary depending on the observer and their choice of coordinate system, but the
4-Vector A itself is invariant. Equations using only 4-Tensors, 4-Vectors, and Lorentz 4-Scalars are true for all inertial observers.
The SRQM Diagramming Method makes this easy to see in a visual format, and will be used throughout this treatise.

The following examples are frame-invariant equations:
o D o>

The SRQM Diagram Form has all of the :
VRVEN(% info of the Equation Form, but shows 4-Velocity @ 4-Momentum
U =vy(c,u) overall relationships and symmetries U=y(c,u) P=(mc,p)=(E/c,p)
P = (mc,p) = (E/c,p) = m,U = (EO/CZ)U among the 4-Vectors much more clearly. @ 4-Wave\Vector
— — 2 -
gL_J (=wI/EC,k) = (wo/c*)U @ K=(w/c,k)=(wlc,wil )

Equation Form SRQM Diagram Form MA---

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector W — Wo— TH —
(1,0)-Tensor V¥ =V = (\°,v) SR 4-Scalar Tiacpe[T ]v: n“v:)rz L - To 2
(0,0)-Tensor S V-V = Vi VY= [(V)° - vev] = (Vo)

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector

0,1)-Tensor V, = (vo,-V



SR — QM 4-Vector SRQM Interpretation

SR 4-Vectors are primitive elements of
Minkowski SpaceTime (4D)

of Physical 4-Vectors John B. Wilson

We want to be clear, however, that SR 4-Vectors are NOT generalizations of Classical or Quantum 3-vectors.

SR 4-Vectors are the primitive elements of Minkowski SpaceTime (4D) which incorporate both:
af }and a{ } as components.
4-Vector A = (a”,a',a%,a°) = (a",a) — (a',a",a’,a*) with scalar (a") & 3-vector a — (a*,a’,a%)

It is the Classical or Quantum 3-vector (a) which is a limiting-case approximation of the spatial part of SR 4-Vector (A) for { |[v| << c }.

i.e. The Energy (E) and 3-momentum (p) as “separate” entities occurs only in the low-velocity limit { |v| << ¢ } of the Lorentz Boost Transform.
They are actually part of a single 4D entity: the 4-Momentum P = (E/c,p); with the components: temporal (E), spatial (p), dependent on a
frame-of-reference, while the overall 4-Vector P is invariant. Likewise with (t) and (r) in the 4-Position R.

SR is Minkowskian; obeys Lorentz Invariance. CM is Euclidean; obeys Galilean Invariance.

o e = g [
(2} @an e 4-Momentum [RerSIaprarpssuay 4-Momentum o @ oy

with (p) via a [kg-m/s] = . _ -
LorentzTransformation P=(E/c,p) vi<<c P..~(E/c A p) mSﬁK/ecr:lgigitCC;f”g,p) 3-momentum

A,

[kg-m/s]

p—(p*,p’,p%)

TimeSpace Invariant Time + Space Invariant

: "~ I
(t) can intermix T  Classical limiting-case 4-Position o _1/c (t) is totally

with (r) via a [m] _ 2 _ independent of (r)
LorentzTransformation R=(ct,r) M<<c, R, =(Ct A T) only classically
Ay ;

Minkowski Lorentz & Poincaré Euclidean Galilean

3-position
r=r'—(x,y,z) [m]

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector . o o
(1,0)-Tensor V¥ =V = (v,v) . SR 4-Scalar Classical (scalar jA 3-vector) Trace[T*1 =Nl "= T =T "
(0,0)-Tensor S Galilean Not Lorentz V-V = Vi VY= [(V)7 - vev] = (Vo)

orentz Scala Invariant Invariant = Lorentz Scalar

SR 4-CoVector

(1,1)-Tensor T*, or T,




SR — QM 4-Vector SRQM Interpretation

Relations among SR 4-Vectors are |
Manifestly Invariant

of Physical 4-Vectors John B. Wilson

Relations among 4-Vectors and Lorentz 4-Scalars are Manifestly Invariant, meaning that they are true in all inertial reference frames.
Consider a particle at a SpaceTime that has properties described by 4-Vectors A and B:

One possible relationship is that the two 4-Vectors are related by a Lorentz 4-Scalar (S): ex. B = (S) A.
How can one determine this? Answer: Make an experiment that empirically measures the tensor invariant [ B-A / A-A |.

IfB=(S)A
B-A=(S) A‘A
(S)=[B-A/A-A] Note that this basically a vector projection.

Run the experiment many times. If you always get the same result for (S), then it is likely that the assumed relationship is true.

Example: Measure (Sg) = [ P-U / U-U ] for a given particle type.

Repeated measurement always give (Sg) = m,

This makes sense because we know [ P-U]=vy(E - p-u)=E,and [U-U]=¢?
Thus, 4-Momentum P = (E./c*)U = (m,)U = (m,)*4-Velocity U

P-P=(m.c)’=(E./c)’

@ 4-Momentum
P=(mc,p)=(E/c,p)

Example: Measure (Sk) = [ K-U / U-U ] for a given particle type. 4 Veloc|ty P-U=m.c*=E, N
Repeated measurement always give (Sk) = (w./c?) U—y(c u) |
This makes sense because we know [ K:-U ] = y(w - k'u) =w, and [U-U]=c¢c?

Thus, 4-WaveVector K = (w./c*)U = (w./c*)*4-Velocity U 4 WaveVector

K=(ou/c,k)=(w/c,our‘n/vphase

Since P and K are both related to U, this would also mean that the
4-Momentum P is related to the 4-WaveVector K in a particular manner for each given particle type...

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector




SR — QM 4-Vector SRQM Interpretation

of QM

Some SR Mathematical Tools
Definitions and Approximations

of Physical 4-Vectors

SciRealm.org
John B. Wilson

B =vlc: dimensionless Velocity Beta Factor { B=(0..1); rest at (3=0); speed-of-light (c) at (B=1) }
y = 1N[1-8%] = 1~[1-B-B]: dimensionless Lorentz Relativistic Gamma Factor { y=(1..«); rest at (y=1); speed-of-light (c) at (y=«) }

(1+x)" ~ (1 + nx + O[x?]) for { |x| << 1 } Approximation used for SR—Classical limiting-cases
Lorentz Transformation A*, = 9X"/aX" = 8,[X"]: a relativistic frame-shift, such as a rotation or velocity boost

It transforms a 4-Vector in the following way: X* = A*, X" : with Einstein summation over the paired indicies
A typical Lorentz Boost Transformation A¥, — BY, for a linear-velocity frame-shift (x,t)-Boost in the X-direction:

SR:Minkowski Metric
JR]=0"R" =n"=V"+ H" —

SR:Minkowski Metric
J[R] = "R = n* = V"' + HY

Y <z —>Diag[1,-1.»]=Diag[1,-5'] Diag[1,-1,-1,-1] = Diag[1,-1s] = Dlag[1 -5
0] 0] {in Carte3|an form} “Particle Phy3|cs Conyen
Y o] N = 140} 2 n,* =3,
SR Lorentz Transform
"Particle Physics” Convention N = (/\ ) ot /\HG/\GV = f]”v ="
Original A = (at, as, a, aZ) Symmetric

Boosted A" = (a, a*, &', a%)' = A\"\A' — B*,A" = (ya' - yBa*, -yBa' + ya*, a’, a®) {for X-boost Lorentz Transform}

SpaceTime
oR=0,R"=4

A'-B' = (\"\A")(A\°,B°) = A-B = A“r]wBV = A“Bp =AB'=%_ Japl=%_ [ab]= (a’b, + a'b, + a’b, + a’b,)
= (a%° - a'b) = (a°b°? - a'b" - a’b? - a’b?)
using the Einstein summation convention where upper:lower paired-indices are summed over

Dimension

d[X] = 2"[X"] = (d/c,- V )(ct,x) = Diag[a/c[ct],- V[x]] = Diag[1,-1)] = Diag[1,-1,-1,-1] = n*" Minkowski “Flat” SpaceTime Metric [—g-

SR 4-Tensor SR 4-Vector W] — Wo— TH —
2,0)-Tensor T+ 1,0)-Tensor V* =V = (V°,v SR 4-Scalar Trace[T™] = T = Th =T
e (1.0 VR (0.0)Tensor s VAV = ViV = (V) - vev] = (Vi)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector
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L The Basis of Classical SR Physics

e Special Relativity via 4-Vectors S
5= ya

4-Gradient
9=(d/c,-V)

Focus on three of the main SR Physical 4-Vectors. 4-Di
-Displacement

_ AR=(cAt,Ar)
<Event> Location dR=(cdt,dr)

4-Position PS
R=R"=(ct,r)=<Event>

=(9/c,-0,-9,-0,)
=(alcat,-lox,-dloy,-010z)

R=(ct,r

4-Velocity . !
U=U=y(c.u) o <Event> Motion

4-Gradient '
radien A <Event> Alteration

0=0"=(d/c,-V)

These three give some of the main classical results of Special Relativity,
including SR concepts like:

The Minkowski Metric, SpaceTime Dimension = 4, Lorentz Transformations _
<Events>, Invariant Interval Measure, Causality (Temporal Ordering) 4-Velocity
The Invariant Speed-of-Light (c)

Invariant ProperTime (clock at rest), Invariant ProperLength (ruler at rest)
Time Dilation (clock moving), Length Contraction (ruler moving)
Relativity of Simultaneity, Minkowski Diagrams

Use of the Lorentz Scalar Product to make Lorentz Invariants

Invariant SR Wave Equations, via the d’Alembertian

Continuity Equations

etc.

SR 4-Tensor SR 4-Vector ] — WooTh =T
2,0)-Tensor T+ 1,0)-Tensor V* =V = (V°,v SR 4-Scalar Trace[T™] = N T = T8 =
e (10 VR (0.0)Tensor s VAV = ViV = (V) - vev] = (Vi)
orentz Scala = Lorentz Scalar

P SRQM Diagram

U=y(c,u)
=dR/dt

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V




SR —- QM

A

4-Vector SRQM Interpretation
of QM

SRQM Diagram:

Al The Basis of Classical SR Physics

A Tensor Study
of Physical 4-Vectors

The Basis of most all Classical SR Physics is in the
SR Minkowski Metric of “Flat” SpaceTime, which can
be generated from the 4-Position and 4-Gradient.

This Metric provides the relations between the main
4-\ectors of SR: 4-Position R, 4-Gradient 9, 4-Velocity U.

The Tensor Invariants of these 4-Vectors give the:
Invariant Interval Measures & Causality, from R-R
Invariant d’Alembertian Wave Equation, from 9-0
Invariant Magnitude LightSpeed (c), from U-U

The relation between 4-Gradient @ and 4-Position R
gives the Dimension of SpaceTime (4),

the Minkowski Metric n*, and the Lorentz Transformations AY,.

The relation between 4-Gradient @ and 4-Velocity U
gives the ProperTime Derivative d/dr.

Rearranging gives the ProperTime Differential dt,
which leads to Time Dilation & Length Contraction.

The ProperTime Derivative d/dr:

acting on 4-Position R gives 4-Velocity U

acting on the SpaceTime Dimension Lorentz Scalar
gives the Continuity of 4-Velocity Flow.

The relation between 4-Displacement AR and 4-Velocity U
gives Relativity of Simultaneity.

One of the most important properties is the Tensor Invariant
Lorentz Scalar Product ( dot = - ), provided by the
lowered- index form of the Minkowski Metric n,,.

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
1,0)-Tensor V¥ =V = (V°,v)
SR 4- CoVector

(1,1)-Tensor T*, or T,

Special Relativity via 4-Vectors

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

SciRealm.org
John B. Wilson

4

4-Gradient
9=(d/c,-V)
=(at/c,-ax,-ay,-az)
=(d/cat,-0lox,-dldy,-dldz)
Invariant
d’Alembertian

Wave Equation
9-0=(0,/c)*-V -\

9[R]=0"R"=n"

4-Displacement

. 3 [R"]
AR=(cAt,Ar) —Diag[1,-1,-1,-1]

: e = v =N\
=Diag[1,-5"] al?_o/feRntzA '

Minkowski
Metri Transform

paceTime D|m
=4 =A\,

ProperTime Derivative

Invariant Interval
R-R=(ct)*-r-r=(ct)?
AR-AR=(cAt)*-Ar- Ar-(cAr)2
dR-dR=(cdt)*-dr-dr=(cdt)3

Simultaneity
U-AR = y(c,u)-(cAt,Ar)
= y(c?At - u-Ar)
= c?At, = A

Continuity o
4-Velocity Flow
2-U=0
SRQM Diagram

4-Velocity

=y(c,u)
=dR/dt

nvariant Magnitude
LightSpeed
U-U=c?

From here, each object will be examined in turn...

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

—e SRQM Diagram:
. The Basis of Classical SR Physics
resrsy — 4-Position, 4-Displacement, 4-Differential

John B. Wilson
: - sy . o= JRI="R'=n" 4
4-Displacement AR=(cAt,Ar)=R;-Rs=(cto-Ct1,r>-11): {finite} 4-Displacement Diag[1,-1,-1-1] a [R'] g

AR=(cAt,Ar) . —Diag[1,-5 =0R"/aR'=/\", 8=(9/c,-V)

—(ctr)e dR=(cdt.dr) ~aceTi Minkowski Lorentz =(8/c,-0,-0,-3,)
_ : Metri paceTime Drf:;‘s O WAl - (5/c2t -0/0x -010y,-0167)
The 4-Position is essentially (VI Int?n/al Invariant
the fundamental 4-Vector of SR. AR. ARI’RR( (232 Ar ACT)( o V?/ ?IZrEzeglt?c?n
It is the SpaceTime location of an =(CAL) -ar-ar=(CAt 9. N uat
the basic F;Iement of Minkowski SpaceTime: dR-dR=(cdt)*-dr-dr=(cdt)Z ProperT|me Derlvatlve 0-0=(0,/c)*-V -\

a time (t) & a place (r) — ( , ) = (ct,r).

The 4-Position relates time to space via the fundamental

physical constant (c): the speed-of-light = “(c)elerity, (c)eleritas”, f i roperTime Differentia

which is used to give consistent dimensional units across all SR 4-Vectors. . Continuity o dt =(1/y)dt
4-Velocity Flow =Time Dilatio

The 4-Position is a specific type of 4-Displacement, U=

for which one of the endpoints is the origin, or 4-Zero.

4-Zero Voo
Z=(0,0)=(0,0,0,0)=<Origin> -;;(gc::)y
As such, the 4-Position and 4-Zero are Lorentz Invariant (point rotations and boosts), =dR/dt

but not Poincaré Invariant (Lorentz + time & space translations), which can move the
nvariant Magnitude
The general 4-Displacement and 4-Differential(Displacement) are invariant under both LightSpeed

Lorentz and Poincaré transformations, since neither of their endpoints are pinned this way. U-U=c? Music is to time as
artwork is to space

The 4-Differential(Displacement) is just the infinitesimal version of the finite 4-Displacement,

4-Creativit
and is used in the calculus of SR. r=( , 4 )
SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Trace[T] = i

V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar

(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T, SR 4- CoVector



SR — QM 4-Vector SRQM Interpretation

/ SRQM Diagram:
- The Basis of Classical SR Physics
sessu - |pvariant Intervals, Causality, TimeSpace

John B. Wilson
O[R]=0"R"=n" 3R] A
4-Displacement —Diag[1,-1,-1,-1] y 4-Gradient

4-Displacement AR=(cAt,Ar), {finite}

AR=(cAt,Ar) . —Diag[1,-5 =0R"/aR'=/\", 8=(9/c,-V)
dR=(cdt,dr) ! Minkowski Lorentz =(9/c,-3,-0,,-,)
------- - Metri Transform 48l aicat, alox-aléy, 216
The Invariant Interval is the Lorentz Scalar Product - 2= paceTime D|m =l Y 2
of the {4-Position, 4-Displacement, 4-Differential} . Invariant Interval M =4=A, L
with itself, giving a magnitude-squared. 5 R-R=(ct)*r-r=(ct)? d’Alembertian
M AR-AR=(cAt)*-Ar- Ar-(CAr)2 T Wave Equation
R-R=(ct)-r-r=(ct,)?=(ct)? BGR-dR=(cdt)’-dr-dr=(cd) ProperT|me Derlvatlve 9-9=(9,/c)*- V-V,
AR-AR=(cAt)*-Ar-Ar=(cAt,)*=(cAt)*
dR-dR=(cdt)-dr-dr=(cdt.)’=(cdr> ~  TTteeaii.--T
time-like interval (+)
light-like:null:photonic interval (0) roperTime Differentia
At | / AR = . Continuity o dr =(1/y)dt
. 4-Velocity Flow =Time Dilatio

* future

o The 4D intervals are invariant, meaning that all observers - i
4R space-like interval (-) ' muyst agree on their magnitudes, regardless of differing | 4 Z‘;Egctllt)y
i reference frames. This leads to the idea of ProperTime (At), =dR/c,ir
which is the time-displacement measured by a clock at-rest.

This also leads to the various Causality Conditions of SR,
and the concept of the (Minkowski Diagram) Light Cone.
The differential form is apparently also still true in GR.

elsewhere

nvariant Magnitude
LightSpeed
U-U=c’

past

- (cAt)? (+) {causal = temporally-ordered}
e AR-AR = [(cAt)* - Ar-Ar] = (0) Light-like:Null:Photonic (0) {causal, maximum signal speed (|Ar/At|=c)}
LightCone -(Ar,)? () {non-causal, spatially-extended}

SR 4-Tensor SR 4-Vector W] — Wo— TH —
2,0)-Tensor T 1,0)-Tensor V¥ =V = (\°,v SR 4-Scalar Trace[T] = i
e (1.0 VR (0.0)Tensor s VAV = VY = (V) - vev] = (Ve
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
--)  The Basis of Classical SR Physics
OO SpaceTime Dimension = 4D SR

4-Gradient 4-Position A
9=(d/c,-V) M R=(ct,r)=<Event>

4-Displacement —Diag[1,-1,-1,-1] ; erCllem
'R = 4 : The 4-Divergence SpaceTime Dimension Relation

ARI=0R =1t oR'

AR=(cAt,Ar) "R=4 —Diag[1,-5 =0R"/aR'=/\", 8=(9/c,-V)

dR=(cdt,dr) Minkowski Lerenz =(9/c,-0,,-0,:-,)
Metri Transform )

R SpaceTime R- paceTlme D|m =(dlcat,-0/0x,-9/0y,-0/0z)
s -R=6"n..R'=8.R'=4 Invariant Interval Invariant

= @/e-V)ctr) AT R-R=(ct)>r-r=(ct)? d’Alembertian

= [(9/0)(ct) - (-V ()] LAl AR-AR=(cAt-Ar-Ar=(olf o _ -l Wave Equation

= @[]+ V) 4R-dR=(cdt)>dr-dr=(cdr)> ) ProperTime Derivative 3-0=(0,/c)’-V -V

= (9t] +9 [x] +9 [yl +9,[z])
(O[t/at +a[x)/x +alyl/dy +alz)iéz)
(1 +1+1+1)

roperTime Differentia
Continuity o dt =(1/y)dt

a, (o] (e} = afy — a — a — - 4-V | i Fl =Ti i i
(@R) = (9"R®) = (¥aiR’) = Nea(@°R?) = Nep(n*®) = 0" = 3" = 4 i S A pre Dilate
This Tensor Invariant Lorentz Scalar relation gives the dimension of SpaceTime.

The only way there can more dimensions is if there is another SpaceTime direction 4-Ve|ocity
available. The 4-Divergence is also used in SR Conservation Laws, ex. (d-J) =0

All empirical evidence to date indicates that there are only the 4 known dimensions: \
1 temporal (f): measured in Sl units = [s], with (ct): measured in Sl units [m] A nvariant Magnitude
3 spatial (x, v, z) : measured in S| units = [m] LightSpezed
U-U=c
These are of course the ones that appearinthe [ | | L [ | | |(L/—T171-. The Tesseract.

4-Position . . _ a 4D cube, SR : Minkowski
R=(ct N—(ct x v 7) K measured in S| units [m] S symbolizes SpaceTime is 4D
1D (x) 2D (x,y) 3D (x,y,2) 4D (ct,x,y,2) 4D SpaceTime

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
== The Basis of Classical SR Physics

wrsy 1@ Minkowski Metric (n"'), Measurement

of Physical 4-Vectors John B. Wilson

4-Gradient 4-Position YIR]= A

_ 4-Displacement LR 9 [R"] :
= -V = = )= = v 4-Gradient
9=(9/c,-V) Ml R=(ct,r)=<Event> AR=(cAt Ar) i j —Diaglt 1.1, —ORYIIR'=AY, 3=(2/0-7)
The SR Minkowski Metric = “Flat” SR SpaceTime dR=(cdt,dr) : o Lorentz _
R] = R’ = " —Diag[1.-1 -1.-1] = Diag[1,-5'] = Diag[1 1. “Posit i Minkowski Transform ~(9/¢6,-9,-5,)
_ Metri D =(9lcot,-0/0x,-0ldy,-d1dz)
Derivation: The component representation of . pdceTlme D|m ,
envaton: the Minkowski M v Invariant Interval M =4 =N\, Invariant
J[R] = &'R" e Minkowski Metric n R-R=(CtYrr= d'Alemberti
=(8/c.-V)[(ctr) Wil differ with the chosen basis, (ct)*-rr=(ct)’ S
just like with 4-Vectors. AR-AR=(cAt)*-Ar- Ar-(cAr)2 Tl ProperTime Derivative Wave quuat|on
o dR-dR=(cdt)?-dr-dr=(cdt )3 d/dt ' Ivativ 9-0=(9,/c)*-V-V
_[at/C*Ct' g n*"'—Diag[1, ] : Cartesian/Rectangular basis g/dr [['i] \ U-a=y(c,u)(d,/c,-V)=y(g+u-V) :
[6/c*r,-Vr 1w _.Diag[1, ] : Polar/Cylindrical basis = =y(0,+(dx/dt)3 +(dy/dt)d +(dz/dt)a,)
*Diag[1, : Spherical basis = =
=[ot, 0] ! . R Relativity o vd/dt = d/dc . . :
[0,-Vr] Generally, components [n*] = 1/[n,] and n,’ = §," Simultaneity roperTime Differentia

Continuity o dt =(1/y)dt

= Diag[+1,-6%] SR:Minkowski Metric - 4-Velocity Flow =Time Dilatio

= JR] = @R =P = V¥ + H — s oA, = — .
Diag[1,-1,-1,-1] = Diag[1,-1;] = Diag[1,-5/] SRQM Diagram

{in Cartesnan form} “Particle PhyS|cs Co

4-UnitTemporal =1/n" : nY = 3§,
T=T“:Y(1,B)=U/C {r]PP} {r] } nu v

4-VeI00|ty

SR:Temporal Projection SR:Spatial Projection

nvariant Magnitude
"Vertical” V' = THTY — "Horizontal" H* = n*-T*T" — 9

_ _ M : _ » LightSpeed
Diag[1,0,0,0] = Diag[1,0"] Diag[0,-1,-1,-1] = Diag[0,-6" U-U=c?
The SR:Minkowski Metric n** is the fundamental SR (2,0)-Tensor, which shows how intervals are measured in SR SpaceTime. — ) S P
It is itself the low-mass = (Curvature ~ 0) limiting-case of the more general GR metric g"". The SR : Minkowski Metric n™ is the "Flat

SpaceTime” low-curvature limiting-case

The Minkowski Metric can be used to raise/lower indices on other tensors and 4-Vectors. of the more general GR Metric g™.

Alt. Derivation: 3X’ = N"°a,X" = " (AIaX°)IX" = P(OX18X°) = N°(3.") = ™
SR 4-Tensor SR 4-Vector ] — Wo— TH —
2,0)-Tensor T+ 1,0)-Tensor V* =V = (V°,v SR 4-Scalar Trace[T™] = T = Th =T

e a VR (0.0)Tensor s VAV = ViV = (V) - vev] = (Vi)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector




SRQM Diag ram: 4-Vector SRQM Interpre;?tiQo,\;l\
4%  The Basis of Classical SR Physics
st The Lorentz Transfo rm 4,[R"]= /\“ g

—'—'.

4Gradient 4-Position " Dlsplacement JR]=R'=n’ 2 [R] \ - Gd_ t
9=(d/c,- R=(ct,r)=<Event> ) Diag[1,-1,-1,-1 U , -Gradien
( t ) (C r) ven AR:(CAt,AI") . = :D?a[g“ _6jk] ] =9R"/OR'=A\", a=(8t/c,-V)

- - gl cul i) Minkowski Lorentz =(9/c,-9,-0,,-0)
Tensorial Lorentz Transform A¥, - iti i M Transform { ©70070,,"0,
acting on 4-Vector [ R¥ = \¥, R'] = et paceT,me Dim =(9/cat,-9/0x,-0/0y,-0/62)

(8/8RV)[R"] = (3/6RV)[/\“ RV] Invariant Interval @ Invariant
= R-R=(ct)*-r-r=(ct)? d’Alembertian
AR-AR=(cAt)*-Ar- Ar-(cAr)2 Tl 5 - Wave Equation
dR-dR=(cdt)*-dr-dr=(cdt)3 d/dt[.] Pl T DIsnEilie 9-0=(9,/c)’-V -V,

General Lorentz Boost Transform (symmetric.continuous): Zl/dr [ B U-d=y(c,u)(d/c,-V)=y(d+u-V)

for a linear-velocity time-space-mixing frame-shift (Boost) =y(9,+(dx/dt)d, +(dy/dt)d +(dz/dt)d,)

in the vic=p=(8',8*8%)-direction: A\¥ — B¥ = Relativity 0 = yd/dt = d/dt

Y ‘YBJ Simultaneity roperTime Differentia

_yBi -AR = . Contin.uity o] dt =(1/y)dt
4-Velocity Flow =Time Dilatio
General Lorentz Rotation Transform (non-symmetric.continuous): -U=

for an angular-displacement spatial-only frame-shift (Rotation)

SRQM Diagram

angle 6 about the ﬁ=(n1,n2,n3)-direc’[i0n: /\ul — Rul e Lorentz Transform Properties: .
: Y v PR i 1 : 4-Velocity
o N, = (N, ! U=y(c,u)
0 NN =pF =8 =
v : - SR:Lorentz Transform
Lorentz DiscreteTransforms (symmetric): A“VA: . 4;SpaceT|me Dimension nvariant Magnitude a [R“] ORY/ORY = N\
Identity 1 Time-Reverse Parity ComboPT ”pv/\ a/\ g~ Mo LightSpeed 0 - Yo A A " V_ "
N - =8 A ST AN —PY N (PT)  Det[A%] =21 : (Anti-)Linearity T A= (N AN = by = &Y
= Diag[1,5) = Diag[1-,5]] = Diag[1,-5)] = Diag[-1,-5} , ,
lag1.9] lag1-,0] lag[1,-3)] lag[-1,-01] **The Trace Invariant of the various Lorentz Transforms
0 0 0 0 leads to very interesting results: CPT Symmetry and Antimatter™*
0 0] 0 0]

Invariant Tr[ A* ] —
SR 4-Tensor SR 4-Vector (0)’__,+2,__,(+4),_ .+

- uv = 0 SR 4-Scal
(2,0)-Tensor T+ §(1,0)-Tensor V=V = (V%) (o,o)-Te::o?rS Trace identifies CPT Symmetry

orentz Scala

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
--)  The Basis of Classical SR Physics
e SpaceTime Dimension = 4D, again! s

O[R]=0"R"=n" 3R] A
4-Displacement —Diag[1,-1,-1,-1] y 4-Gradient

0'R = Tr[n"] = A"’/\;s = 4: The SpaceTime Dimension Relations

= . : . = M V=AM _

Tensor Invariants include: Trace, InnerProduct, Determinant, etc. ﬁﬁz((‘éﬁttﬁf)) =Diag|[1,-5'] aFE O/If"eFitZ/\ v _ =3/e-V)
The Trace of the Minkowski Metric & —Positi i M'”ko":"Sk' Fransform =(9/¢,-0,,-9,,-9,)
the InnerProduct of any of the Lorentz Transforms : - =(0/cot,-0/0x,-9/0y,-0/0z)
give the Dimension of SR SpaceTime = 4D. Invariant Interval ) p Invariant

R-R=(ct-rr=(cty’ Nl AR Tl d’Alembertian
Minkowski Metric 4-Divergence Lorentz Transform CRESTEIE AI"(CAT)Z 9[.. . . Wave Equation
Trace Invariant  of 4-Position Inner Prod Invariant "*aaias(Cei i g l(cleky¥ yd/dt[..] \ u.a=5(r§ Fl);e)-r(Talr?ce-%G;gz(a;IXﬁ.v) -0=(0,/c)y*-V- ¥,

v ) 1~ t

Traceln®] o Rp v Mn/\'o/\'p = Mg diacl ] =y(9,+(dx/dt)d +(dy/dt)d +(dz/dt)d)
= Trin™] = "R NN AN’ = Mg Y Lt = dde i
= nuv[nuv] = 3“rluvRv ﬂ“B/\“uﬂuv/\VB = ncBnGB R_elatmty O ¥ . . >
=n =MwdR" (A1) = Negn® o multaneity Lty & R
- o _ Ll AP = Neg™ = TrN"] . 4-Velocity Flow =Time Dilatio
= (1+1+1+1) = Tr[n"™] N8N = 4 ) , .
= =4 =4 Minkowski

SRQM Diagram

Trace Invariant

General Tensor
Trace Invariant
THTHI=T, =(To™+ T4 +T,7+T5°) :

:(TOO_T11_T22_T33):T Metrlc rlHV a.r]uv

Trin"=n."=(1) - (-1) - (-1) - (-1)=4 4-Ve|ocity

= 3%~ iant Magnitud
4—TenSOF [+1 B)O O] - ac r] MV alo) MV nvaEIagr;ﬂSpaegen(; e
WV — 700 T01 T02 03 1YY, = 9"NouN = 3°NoyN o
™ =[1T7,T",T°T"] [0,-1,0,0] " e U-U=c
[T, T 712,719 [0,0 ’1 ’O] =an i auguv
[TZO,T”,TZZ,Tf:j’] 7 _ o s . SR : Minkowski
[T30,T31,T32,TQ Conservation of Minkowksi Metric SpaceTime s 4D
SR 4-Tensor SR 4-Vector
= [ = 0 SR 4-Scal Trace[T"] =N, T =T =T
(2,0)-Tensor T (1,0)-Tensor V¥ = V = (V°,v) g V-V = VeV = [(“VO)Z . v-vij = (V)

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S
, orentz Scala = Lorentz Scalar



SR — QM SRQM Diag ram: 4-Vector SRQM Interpre;?tiQo'\;l\
The Basis of Classical SR Physics

s LOrentz Scalar (Dot) Product (n,, = -) s
£

4-Displacement . :
Diag[1,-1,-1,-1 , , 4-Gradient
R ' - :D?a[gn -5 B 9=(3/c,-V)

The Tensor Invariant Lorentz Scalar Product is the SR 4D (Dot) Product.
It is used to make Invariant Lorentz Scalars from two 4-Vectors.

ARI=0R =1t R

A‘B =A"B' = A',BY = AB' = A'B, = (a%° - a-b) = (a%b°%) dR=(cdt.dr) | Minkowski T';:r';;[‘otrzm =(8/c.-0,-6,,-9,)
A-A =AMAY = A, AY = AAY = APA, = (a%° - a-a) = (a%)? _ M =(0/cot,-919x,-019y,-919z)
@ ottt et '-0,: e o
= 2 — 2 Se . - -
It is itself just the lowered-index form of the iﬁ';_((zﬁgz:ﬁ: grr_((gcﬁt) .. ProperTime Derivative az\g /Eccgzu_eglog
SR Minkowski Metric ( . ), with individual components yd/dt[..] B U-a=y(c,u)3,/c-V )=y(3+u-V) t
[Nu:]1=1/[n*], else 0. In Cartesian basis, this gives { N, = n"}. d/dt[..] X y

=y(2:+(dx/dt)d, +(dy/dt)a,+(dz/d)3,)

It is used in just about every relation between any two interesting 4-Vectors. Relativity o = yd/dt = d/dc

It also gives the Invariant Magnitude of a single 4-Vector. If the 4-Vector is Simultaneity roperTime Differentia
temporal, then the spatial component can be set to zero, giving the ‘AR = . Continuity o dt =(1/y)dt
rest-frame invariant value, or the (o)bserver rest value (“naught” = ,). . 4-Velocity Flow =Time Dilatio

P-P=(m.c)’=(E./c
@ 4-Momentum

P=(mc,p)=(E/c,p)
4-\elocity P-U=m,c’=E, o
U=y(c,u)

SRQM Diagram

4-\elocity

=y(c,u)
=dR/dt

nvariant Magnitude
LightSpeed
U=c?
4-WaveVector D.Usc
K=(w/c,k)=(w/c,whlv_ a’ or a;: (0)" = temporal component (can relativistically vary)

a.: (0)bserver’s rest-frame Invariant value (does not vary)

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector UV] — BV — TH —
(1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar TIaCS[T ] i n”v;rz = Ty 0 To 2
SR 4- CoVector (0,0)-Tensor S V-V = Vi, VY= [(V)° - vev] = (Vo)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T,



SR — QM 4-Vector SRQM Interpretation

A SRQM Diagram:
The Basis of Classical SR Physics

s 4=Velocity U, SpaceTime Motion S
4

J[R]=0R'=n"

4-Velocity U=y(c,u)=(yc,yu)=(U-d)R=dR/d : b -
: . y(C,u)=(vc,yu)=( . . T 4-D|s_placement —Diag[1,-1,-1,-1] év[R ] ' 4-Gradient
4-Velocity U is the ProperTime Derivative d/dt AR=(cAt,Ar) : —Diag[1,-5"] =9R"/OR'=A\", 8=(3/c,-V)
of the 4-Position R or of the 4-Displacement AR. dR=(cdt,dr) Minkowski T|r_aor:§%trzm =(9/c,0,-8,-0)
It is the SR 4-Vector that describes = Metri paceTime D|m =(olcaot,-dlox,-0l0y,-0/0z)
the motion of through SpaceTime. Invariant Interval @ W =4 = A, Invariant
For an un-accelerated observer, R-R=(ct)*-r-r=(ct)? d’Alembertian
the 4-Velocity is along the WorldLine at all points. AR-AR=(cAt)*-Ar- Ar-(cAr)2 .. Wave Equation

For an accelerated observer, dR-dR=(cdt)’-dr-dr=(cdt)Z ProperTime Derivative 0-9=(9,/c)*-V -\
the 4-Velocity is still tangent to the WorldLine at each point, "é%(:t[['i] B U-d=y(c,u)(d/c,-V)=y(d+u-V) :
but changes direction as the WorldLine bends. = =y(at+(dx/dt)ax+(dy/dt)ay+(dz/dt)az)

ity is unli - - Relativity o = yd/dt = d/dt
The 4-Velocity is unlike most of the other SR 4-Vectors in that it only { Y o '
has 3 independent components, whereas the others usually have 4. Simultaneity Lt FEIRETUNTE DUIREE
This is due to the constraint placed by the Tensor Invariant of the 4-Velocity. ontinuity o dr =(1/y)dt

U-U has a constant magnitude, the speed-of-light (c) in SpaceTime. 4'Veloc't3/ o =Tie Dilatio
: A =U’=R”is normal

Gompenents: to WorldLine
3 independent + 1 independent = 4 independent . =
4-Velocity 1 (Ais Spatial)

| U=y(c,u)

4-Velocity 4-Momentum
U=y(c,u) P=(mc,p)=(E/c,p)

P-P=(m.c)’=(EJ/c)’

U =R’ is tangent
to WorldLine

nvariant Magnitude

The 4-Velocity also usually has the Relativistic Gamma factor (y) exposed in LightSpeed U is Temporal)
component form, whereas most of the other temporal 4-Vectors have it U-U=c?
absorbed into the Lorentz 4-Scalar factor that goes into their components. :

Y WorldLine
4-Velocity U = y(c,u) = (yc,yu) ) Th.e Temporal corrjpon;agts gIV?_ R moves along
4-Momentum P = (mc,p) = mo,U = ym,(c,u) = m(c,u) = (mc,mu) = (E/c,p) Einstein’s famous E = mc® = ym,c°= yE, Worldline

SR 4-Tensor SR 4-Vector ] — Wo— TH —
2,0)-Tensor T 1,0)-Tensor V¥ =V = (\°,v SR 4-Scalar Trace[T] = i
e (1.0 VR (0.0)Tensor s VAV = VY = (V) - vev] = (Ve
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SR — QM '4 SRQM Diagram: 4-Vector SRQM Interpre;?tiQo'\;l\
The Basis of Classical SR Physics
4-VeIOC|ty Magnitude = Invariant Speed-of-Light (c)

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
o—e 4
4-Velocity U=y(c,u)=(yc,yu)=(U-9)R=dR/dt 4-Displacement ?D[R]=81PR1 :r1]“ 1 0,[R"] 4-Gradient
with Relativistic Gamma y = 1\[1-B-B ], B = u/c AR=(cAt,Ar) : - _'S?a[gﬁ bjk] ] =0RY/OR'=/AY, a=(d/c,-V)
dR=(cdt,dr D Lorent o
The Lorentz Scalar Product of the 4-Velocity gives the tedra) Minkowski Tr:r::}frcl)rzm =(9/¢,-0,,-9,,0)
Invariant Magnitude Speed-of-Light (c), one the main = Metri paceTlme D|m =(d/cot,-0/0x,-0/dy,-0l0z)
fundamental SR physical constants of physics. Invariant Interval Invariant
Technically, it is the maximum speed of SR causality, R-R=(ct)*r-r=(ct)? d’Alembertian
which any massless particles, ex. the photon, travel at. AR-AR=(cAt)>-Ar- Ar-(cAr)Z . Wave Equation
4R-dR=(cdt)’-dr-dr=(cd ” ProperTime Derivative 9-9=(8./c)*-V-V
u-u (cdt) (cdr)} «é%(:t[[.i] \ U-a=y(c,u)(d,/c,-V)=y(8+u-V) (6,/c)
= ng,g)-y(C,u) = =y(0,+(dx/dt)d, +(dy/dt)d, +(dz/dt)d,)
=y'(c-uu) » = yd/dt = d/dt
=[1/(1 - B-B)I(c” - uu) = [1/(1 - B-B)Ic*(1 - B-B) Relativity o .
= ¢?: Invariant Magnitude Speed-of-Light (c) Simultaneity — roperTime Differentia
Continuity o dt =(1/y)dt
This fundamental constant Invariant (c) provides an extra . 4-Velocity Flow =Time Dilatio

constraint on the components of 4-Velocity U, 2-U=0

making it have only 3 independent components (u).

SRQM Diagram

This allows one to make new 4-Vectors related to | 4-\=/eigct|lt)y
4-Velocity by multiplying by other Lorentz Scalars. 0c;)z— E Jc)? :dYR /(’h
(Lorentz Scalar)*(4 -VeCIOC|ty) = (Neyv 4-\/ector) 4 Momentum

omponents: 3 independent E/c
P=(mc,p)=mU 4-Velocity mC PriE/cD) LightSpeed
K = (w/c,k) = (w./c)U U=y(c,u) +1 independent = 4 independent U-U=c2

~ -
- -
---------

4-WaveVector
@ K=(w/c,k)=(w/c,wﬁ/v If (c) was not a constant, but varied somehow, then all 4-Vectors made from the
EUEEE)|  4-Velocity would have more than 4 independent components, which is not observed.
It seems a compelling argument against variable light-speed theories.

The newly made 4-Vector thus has
{3+1 = 4} independent components. m

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v)

SR 4-Scalar Trace[T"] =N T =T =T
(0,0)-Tensor S V-V = Vi, VY = [(VO)? - vev] = (V0)?
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SRQM Diagram:
The Basis of Classical SR Physics

S B o Relativity of Simultaneity SR
4

="RV=nH c
Relativity of Simultaneity: 4-Displacement _%Fa] [81 I?’I _q ] 9 [R"] e
U-AX = y(c,u)-(cAt,Ax) = y(c?At - u-Ax) = c?At, = ¢*At AR=(cAt,Ar) - -D?agﬁ "jk]’ =0R"/oR'=N\", a=(3/c,-V)
dR=(cdt,dr et it =

If Lorentz Scalar (U-AX = 0 = ¢?Ar), (_ i ') i Minkowski Tlr_:r:;cnotrzm :(at/c’-ax’-ay’-az)
then the ProperTime displacement (Aq) is zero, - Metri paceTlme D|m =(0/caot,-0lox,-0/0y,-0loz)
and the : separation (AX = X, - X,) is orthogonal [T S Invariant

to the worldline at U. R R—(ct)2 r_(Cl') d’Alembertian

X, and X, are therefore simultaneous AR-AR=(cAt)*-Ar- Ar_(CAT)Z dl.. e et o

_ 2 _ ProperTime Derivative 9= 2_\/.
for the observer on this worldline at U. dR-dR=(cdt)*-dr-dr=(cdr)g . P 0-0=(0,/c)*- V-V,

Examining the equation we get y(c’At - u-Ax) =0

The coordinate time difference between the events is (At = u-Ax/c?) < i = yd/dt = d/dt

The condition for simultaneity in an alternate frame . . >

(moving at 3-velocity u wrt. the worldline U) is At = 0, \ Continuit roperTlTe Differentia

which implies (u-Ax) = 0. ontinurty o de _(1/.7)d.t
Rest-Frame Lorentz k- Y(CzAt - u'Ar) 4-Velocity Flow =Time Dilatio

This condition can be met by: ProperTime Boost-Frame * > S MERely 0-U=0

(Ju] = 0), the alternate observer is not moving wrt. the events, =1 | - SRQM Diagram
i.e. is on worldline U or on a worldline parallel to U.

(|Ax| = 0), the events are at the same spatial location (co-local).
(u-Ax = 0), the alternate observer's motion is perpendicular
(orthogonal) to the spatial separation Ax of the events in that frame.

0 4-\elocity
[ =’Y(C,U)

=dR/dt

If none of these conditions is met,
then the events will not be simultaneous
in the alternate reference-frame.

nvariant Magnitude
LightSpeed
U-U=c?

At=0
Simultaneous in {t',x’}

.
-“
.
.
.
8

At#0
Not Simultaneous in {t,x}

Realizing that simultaneity is not an invariant concept
X' was the breakthrough that lead Einstein to Special Relativity

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector V] — v — —
1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Trace[T"] = r]pv;l"; =T = TO ]
(0,0)-Tensor S V-V = Vi VY= [(V)° - vev] = (Vo)

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector




SR —- QM

SRQM Diagram:
The Basis of Classical SR Physics

A Tensor Study - = a SciRealm.org
st The ProperTime Derivative (d/dt)
o—@

_Veloci 4-Gradient : 9[R]=0"R"=n" RV 4
4-Velocity - 4-Displacement —Diag[1,-1,-1,-1] R 4-Gradient
U=y(c,u) 0=(9/c,-V) AR=(cAt,Ar) ‘R= =Diagi1 -’5ka =9R¥/OR'=A\", 3=(3/c,-V)

dR=(cdt,dr) ’ !

Minkowski Lerenz =(3/c,-0,-9,,-0)
Metri Transform

SaceTime D =(d/cat,-0/0x,-0/9y,-0/0z)
Invariant Interval Invariant

ProperTime Derivative
U-0=y(c,u):(9,/c,-V)=y(0+u-V)
=y(9,+(dx/dt)o, +(dy/dt)d +(dz/dt)d,)

= yd/dt = d/dt R-R=(cty-rr=(ct)’ | A d’Alembertian
AR-AR=(cAt)*-Ar-Ar=(cAt)? - _ - Wave Equation
with Relativistic Gammay = 1/N[1-B-B ], B = u/c 4R-dR=(cdt)’-dr-dr=(cdt)2 ProperTime Derivative. “.9.9=(9 /c)- V-V

A Y

U-9=y(c,u)-(9,/c,-V )=y(d+u-V)
The derivation shows that the ProperTime Derivative is B\ =y(at+(dx/dt)ax+(dy/dt)ay+(dz/dt)az) )
an Invariant Lorentz Scalar. Therefore, all observers = yd/dt = d/dt .
must agree on its magnitude, regardless of their

frame-of-reference.

~ -
_______
----------

roperTime Differentia
Continuity o dt =(1/y)dt
4-Velocity Flow =Time Dilatio

It can be used to make new 4-Vectors from existing
4-Vectors, as it is taking the derivative of an existing
4-Vector by a Lorentz Scalar, the ProperTime 1.

® @ ----- >
- d[.. 9[..]
4-Position
R=(C‘t’|") .. —_— ’Yd/dt[..]

nvariant Magnitude
LightSpeed
U-U=c’

vd/dtT. ]

d/dt[..
SR 4-Vector V_ " _
(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Trace[T"] = r]pv;l"; =T = TO i
SR 4-CoVector (0,0)-Tensor S V-V = Vi, VY= [(V)° - vev] = (Vo)
orentz Scala = Lorentz Scalar

=y(E/c,f)

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,



SR — QM SRQM Diag ram: 4-Vector SRQM Interpre;?tiQo'\;l\
The Basis of Classical SR Physics
ProperTime Derivative on SR 4-Vectors and Scalars

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
, J[R]=¢"R"=n" e A
The ProperTime Derivative acting on SR 4-Vectors: 4-Displacement —Diag[1,-1,-1,-1] 9 [R"] Z-Gradient
Sl ' ~Diag[1,-5] W “ORVIGR=N, 3=(3/c,-V)
U-o =’Y(C, )(61 Ic, )=y(8t+u-V) = ’Yd/dt =d/dt dR=(cdt,dr) ' MInkOV\;SkI Lorentz =(8/c D -0 -8 )
Metri Transform _ v e
4-Vectors: paceTime Dim =(0/caot,-0lox,-0/0y,-0loz)
4-Position R = () Invariant Interval Invariant
4-Velocity U = dR/dt ®----p R-R=(cty-rr=(ct)” ||, d’Alembertian
4-Acceleration A=dU/dt @ - — - - P> AR-AR=(cAt)*-Ar-Ar=(cAt)? - s _ - Wave Equation
dR-dR=(cdt)’-dr-dr=(cdt)3 ProperTime Derivative 2-3=(3,/c)’-V -V
4-MomentumP=m,U  @----- - U-d=y(c,u)-(9/c,-V)=y(9+u- V)
4-Force F = dP/dt N 3 =y(9;+(dx/dt)d, +(dy/dt)d, +(dz/dt)d,)
® =~ = yd/dt = d/dt
As one can see from the list, the ProperTime Derivative roperTime Differentia
gives the 4-Vectors that are the change in status of the AR = ) Continuity o dr =(1/y)dt
4-Vector that ProperTime Derivative acts on. It can ) 4-Velocity Flow NS

also act on Scalar Values to give deep SR results. A=U'=R” is normal

to WorldLine
= P

0-R = 4: SpaceTime Dimension is 4

d/dr(8-R) = d/dt(4) = 0 P A (Ais Spatial)
d/dt(a-R) = d/d[d]-R + 8-U = 0 A gﬁar?cdl-evn; :
t )

é:U = 0: Conservation of the SR 4-Velocity Flow

U=R’i
@------ > A1 .. & - - "SEe et nvariant Magnitude to Wcl)s;lttjal‘_?r?: "
U-U = ¢ Tensor Invariant of 4-Velocity 4-Velocity ¥ d/dt[..] 4-Acceleration LightSpeed U is Temporal)
. = 21 = — o —_ L] -U=c?
d/dt[U-U] 3 d/dt[c’] =0 R _ U=y(c,u) A=y(cy’,y'u+ya) U-U=c
d/dt[U-U] = d/d<[U]-U + U-d/d7[U] = 2(U-A) =0 a0 WorldLine
U-A = U-U’ = 0: The 4-Velocity is SpaceTime SRQM Diagram L
orthogonal to it's 4-Acceleration R n\}\?v?jl_along
orialine
SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar Trace[T"] = N TSN,

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S V-V = Vi, VY = [(V)F - vev] = (V)2
, orentz Scala = Lorentz Scalar



SRQM Diagram: 4-Vector SRQM Interpre;?tiQo,\;l\
The Basis of Classical SR Physics

ProperTime Differential (dr) |

e Time Dilation & Length Contraction =
O—@

Rearranging the ProperTime Derivative to get the

—g'RV=nH .
4-Displacement AlrIEeR S 9 [R¥]

ProperTime Differential gives Time Dilation. Diag[1,-1,-1,-1 . . 4-Gradient
= RS %Ef(cﬁtt’ﬁ % - =D?a[g[1 -5 d B 9=(3/c,-V)
ProperTime Derivative (Lorentz 4-Scalar): _(_C = 'T) . Minkowski Tlr‘:r';g%trzm :(3t/c1'3x1'3y"3z)
U-d =y(c, )(d,/c, )=v(6+u-V)=vd/dt = d/dt - Metri paceTime D|m =(dlcét,-0/0x,-010y,-010z)

: , : Invariant Interval Invariant
ProperTime Differential (Lorentz 4-Scalar): R-R=(ct)2-r-r=(ct)? R
dr =(1/y)dt AR-AR=(cAt)*-Ar- Ar-(cAr) ol S Dt Wave Equation
" 2 _ roperTime Derivative
One can also rearrange the formula to the more RS g "é%dt [..] \ U-9=y(c,u)(9,/c,-V)=y(d+u-V)
g?mrr:jonly se6n form: ] =y(9+(dx/dt)a,+(dy/dt)a, +(dz/dt)a,)
= ydt = ydl, i = =dldt s
At = yAt = yAt, : Time Dilation! SRQM Diagram = ot yd/dt = d/dr -

Simultaneity roperTime Differential g
Continuity o dr =(1/y)dt
4-Velocity Flow .= Time Dilatio

~
---------

The coordinate time At measured by an observer is
“dilated”, compared to the ProperTime as measured by a
clock moving with the object. This has the effect that
moving objects appear to age more slowly than at-rest
objects. The effect is reciprocal as well. Since velocity is

Time Dilation

Length Contraction ===

relative, each observer will see the other as ageing more , 46\_/e|ocity """""" ;
slowly, similarly to the effect that each will appear [ I _—dyéc/:au)

smaller to the other when seen at a distance. ) S, - !

Now multiply both sides by the moving-frame speed [v]. R % 1 ! nva[igr:tg/l agn(;tude

VAt = WhT N __ - 7 ightSpee

- 2 - U=c?
vAt = distance L, the moving clock travels wrt. frame, h — e U-U=c
which is a proper (fixed-to-frame) displacement length. : O
Lo =vyL

L = (1/y)L, : Length Contraction!

Red and Blue lengths equal in the
moving frame, blue is contracted
in the ProperTime frame

SR 4-Tensor SR 4-Vector Wy — Wo— TH —
2,0)-Tensor T+ 1,0)-Tensor V! = V = (V%,v SR 4-Scalar Trace[T"] =N T"=T" =T
e (1.0 VR (0.0)Tensor s VAV = VY = (V) - vev] = (Ve

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SR —- QM

4-Vector SRQM Interpretation

SRQM Diagram:

The Basis of Classical SR Physics

s, d-Gradient 9, SR 4-Vector Function:Operator

of Physical 4-Vectors

4-Gradient
9=0"=(d/c,-V)

4-Displacement
AR=(cAt,Ar)
=(d/c,-0,,-9,,-9,) dR=(cdt,qu)

=(0lcat,-0lox,-31dy,-0/6z)

Invariant Interval
R-R=(ct)?r-r=(ct)?
AR-AR=(cAt)*-Ar- Ar-(cAr)
dR-dR=(cdt)*-dr-dr=(cdt)Z

The 4-Gradient (6")=(d/c,-V ) is the index-raised
version of the SR Gradient One-Form (d,)=(d/c, V).

It is the 4D version of the partial derivative function
of calculus.

It is a 4-Vector function that can act on other 4-Vectors
and 4-Scalars. The 4-Gradient tells how things change
wrt. time and space.

It is instrumental in creating the ProperTime Derivative
U-0 = yd/dt = d/dr.

The 4-Gradient plays a major role in advanced
physics, showing how SR waves are formed,
creating the Hamilton-Jacobi equations, 4-Gradient
creating the Euler-Lagrange equations, etc. = -9[Saction] a=(d/c,-V)
It is fundamental in connecting SR to QM. E ]

@ acting on

Lorentz
. 4-TotalWaveVector
SR Plane-Wave Equation: Kr = -9[®pnasc] S RNNS

= 'a[(Dphase]

4-TotalMomentum
P.=(E,/c,p,)=(H/c,p,

Hamilton-Jacobi Equation: Pt = -9[Sction]

Scalar
argument

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)

SR 4-Tensor

(2,0)-Tensor T+ SR 4-Scalar

(0,0)-Tensor S
orentz Scala

SR 4- CoVector

(1,1)-Tensor T*, or T,

Relativity of
Simultaneity

SciRealm.org
John B. Wilson

d[R]=¢"R"=n" n
—Diag[1,-1,-1,-1] 6’V[Rv] , 4-Gradient
=Diag[1,-5"] =OR'IOR'=/\", 3=(3/c,-V)
Lorentz =(8/c,-9,-9,-9))

Minkowski T :
Metri LANSTOT™ A = (/cot, -0/ x, -3l dy,-0107)
) Invariant

paceTime D|m
=4 =N\,
d’Alembertian

Wave Equation
ProperTime Derivative 9-9=(9,/c)- V-V,
\ U-9=y(c,u)(9,/c,-V)=y(d+u-V)
=y(0,+(dx/dt)d, +(dy/dt)d, +(dz/dt)d,)
= yd/dt = d/dt

ya/dtr..]
d/dt[..]

roperTime Differentia
dt =(1/y)dt
=Time Dilatio

Continuity o
4-Velocity Flow

SRQM Diagram

4-Velocity

U=y(c,u)
=dR/dt

nvariant Magnitude
LightSpeed
U-U=c’

Trace[T"] = nuT" =T =T
VAV = ViV = (V)2 - vev] = (Vo)
= Lorentz Scalar



SR - QM A SRQM Diagram: 4-Vector SRQM Interpre;?tiQo'\;l\
g The Basis of Classical SR Physics
sy, INVAriant d’Alembertian Wave Equation (0-0)

of Physical 4-Vectors

SciRealm.org
John B. Wilson

The Lorentz Scalar Invariant of the 4-Gradient gives the

J[R]=¢"R"=n" P [R“']
Invariant d’Alembertian Wave Equation, describing SR wave motion. Y

4-IAD:_pIaZte2ent —Diag[1,-1,-1,-1] sl 4-Gradient
It is seen in the SR Maxwell Equation for EM light waves. dR;E(c::dt’d:)) =Diag[1,-6"] =OR"/OR™=N", 9=(d/c,-V)
.CI Minkowski Lorentz =(9/c,-9,-9,,-0,)

2-0=(2, Ic)-V-V @ Lorenz Gauge Metri Transform

: Conservation of = =(/cat,-0/9x,-9/9y,-0/9z)
, : paceTlme D|m
d’Alembertian (0-9)A-9(8-A)=pJ ~EM Potential: 9-A=Q Invariant Interval @ Invariant
Maxwell EM Wave Eqn R-R=(ct)’-r-r=(ct)’ d’Alembertian

— 2 — : 5
Importantly, the d’Alembertian is fully from basic SR rules, Ai%i (Cﬁ:)z ﬁr gr (chr) ol ProperTime Derivative V\gaz\zz /EC(;ZU_ @.og z
with no quantum axioms required. However, . (ealjfelrel=(ety yd/dt[..] O U-d=y(c,u)(d,/c,-V)=y(@+u-V) !
. . P Ay . d/d‘[ . 2 AL AR, ~ ~ . _ __.-"
it will be seen again in the Klein-Gordon QM equation. [..] =y(8:+(dx/dt)a, +(dy/dt)d +(dz/dt)a,)
It provides for the introduction of an SR Wave 4-Vector K, Relativity of = yd/dt = d/dr
which can also be given by the negative Gradient of a Lorentz Scalar Phase. Simultaneity roperTime Differentia

Continuity o dt =(1/y)dt

4-WaveVector K = (wo/c*)U = (w/c,K) = -9[Pphase] = I[K'R] = . 4-Velocity Flow =Time Dilatio

The usual mathematical (complex) plane-wave solutions apply in SR:
f = (a)*eMzi(K-R)], with (a)mplitude possibly {4-Scalar S, 4-Vector V¥, 4-Tensor T"} ,
{KG wave, EM wave , Grav wave} 4-Velocity
U=y(c,u)
=dR/dz

SRQM Diagram

Invariant Phase
K-R = (w/c,k)-(ct,r)
=((.Ut - kr) = 'chhase,pIan

o
4-Position

A nvariant Magnitude

4-WaveVector i 4-Gradient Lig&tgfezed
4-Velocity @ K=(w/c,k) ) 9=(3/c,-V) =c

0-9=(0,/c)Y-V -V

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

SR 4-Vector UV] — BV — TH —
(1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar TIaCS[T ] i n”v;rz = Ty 0 To 2
SR 4- CoVector (0,0)-Tensor S V-V = Vi, VY= [(V)° - vev] = (Vo)
orentz Scala = Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:

X The Basis of Classical SR Physics

e CoONtiNuity of 4-Velocity Flow (0-U=0) s
4

Continuity of 4-Velocity Flow 8-U=0 . J[R]=9"R"=n" I IR"
: ; 4-Displacement . [R"] a :
; Diag[1,-1,-1,-1 v . 4-Gradient

This leads to all the SR Conservation Laws AR=(cAt,Ar) . - :ID?a[g[1 e ] =0R"/8R'=/\", 2=(3/c,-V)
R =4 g e d) Minkowski Lorentz =(8/c,-0,-0,-3,)
d/dt(¢-R) = d/d(4) = 0 R= Metri =(8/cat,-0/9x,-01dy,-0/0z
el = el = Pl = 0 Invariant Interval p?vce—Tzllme/\Dlm : Invarianty :
d/dz(e-R) = d/dz[d]'R + 0-U = 0 R-R=(ct)2-r-r= d’Alemberti
2-U = -diddd]R (ct)®rr=(ct)’ embertian
a-U = -(U-9)[9]'R AR-AR=(cAt)*-Ar- Ar-(cAr) [, 5 I Wave Equation

I v dR-dR=(cdt)*-dr-dr=(cd MOl e el 9:0=(9,/c)*-V- V.
S e 19611 P Usmy(cura/cVanT) Y

R - =y(0+ + +
o-U = -U,0,0'R": | believe this is legit, partials commute V(0 (dX/d_t)aa /éf}i/it/)jy (dz/dt)o,)
a-U =-Ua,n" Relativity of - ydiat =it
a-U = -Uy(0") Simultaneity Lo m o == roperTime Differentia
U=0 ‘AR = . Continuity o dt =(1/y)dt

4-Velocity Flow =Time Dilatio
2-U=0

-
-
-------

Conservation of the 4-Velocity Flow
(4-Velocity Flow-Field) L
All of the Physical Conservation Laws are in the form of 4-Velocit

a 4-Divergence, which is a Lorentz Invariant Scalar d_‘;(gct'l)y

equation. —dR/dc

These are local continuity equations which basically
say that the temporal change in a quantity is balanced

nvariant Magnitude
LightSpeed

by the flow of that quantity into or out of a local region. U-U=c?
Conservation of Charge: 0-R=4 u-a[..1 Continuity o
pd'U=0pU=0J=0p+ V=0 SpaceTime yd/dt[..] 4-Velocity Flow

Dimension d/dt[..] o-U=0

SR 4-Tensor

SR 4-Vector UV] — BV — TH —
(2,0)-Tensor T Trace[T"] =N, T =T, =T

= 0 SR 4-Scalar
(1,0)-Tensor V¥ =V = (V°,v) V-V = VP VY = [(VO)2 - vev] = (V)2

SR 4- CoVector (0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T,



SR — QM 4-Vector SRQM Interpretation

R SRQM Diagram:
Ai The Basis of Classical SR Physics
AT S e <Event> Substantiation e

: : O—@
Now focus on six of the main SR 4-Vectors. , A
4-Displacement 4-Gradient

4-Position R* ) AR=(cAt,Ar) 9=(d/c,-V
() _ (9/c,-V)
R=(ct,r)=<Event> <Event> Location dR=(cdt,dr) :(at/c,_tax,_ay’_az)

4-Position
R=(ct,r =(d/cat,-0lox,-dldy,-0ldz)

4-Momentum
®----> <Event> Motion P=(E/c,p)=(mc,p)=(mc,mu)

4-Velocity U*

4-Gradient o A

0=(9/c,-V) <Event> Alteration

4-\WaveVector
K=(w/c,k)=(w/c,wﬁ/vphase)=(1 [cF,i/x)

4-Momentum P

P=(E/c,p)=(mc,p)=(mc,mu) <Event> Substantiation - >
=(E,/c?)U=m,U (particle:mass) . :
4-CurrentDensity
4-WaveVector K - J=(pc,j)=(pc,pu)
- _ - < p .
K__(wlc’k):(wic'wn/;/phase (ngf:)t Substantiation & - SRQM Diagram
=(1/cF,n/x)=(w./c?)U 4-Velocity
4-CurrentDensity:ChargeFlux J¥ ; <Event> Substantiation L’::jyé(/;d:)

J=(pc,j)=(pc,pu) y. % (charge)
=(Po)U=(q)N
These six give more of the main classical results of Special Relativity,
including SR concepts like:
SR Particles and Waves, Matter-Wave Dispersion
Einstein’s E = mc? = ym.c®= yE,, Rest Mass, Rest Energy
Conservation of Charge, Continuity Equations

SR 4-Tensor SR 4-Vector ] — WooTh =T
2,0)-Tensor T+ 1,0)-Tensor V* =V = (V°,v SR 4-Scalar Trace[T™] = N T = T8 =
e (10 VR (0.0)Tensor s VAV = ViV = (V) - vev] = (Vi)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR —- QM

SRQM Diag ram: 4-Vector SRQM Interpre;]?tiQo,\;ll
*->  The Basis of Classical SR Physics

A Tensor Study

st 4-Momentum, Einstein’s E = mc? e
—e ya

4-Position R=(ci, ) 4-Gradient

4-Displacement

4-Gradient 0=(7/c, ) AR=(cAt,Ar) 3=(3/c,-V)
. dR=(cdt,dr) e ;
4-Ve|OCIty U= ’y( ) ) Hamilton-Jacobi Equation =(9/c,-0,,-9,,-,)
R=(ct,r mU-aL.] =(lcat,-a10x,-01dy,-0/5z)
4-Momentum P = (-, ) =moU =ym(, )=m(, ) el

. . o Lemt T
ProperTime Derlvatlye‘.

Temporal part: U-8=yd/dt=d/dz .*

{energy} ' 4-Momentum
rest) + (kinetic ; FE e A
( ) ( ) «Einstein’s v
. 1 E=yE,=ym,c*=mc? =(Eo/c) 5
Spatlal part: 1 Energy:Mass :
3-momentum *Equivalence @ '
{ } RestMass o am . SRQM Diagram
4-Momentum P = ( ’ ) = 'a[saction,free] . '( ’ )[Saction,free] 4-Velocity "'
U=y(c,u) |
Temporal part: -
{energy} (P-P) = (E/c)*(p-p) = (M.C)>
. . E* = (Iplc)® + (moC?)’
Spatial part: E2 = (|p|c)? + (E.)? : Einstein Mass:Energy
{3-momentum}

Relativistic Energy(E):Mass(m) vs Invariant Rest Energy(E.):Mass(m )

SR 4-Tensor SR 4-Vector ] — WooTh =T
2,0)-Tensor T+ 1,0)-Tensor V* =V = (V°,v SR 4-Scalar Trace[T™] = nu 1= T6 =
e (10 VR (0.0)Tensor s VAV = ViV = (V) - vev] = (Vi)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V



SR —- QM

SRQM Diagram:
>  The Basis of Classical SR Physics

A Tensor Study

of Physical 4-Vectors 4-Wavevector’ u * vPhase = CZ JoShCriRBe.a\}\r/Ti]I:;g
—e 4

4-Position R=(ct, ) 4-Displacement 4-Gradient

4-Gradient 0=(¢/c, ) %Ef((gﬁﬁrr)) 8=(3/c,-V)

)
R=(ct,r Wo/c?)U-a[.. Jlacct oo oy o z)

4-WaveVector K= (1, ) = (wo/cA)U = y(wd/c?)( , ) e

ProperTime Derivatiye*

Temporal part: U-8=yd/dt=d/dt .*

{angular frequency}

," Wave Velocit¥ “I
Spatlal pal’t :l group* Phase= E
{3-wavevector} |U * Vphase| = € d e an ]
. - - ; SRQM Diagram
) = ol = = 4-Velocit
4-WaveVector K ( ’ ) a[q)phase,free] ( ’ )[q)phase,free] U=$((():,Ctll)y '/
Temporal part: - I
{angular frequency} (K-K) = (w/c)’-(k-k) = (wo/c)?
. w? = (|k|c)? + (w,)? : Matter-Wave Dispersion Relation
Spatial part. Relativistic AngFreq(w) vs Invariant Rest AngFreq(w.)
{3-wavevector}

SR 4-Tensor SR 4-Vector ] — WooTh =T
2,0)-Tensor T+ 1,0)-Tensor V* =V = (V°,v SR 4-Scalar Trace[T™] = nu 1= T6 =
e (10 VR (0.0)Tensor s VAV = ViV = (V) - vev] = (Vi)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
o e The Basis of Classical SR Physics
s . 4=CurrentDensity, Charge Conservation

John B. Wilson
o—o 4
4-Displacement

4-Position R=(ct, )

4-Gradient

4-Gradient 9=(7 /c, ) (Rl =(/c,-V)
4-Velocity U = y(c, ) dR Conservation of Charge =(9/c 'ta -0,-9,)
3 - ) -Position R
R=(ct

3J=0 @ =(0lcét,-0lox,-d1dy,-0l6z)

- - -
‘‘‘‘

4-CurrentDensity J = (", ) = p.U =yp.(, )=p(, )

Temporal part:

{charge-density} 4-CurrentDensity
J=(pc.j)=(pc,pu)

Spatial part:
{3-current-density} : « 5

. - - ; SRQM Diagram
Conservation of Charge 4-Velocity
oJd=(7/c,-V)(c))=@p+ V=0 "
Continuity Equation:Noether’s Theorem | 2
The temporal change in charge density is balanced by (J-J) = (g ) -(:J) = " ()
the spatial change in current density. p? = (ljl/c)? + (po)’
Charge is neither created nor destroyed Relativistic ChargeDensity(p) vs Invariant Rest ChargeDensity(p.)

It just moves around as charge currents...

SR 4-Tensor SR 4-Vector ] — WooTh =T
2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (\°,v SR 4-Scalar Trace[T™] = nu I™ =T, =
e (1.0 VR (0.0)Tensor s VAV = VY = (V) - vev] = (Ve
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



Lorentz Transforms A*, = 9, [XV] e,
(Continuous) vs (Discrete)
wess  (Proper Det=+1) vs (Improper Det=-1)  swnes

of Physical 4-Vectors John B. Wilson

The main idea that makes a generic 4-Vector into an SR 4-Vector is that it must transform correctly according to an SR Lorentz Transformation { A", = 9X"/oX" = 8,[X"]},
which is basically any linear, unitary or antiunitary, transform (Determinant[A",] = 1) which leaves the Invariant Interval unchanged. SR:Lorentz Transform
The SR continuous transforms (variable with some parameter) have {Det = +1, Proper} and include: aIR"1 = 8R"/ER" = AV
“Rotation” {a mixing of space-space coordinates} and “Boost” {a mixing of time-space coordinates}. vi 1] - A
The SR discrete transforms can be {Det = +1, Proper} or {Det = -1, Improper} and include: NS = (W) NN =ty = 8%
"Space Parity-Inversion” {reversal of the space coordinates} , “Time-Reversal’ {reversal of the temporal coordinate} ,
The “Identity” {no change}, and various single dimension Flips and their combinations.

Typical Lorentz Boost Transformation,
for a linear-velocity frame-shift (x,t)-Boost in the X-direction: t Boosted 4-Vector

A=A'=NY A —BY A'=(a” )

0 ex. for X-boost
0 0 —(ya' - yBa*, -ypa' + ya*, a’, a’)
- IJ’ =
iy Det[Byz V] 32\;1" Eroper Proper: preserves orientation of basis

A=A'=(a",a)
Discrete: ex. Parity has no variable parameters

A'=(a', a, a, a%)
A = (a, a, a, a)'
=B¥ A"

= (ya' - ypa", -ya' + ya’, @, &%)
{for x-boost Lorentz Transform}

—(a), a*, a’, a%)
Lorentz Parity-Inversion Transformation:

—

A= (a, a, &, &) ||50F_etnt2 " Parity-Inversed 4-Vector

A= (a, o, oy - BE Em A=AV AP A=(R" 2)

=¥ A" AP Y O —(a, -a*, -a’, -a’)

= (a‘,V -a*, -a’, -a’) 2l 0 :

{for Parity Inverse Lorentz Transform} D et[P”v](=1 -31_, anproper Improper: reverses orientation of basis
(zs,f?)-‘lT-eT:snosroTrw 1,0)-Tesn§o‘:-\\5uegt3r= )P SR 4-Scalar Trace[T"] =N, T" =T =T

V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar

(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T, SR 4-CoVector




SR — QM 4-Vector SRQM Interpretation

Lorentz Transforms A", = 9,[X"]
Proper Lorentz Transforms (Det=+1):
e Continuous: (Boost) vs (Rotation) s

B = v/c: dimensionless Velocity Beta Factor { =(0..1), with speed-of-light (c) at (B=1) } 4-\/ector
y = 1/\[1-B4 = 1[1-B-B]: dimensionless Lorentz Relativistic Gamma Factor { y=(1..) } A=A"=(2",a
Lorentz Transforms:
Typical Lorentz Boost Transform (symmetric): Lambda( A ) for Lorentz Lorentz Rotation
for a linear-velocity frame-shift (x,t)-Boost in the X-direction: (B ) for Boost Transform
A, = BY, [q] = er(CK) = ( R') for Rotation AP R
-8By 0 O -sinh[ C ] 0 0 (/01001 ProperTransforms —  ccccccamecam--i-----GARNRBENIEEM) - 00 o
By 0 0/7-sinh[] 0/=eM&[1 0 0 O ) Determinant=+1 = +1
0 0 0 0 0 of (100009 {cos? % SRR Rotated 4-Vector : Boosted 4-Vector
0 0 0 0 0 0 ({0000 i - . ically-
Circularly-Rotated Hyperbolically-Rotated
2 _RB%2 = +1 I_AW=—RM AV=(/0 57 I—_AW=RK AV=(10 5’
Av = (at, ax, ay, aZ) {Coyshz _gixhz - +1 % A A R VA (a ,a ) . A A B VA (a ,a )

AY = (a', a*, @, a®)' = B"\A" = (ya' - yBa*, -ypa' + ya*, a’, a*)

¢ = rapidity = hyperbolic angle
y=cosh[ ¢] = 1A[1-%]

By =sinh[ (]

Typical Lorentz Rotation Transform (non-symmetric): b=t

for an angular-displacement frame-shift (x,y)-Rotation about the z-direction:

N, — RY, [8] = e(8-J) =
1 0 0 0

) SR:Lorentz Transform
0 0 ) a,[R"] = R"/aRY = N\,

0 0 ) AR SRR
0 0 0 )

A'=(a, a¥ a’, a%)
AY = (a', a*, @, a%)' = R¥,A" = (&', cos[ B ]a* - sin[ 8 ]a’,sin[ 8 ]a* + cos[ 8 ]a’, a?)

SR 4-Tensor SR 4-Vector R
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) -Scalar
(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S V-V = Vi, VY = [(V)F - vev] = (V)2
, orentz Scala = Lorentz Scalar

Trace[T"] = nuTW =TH, =T




SR — QM 4-Vector SRQM Interpretation

Lorentz Transforms A¥, = 9,[X"]

Proper Lorentz Transforms (Det=+1):
setieo. (BOOSE) VS (Rotation) vs (Identity) s

4-\ector
A=A'=(a’a

General Lorentz Boost Transform (symmetric.continuous):
for a linear-velocity frame-shift (Boost)

in the v/c= B (B",p?,8%)-direction: Space-Space Time-Space
A, — B, = ' :
Ny Lorentz Rotation

T By [A°0/\%] Tt J=4 Transform Transform 1=00.. HB.]={4...Infinity)
1B j Detin*,J=+1 2 A¥v—n"y = 1 A¥ —RY, e Det[B"J=+1

General L orentz Rotation Transform (non-symmetric.continuous):
for an angular-displacement frame-shift (Rotation)

Lorentz Identlty

Rotated 4-Vector ; Boosted 4-Vector

angle 6 about the A=(n",n?n%)-direction: fetnilizl B e . .
A, RV, = o Un-Rotated Circularly-Rotated . Hyperbolically-Rotated
O A’=A”’=r]“’VAV=(aO’,a’)=A A,=Ap’=Rp’VAv=(a0,’a1) ; A’=Apa=BpavAv=(aO,,as)
0 j The Lorentz Identity Transform '

is the limit of both the Rotation
) ) . ) and Boost Transfoms when '
Lorentz Identity Transform (symmetric,”discrete:continuous”): :

for a non-frame-shift (Identity)
in any direction SR:Lorentz Transform

N, — ¥, = &, = Diag[1,8] = Iy = o [R“] OR"/ORY = NV,
0. AV = (N DAY =t = 8%
J

the “rotation angle” is 0

Oi

B = v/c: dimensionless Velocity Beta Factor { 3=(0..1), with speed-of-light (c) at (3=1) }
y = 1~[1-B% = 1\[1-B-B]: dimensionless Lorentz Relativistic Gamma Factor { y=(1..) }
Identity transformation for zero relative motion/rotation: B[0] = R[0] = L,
Proper Transformation = positive unit determinant: det[B] = det[R] = det[n] = +1. '
Inverses: B(v)™" = B(-v) (relative motion in the opposite direction), and R(8)™" = R(-8) (rotation in the opposite sense about the same axis)
Matrix symmetry: B is symmetric (equals transpose, B=B"), while R is nonsymmetric but orthogonal (transpose equals inverse, R" = R™")
SR 4-Tensor SR 4-Vector
K v b= 0 SR 4-Scalar Trace[T"] =n, ™ =TH, =T

(2,0) Tensor T (1 ,0) -Tensor V¥ =V = (V ,V) (0,0)-Tensor s \VAVES Vpnuvvv - [(V0)2 - V'V] = (V0°)2

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SR — QM 4-Vector SRQM Interpretation

Lorentz Transforms A, = 9,[X"]

Discrete (non-continuous)
sy (PAFILY-INVersion) vs (Time-Reversal) vs (Identity) ...

of Physical 4-Vectors John B. Wilson

4-Vector
General Lorentz Parity-Inversion Transform: A=A"=(a’a)

/_\“'v — P¥, (Improper,symmetric,discrete) No mixing Time TimeSpace
0 <> TP = 23 CTH(PT)" = 43
0 Lorentz

Identity

@ Transform
vy =
General Lorentz Time-Reversal Transform: - Nv—nfy I(4)

N, — T, (Improper,symmetric,discrete)
=10

Time-Reversed 4-Vector §Parity-Inverted 4-Vector
A=A"=T" A'=(a’,a’) A=A"=P" A'=(a’,a’)

Parity-Inversion
Transform

Combo PT’d 4-Vector

General Lorentz Identity Transform: Identical 4-Vector
A, — ¥, = §", = L4 (Proper,symmetric) A=A"=n" A'=(a’,a’)
= =(a’,a)=A

A=AY=(PT)",A'=(a’,a’)
=(-a’-a)

:(_aO,a) :(ao,-a)

SR:Lorentz Transform
a,[R"] = OR"/ARY = N\, Lo
Ny = (N2 NGNS = 0, = 8%, Identity
g Transfprm’
N* v_’r]pv=8“v

Lorentz
Parity-Inversion

Transform
/\p v_’l:,H v

Both the Parity-Inversion (P) and Time-Reversal (T) have a Determinant of -1, which is an improper transform.
However, combinations (PP), (TT), (PT) have overall Determinant of +1, which is proper.

Classical SR Time Reversal neglects spin and charge. When included, there is also a Charge-Conjugation(C) transform. R IUEIRQVEely
Then one gets (CC),(PP),(TT),(PT)(PT) & (CPT) transforms all leading back to the Identity (I). A=A"=(a°,a)

SR 4-Tensor SR 4-Vector

Note that the Trace of Discrete Lorentz Transforms Trace[T"] =n,T" =T =T
2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V%,v SR 4-Scalar : ! : : My "
(1 'I()-Tgnsor T or T, 10 SR 4-CoVector $04 (0,0)-Tensor S goes in steps from {-4,-2,2,4}. As we will see in a bit, V-V = Vi VY = [(V)7 - vev] = (Vo)
’ orentz Scala this is a major hint for SR antimatter. = Lorentz Scalar



SR - QM

Lorentz Transforms A¥, = 9,[X"]

Discrete & Fixed Rotation — Particle Exchange
Lorentz Coordinate-Flip Transforms

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

Y TrlFt!,]=2
Det[Ft\]= -1

TriFx".J= 2
Det[Fx"\]= -1

Lorentz t x y z
Flip-t t[-1 0 0 0]
Transform | x(0 1 0 0]
Nv=Ftv= y[o 0 1 0]
=T z[0 O 0 1]

TrFy"\]= 2
Det[Fy".]= -1

TriFz"J= 2
Det[Fz",]= -1

Tr[R",]=2+2cos[8]={0..4}

Det[R",]=cos[B8]2 + sin[6]2= +1

l—+

X y

0 0
cos[0] -sin[6]
sin[B] cos[0]

0 0

Tr[Fxy",]= 0
Det[Fxy"\]= +

IN < X =+
—_————
[eoNeNe]

- OO OIN
[

N,
[ A%,A%]
/\i'0 ,/\\'j

SR:Lorentz Transform
a,[R"] = R"/ARY = N\,

Ny = (NS AR = 1, = 8,

Any single Lorentz Flip Transform is Improper, with a
Determinant of -1. However, pairwise combinations a
Proper, with a Determinant of +1.

The combination of any two Spatial Flips is the equivalen
of a Spatial Rotation by (1) about the associated rotationa
axis. Since this is a Proper transform, it is also the
equivalent of a particle location exchange.

The combination of all three Spatial Flips, Flip-xyz, gives
the Lorentz Parity Transform, which is again Improper.

The Flip-t is the standard Lorentz Time-Reversal,
Improper.

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V* =V = (V°,v)
SR 4-CoVector

(1,1)-Tensor T" or T,

SR 4-Scalar
(0,0)-Tensor S

(0,2)-Tensor T,

(0,1)-Tensor V, = (Vo,-V)

| orentz Scalar,

Trace[T"] =N, T" =T, =T
V-V = Vi VY = [(V)7 - vev] = (Vo)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

of QM

Lorentz Transforms A", = 9,[X"]
-  LOrentz Transform Connection Map

SciRealm.org
of Physical 4-Vectors

John B. Wilson
Boost (any Axis) Other Axis SR:Lorentz Transform
N\ — B, REEIENS N - a[R"] = AR¥/AR" = A,
tx |ty |tz N — RY, , - - A\ p . — —
.y r[BY\]={4..Infinity} A rR"]={0..4} Rotation-z r[E“th(DTZﬂ]Q Ny = (N NG = nfy = 8%
5 Det[B",]=+1 ! V= g > N, — RY\[11/2] |
o Continuous |~ ,+* il s \%Srgstse Det[ Proper ] = +1
Continuou;\ Variogs - ',' Continuous Discrete Continuous * Flips
Various . Rotations ' Rotate-z Particle Exchange=Flip-xy Rotate-z “‘ Det[ Improper | = -1
Boosts * " : ’ ,
. 'Fllp-x ' ' Flip-xy * Rot-z[8] = Rot-z[8+TT]
Discrete N, — Fx¥, Discrete Particle Exchange
X — % 'y . " ,
R PPy Rotation-2™.  piscrete Pa;\'t,}.’ 'i"gffm” Flip-ij * Rot-k[6] = Rot-k[8+1]
Ny — RAT | Flip-z . " Particle Exchange
remee % Discrete = Flip-xy —<—p C (orthogonal ijk)
= in- = ) .
" Flip-xy '):(X;/ ¥ space parity
: Discrete : ' . r[R¥(11)]=0 unitary
Flip-t Tr[r]”.v]=4 Discrete u'FIIp-y W Di 4 i =i
Det[n*\]=+1 Flip-y A "y_’ ';y " Fllispc_:)r(ete [ Discrete
— : Flip-t
: , unitary N .
Discrete |\ ' :
Time-reversal Various | % Continuous ContinuoiE Neg Identity -1
/\”Iv — T“'v F“ps *+ Rotate-z Rotate-z 't' /\uv - 'npv= ‘Spv A
S Rotation-z N =PTcombo Flip-clizisg
t—-t* Other Axis ™. “==--.._ N\ — R\[3T2] o .= | R —-R*
time parity RILEAEY Flips ] r[R¥,(311/2)]=2 = all f|.|pped char.ge ‘1
anti-unitary \BIIEY RS N, — F* Xy Dé =+ 1 unitary anti-unit
4 4 By CPT Symmetry,Sthis should

Discrete Space-Parity=Flip-xyz be equivalSiSHES

CPT Symmetric Equivalent Feynman-Stueckelberg



SR - QM

4-Vector SRQM Interpretation

Lorentz Transforms A", = 9,[X"] wrot
Lorentz Transform Connection Map — Discrete Transforms

R CPT, Big-Bang, (Matter-AntiMatter), Arrow-of-Time S

of Physical 4-Vectors John B. Wilson

SR:Lorentz Transform

A lot of the standard SR texts only mention (P)arity-Inverse and (T)ime-Reversal. However, there are many others, inc d.[R¥] = dR"/OR" = \¥,
(F)lips and (R)otations of a fixed amount. However, the (T)imeReversal and Combo(P)arity(T)ime take one into a separz Ay = (N AAS = = 8%
of the chart. Taking into account all possible discrete Lorentz Transformations fills in the rest of the chart. The resulting A'N's = Ngs
interpretation is that there is CPT Symmetry (Charge:Parity:Time) and Dual TimeSpace (with reversed timeflow). In other v
one can go from the Identity Transform (all +1) to the Negative Identity Transform (all -1) by doing a Combo PT Lorentz Tran

or by Negating the Charge (Matter—Antimatter). The Feynman-Stueckelberg Interpretation aligns with this as the AntiMatter

This is similar to Dirac’s prediction of AntiMatter, but without the formal need of Quantum Mechanics, or Spin. In fact, it is more
general than Dirac’s work, which was about the electron. This is from general Lorentz Transforms for any kind of particle.

AM-Flip-txyz=AM-ComboPT

AM-Flip-t=AM-TimeReversal

: AM-Flip-xyz=AM-Paritylnverse
AM-Flip-xy=AM-Rotate-xy(1T)
AM-Flip-xz=AM-Rotate-xz(1)

Dual bal 'L\rllti'\llatTtelr [ AM-Flip-x
uaBir?aarSCSepztci):Igst:trgsp = AM-Flip-yz=AM-Rotate-yz(1r)
for 3 units:dimensions | AM-FIip-y
AM-Flip-z AntiMatter

AM-Minkowski-ldentity :
Discrete AntiMatter




SR —» QM LOI‘entZ TranSformS /\p’v — av [XH'] 4-Vector SRQM Interpreot?t(ilohr/}

Lorentz Transform Connection Map — Trace Identification
CPT, Big-Bang, (Matter-AntiMatter), Arrow-of-Time

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

All Lorentz Transforms have Tensor Invariants: Determinant of £1 and Inner Pro
However, one can use the Tensor Invariant Trace to Identify CPT Symmet

Tr[ AM-Rotate ] = { } Tr[AM-Identity] = Tr[AM-Boost] = {

AM-Flip-txyz=AM-ComboPT

AM-Flip-xyz=AM-Paritylnverse 1

L Yt

AM-Flip-xy=AM-Rotate-xy(11), AM-Flip-xz=AM-Rotate-xz (1), AM-Flip-yz=AM-Rotate-yz() ~"".:AntiMatte|:.u"'

Rotations
AM-Flip-t=AM-TimeReversal, AM-Flip-x, AM-Flip-y, AM-Flip-z

.
“
‘0

AM-Minkowski-ldentity :
Discrete AntiMatter (AM) Lorentz TransformType

Flips i Identity
Two interesting properties of (1,1)-Tensors, of which the Lorentz Transform is an example: :
SR:Lorentz Transform Trace = Sum (=) of EigenValues : Determinant = Product () of EigenValues AntiMatter Boosts :
3V[RH'] = dR¥/ORY = N\, VAT As Rank 4 Tensors, each Lorentz Transform has 4 EigenValues (EV’s).
AR = (A AR A = b = gt Create an Anti-Transform which has all EigenValue Tensor Invariants negated.
v~ ( )v AN AN | VN Y >[-(EV’s)] = -Z[EV’s]: The Anti-Transform has negative Trace of the Transform.

/\”G/\Vg = Ngg , YRR MN-(EV’s)] = (-1)4MN[EV’s] = M[EV’s]: The Anti-Transform has equal Determinant. v
0 b ]
m’ (m’ The Trace Invariant identifies a “Dual” Negative-Side for all Lorentz Transforms.



SR Lorentz Transforms A", = 9,[X"] e

Lorentz Transform Connection Map - Interpretations
CPT, Big-Bang, (Matter-AntiMatter), Arrow-of-Time

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
Based on the Lorentz Transform properties of the last few pages, here is interesting observation about Lorentz Transforms: . SR:Lqrentz TranSform
They all have Determinant of +1, and Inner Product of 4, but the Trace varies depending on the particular Transform. aV[RP] = JdR"/ORY = A\¥,

Ny = (N NS = 1, = 8,

The Trace of the Identity is at 4. Assume this applies to normal matter particles.

The Trace of normal matter particle Rotations varies from (0..4)

The Trace of the normal matter particle Boosts varies from (4..Infinity)

So, one can think of Trace = 4 being the connection point between normal matter Rotations and Boosts.

Now, various Flip Transforms (inc. the Time Reversal and Parity Transforms, and their combination as PT transform), NormalMatter
take the Trace in steps from (-4,-2,0,+2+4). Applying a bit of symmetry: This side of Universe
The Trace of the Negative Identity is at -4. Assume this applies to anti-matter particles. ) (+) it

The Trace of anti-matter particle Rotations varies from (0..-4) -» NM *

The Trace of the anti-matter particle Boosts varies from (-4..-Infinity)

So, one can think of Trace = -4 being the connection point between anti-matter Rotations and Boosts. Pair-Production

in This side
This observation would be in agreement with the CPT Theorem (Feynman-Stueckelberg) idea that normal matter particles moving
backward in time are CPT symmetrically equivalent to antimatter particles moving forward in time.

Now, scale this up to Universe size: The Baryon Asymmetry problem (aka. The Matter-AntiMatter Asymmetry Problem). )
If the Universe was created as a huge chunk of energy, and matter-creating energy is always transformed into matter-antimatter
mirrored pairs, then where is all the antimatter??? Turns out this is directly related to the Arrow-of-Time Problem as well.

Answer: It is temporally on the “Other/Dual side” of the Big-Bang! The antimatter created at the Big-Bang is travelling in the Pair-Production
negative time (-t) direction from the Big-Bang creation point, and the normal matter is travelling in the positive time direction (+t). in Dual side
Universal CPT Symmetry. So, what happened “before” the Big-Bang? It “is” the AntiMatter Dual to our normal matter universe! »~ +

Pair-production is creation of AM-NM mirrored pairs within SpaceTime. The Big-Bang is the creation of SpaceTime itself. F\lz\/l
This also resolves the Arrow-of-Time Problem. If all known physical microscopic processes are time-symmetric, why is the flow of
Time experienced as uni-directional??? {see Wikipedia “CPT Symmetry”,“CP Violation”,”Andrei Sakharov”}

Answer: Time flow on this side of the Universe is in the (+t) direction, while time flow on the dual side of the Universe is in the (-t)
direction. The math all works out. Time flow is bi-directional, but on opposite sides of the Big-Bang! Universal CPT Symmetry.

This gives total CPT Symmetry to all of the possible Lorentz Transforms ( , NM=Normal Matter): This solves the:
Various ( ) : Various (NM_Flips) Baryon (Matter- ) Asymmetry Problem
-Infinity...( )eue( =-4)...( )...0...(NM_Rotations)...(+4=NM_Identity)...(NM_Boosts)...+Infinity & Arrow(s)-of-Time Problem (+/ )



SR Lorentz Transforms A", = 9,[X"] e

Lorentz Transform Connection Map — Interpretations 2
CPT, Big-Bang, (Matter-AntiMatter), Arrows-of-Time

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
This idea of Universal CPT Symmetry also gives a Universal Dimensional Symmetry as well. . : SR:Lqrentz TranSform
a.[R"] = dR"/OR" = NV,
Consider the well known “balloon” analogy of the universe expansion. The “spatial” coordinates are on the surface of the balloon, H o (ATVH - AM AQ — AU — SH
/\v-(/\)v-/\c/\v_nv_sv

and the expansion is in the +t direction. There is symmetry in the +/- directions of the spatial coordinates, but the time flow is
always uni-directional, +t, as the balloon gets bigger.

By allowing a “dual side”, it provides a universal dimensional symmetry. One now has +/- symmetry for the temporal directions.

The “center” of the Universe is literally, the Big Bang Singularity. It is the “center=zero” point of both time and space directions. NormalMatter
. ) ) - ) _ This side of Universe
The expansion gives time flow away from Big Bang singularity in both the Normal Side (+) and the Dual “Side (-). +t
The spatial coordinates expand in both the (+/-) directions on both sides. (+) *
NM
-

Note that this gives an unusual interpretation of what came “before” the Big Bang.

The “past” on either side extends only to the BB singularity, not beyond. Time flow is always away from this creation singularity. Pair-Production

in This side
This is also in accord with known black hole physics, in that all matter entering a BH ends at the BH singularity.

Time and space coordinates both come to a stop at either type of singularity, from the point of view of an observer that is in the
spacetime but not at the singularity.

So, the Big Bang is a “starting” singularity, and black holes are “ending” singularities.
Also provides for idea of “white holes” actually just being black holes on the alternate side. White hole=time-reversed black hole.
This way, the mass is still attractive. Time flow is simply reversed on the alternate side so stuff still goes into the hole...
Pair-Production
So, Universal CPT Symmetry = Universal Dimensional Symmetry. in Dual side

-
And, going even further, | suspect this is the reason there is a duality in Metric conventions. () +
In other words, physicists have wondered why one can use {+,-,-,-} or {-,+,+,+}. e

| submit that one of these metrics applies to the Normal Matter side, while the other complementarily applies to the Dual side.

This would allow correct causality conditions to apply on either side.

Again, this is similar to the Dirac prediction of antimatter based on a duality of possible solutions.

This gives total CPT Symmetry to all of the possible Lorentz Transforms ( , NM=Normal Matter): This solves the:
Various ( ) : Various (NM_Flips) Baryon (Matter- ) Asymmetry Problem
-Infinity...( )eue( =-4)...( )...0...(NM_Rotations)...(+4=NM_Identity)...(NM_Boosts)...+Infinity & Arrow(s)-of-Time Problem (+/ )



4-Vector SRQM Interpretation

SRQM Transforms: Venn Diagram
Poincaré = Lorentz + Translations

A Tensor Study

SciRealm.org
of Physical 4-Vectors

John B. Wilson

Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation
The Lie group of all affine isometries of SR:Minkowski Spacetime (preserve quadratic form)

General Linear,Affine Transform with Det[ ]=#1
Lorentz Transform Translation Transform -AngularMomentum M* = X* A P¥ = X*P¥ - X'P*
4-Tensor {mixed type-(1,1)} 4-Vector enerator of Lorentz Transformations (6)
- N I-rv_’RI-llv + /\pvv_’Bp'v
Discrete Continuous Discrete Continuous
Time-reversal 4-LinearMomentum P* _ _
= Generator of Translation Transformations (4)
D SpatialFlipCombos = { AX*—(cAL,0) + AX'—(0,Ax)
_) -
time parity Det[N‘:v] = +1 for Proper Lorentz Transforms
anti-unitary {xlylz} — -{xlylz} Rotat Temporal Det[A*,] = -1 for Improper Lorentz Transforms
' ' unitary otation . _
Parity-Inversion P Lc_)rentz Matrlce§ can be generated by a matrix M
_ At with Tr[M]=0 which gives:
Identity Isy x| x:z | y:z {A=e"M=e"(+6-J-TK)}
r—-r . Spatial {(N'=(Ee*"M)'=e M}
spac:parity ) eanelon WYY SR YRY SR:Lorentz Transform
unitary no mixing e d[R"] = dR"/OR" = N\,
unitary = Ax| Ay | Az M=+ - TK A% = (NP AAS, = Y, = 8%,
B[T] = e(-TK '
harge-Conjugation R[[;Q]] = e/\((fa-,j)) No\'g = Nog
tx |ty |tz A=erM=eA (+0-J - TK 1mbm
R R* CPT Symmetry
> R,9—>-q {Charge} Rotations Ji = -em\M™/2, Boosts Ki = Mjp
charge parity {Partiy} Isotropy Homogeneity
anti-unitary {Time}  |{same all directions} {same all points} R— -R*) ] o & oly g— -q




SR — QM - 4-Vector SRQM Interpretation

Review of SR Transforms
10 Poincarée Symmetries, 10 Conservation Laws
rmeans 10 Generators : Noether’s Theorem Sesamary

o—e = Minkowski

: Lagrange “Shift Operator” version of Taylor’'s Theorem: e*@® f(x)=f(x+a)

Tava% Hv )

4-5)|(Sp(lagege)nt SpaceTlme o[X]= N?e[[);c] n Bloch Theorem:Translation Operator: e®®y(X) = w(X+R), with K as reciprocal lattice
=(cAt,Ax

ATime Transform AX¥—( ,0)
Generated by energy E = ¢cp°

Conservation of
elativistic 3-mass-moment
(temporal-spatial)

-YB;
1)B'Bi/(B-B)+3]

Conservation of scalar Energy (temporal)

.
B (v-

Translation Transform Conservation of 4-Momentum
Generated AX¥(t,x) = exp[X-P/A]Y KUSEIEIOREEIE Conservation of
4-AngularMomentum

Conservation of Linear Lorentz Transform &,[X"] = aX*/oX* = A\¥, (3 +3) =(6) Laws
S-momentum (spatial) Generated A\*(Z,8) = exp[1/2 weMPl*, = exp[-K + 8-J]V,

1 0
Generator 0" ( &'-n'n; )cos(B)-( €xn* )sin(B)+n'n;
uv
M Conservation of Angular
4—AngMomentum 3-momentum (spatial-spatial)

Tensor Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation
MW = X'PY-X'P*P=XAP The group of all isometries of SR:Minkowski Spacetime (6 + 4 = 10)

s, (preserve quadratic form)
4-Velocity [0 -cn* -cn’ -cnf] A General Linear,Affine Transform X" = A*, X" + AX" with Det[A",] = +1
- +cn* 0 +F P - v
=y(c,u) [+ v 0 +|X] WETERI | 4-AngularMomentum M™ = X A P = X*P" - X'P¥ 0 -cn
=dX/dt [+cn” - ] a=0/c-V I of Lorentz Transformations (6)
: [+cn® + 0] =(0/c-V ) |y + VB, y o | 1=x*p
Geng:ator [ O ’__an ] 4-LinearMomentum P* = P _ E/c =p°
+on gl |F = of Translation Transformations (4) :
o - [+cn', 0] = { AX"(cA1,0) + AX¥(0,/%) y (P=P
. Angular M+ LinsaiiEe Jacobi’'s Formula for Complex Square Matrix A: Det(Exp[A])=Exp(Tr{A])
“AUOMAN O Det(A)io = ((tr A - 6 tr(A2)(tr A)? + 3(tr(A%))? + 8 tr(A°) tr A - 6 tr(A%))/24

= 10 Symmetries = 10 Generators = 10 Conservation Laws: Noether’s Theorem



SR —- QM

Review of SR Transforms

Poincare Algebra & Generators

A Tensor Study
of Physical 4-Vectors

Casimir Invariants

4-Vector SRQM Interpretation

of QM

SciRealm.org

John B. Wilson

The (10) one-parameter groups can be expressed directly as exponentials of the generators: Poincaré Algebra is the Lie Algebra of the Poincaré Group.

Ul[l, (a°,0)] = eA(ia’H) = e~(ia’PP): (1) Hamiltonian = Energy = Temporal Momentum H M= -cn' | M®=-cn?2 | M%= -cn® po

U[l, (0,Ad)] = e (-iAa-p): (3) Linear Momentum p

U[A(iAG72), 0] = e\(iAG*j): (3) Angular Momentum j M= cn' M= M= -2 P!

U[A(A@T2), 0] = e’r(iA@~k): (3) Lorentz Boost k

The Poincaré Algebra is the Lie Algebra of the Poincaré Group: M®=cn® | M*'=-F M==1' P2

Total of (1+3+3+3 = 4+6 = 10) Invariances from Poincaré Symmetry M= cnd M3'= |2 M= |1 p3

Covariant form: 0 cn El o
. 7 . = c=

Thuesev e :twe commutators of the the Poincaré Algebra : M"Y = X A P = XFPY - XVP* .p

[X*, X7 =0 pPi=p cn” | I=x%p p=p

[P¥, P'] = -ihq(F") if interacting with EM field; otherwise = 0" for free particles

M = (X"P" - X'P¥) = ih(X"9" — X*0") M = Generator of Lorentz Transformations (6) = + }

[, P?] = in( n°'P* - n®*P")
M, M?°] = iR(n"°MH° + n*M* + n°M™ + M)

P = Generator of Translation Transformations (4) = {

Rotations J; = -€mnM™/2, Boosts K = My

Component form: Rotations J; = -&»,»M™/2, Boosts K; = Mio
[Jm,Pn] = igmnkPk

[Jm,Po] =0
[K;,Pi] = ir]ikPO this basis.
[K;,Po] = -iP;

[Jmydn] = i€mnid®

[Jm,Kn] = i€mnkK®

[Km, K] = -iemnd*, @ Wigner Rotation resulting from consecutive boosts
[Um + iKn,dn - iIK] =0

Poincaré Algebra has 2 Casimir Invariants = Operators that commute with all of the Poincaré Generators
These are {P? = P'P, = (m.c)?, W? = W*W, = -(m,c)3(j + 1) }, with W* = (-1/2)e"*°J,,P, as the Pauli-Lubanski Pseudovector

[P?,P°] = [P?,P] = [P?,J] = [P?K] = 0: Hence the 4-Momentum Magnitude squared commutes with all Poincaré Generators
[W2,P%] = [W2,P] = [W?,J]] = [W? K] = 0: Hence the 4-SpinMomentum Magnitude squared commutes with all Poincaré Generators

The set of all Lorentz Generators V = {¢-K + 0-J} forms a vector space over the real numbers.
The generators {Jx , J,, J., K«, K, , K} form a basis set of V. The components of the axis-angle
vector and rapidity vector {6, 6y, 6, , {, (,, (;} are the coordinates of a Lorentz generator wrt.

Very importantly, the Poincaré group has Casimir Invariant Eigenvalues ={ Mass m, Spin j },
hence Mass *and* Spin are purely SR phenomena, no QM axioms required!

This Representation of the Poincaré Group or Representation of the Lorentz Group
is known as Wigner's Classification in Representation Theory of Particle Physics



SR — QM 4-Vector SRQM Interpretation

10 Poincaré Symmetry Invariances
Noether’s Theorem: 10 SR Conservation Laws

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
d’Alembertian Invariant Wave Equation: 8-9 = (8/c)? - V-V = (d./c)? 4-Gradient Invariant
Time Translation: | e ee 8=(9/c,-V) d’Alembertian
Let Xr = (ct+cAt,x), then 3[X1] = (d/c,- V )(ct+cAt,x) = Diag[1,-1] = 9[X] = n* =(9/¢,-0,,-0,,-0)) V\ga_vg /quuavtlog
s0 9[X4] = 8[X] and J[K] = [[0]] =(8lcat,-0l0x,-01dy,-0/0z) pR:8=(8,/c)™- V -

(0-9)[K-X7] = 0-(9[K-X+]) = 9[K]-X++K-9[X1] = 0+K-9[X] = 9[K]-X+K-9[X] = 9-(9[K-X]) = (2-9)[K-X]: Time Translation Invariance (1)
Conservation of Energy = (Temporal) Momentum E

Space Translation: Temporal part of P=(E/c.p)

Let Xs = (ct,x+Ax), then 9[Xs] = (d/c,- V )(ct,x+Ax) = Diag[1,-1] = J[X] = n*

so 9[Xs] = 9[X] and 9[K] = [[0]]

(0-9)[K-Xs] = 0-(9[K-Xs]) = 9[K]-Xs+K-0[Xs] = 0+K-9[X] = [K]-X+K-9[X] = 2-(d[K-X]) = (0-9)[K-X]: Space Translation Invariances (3)
Conservation of Linear (Spatial) Momentum p

Lorentz Space-Space Rotation: Spatial part of P=(E/c.p)

Let Xr = (ct,R[x]), then 9[Xgr] = (d/c,- V)(ct,R[x]) = Diag[1,-1] = 9[X] = n*

so 9[Xg] = 9[X] and J[K] = [[0]]

(9-9)[K-Xg] = 9-(9[K-XR]) = I[K]-Xr+K-9[Xg] = 0+K-9[X] = 9[K]-X+K-J[X] = 2-(d[K-X]) = (2-9)[K-X]: Lorentz Space-Space Rotation Invariances (3)
Conservation of Angular (Spatial) Momentum |

Lorentz Time-Space Boost: Spatial-Spatial part of M** = XAP

Let Xz = y(ct-B-x,-Bct+x), then J[Xg] = (d/c,-V )y(ct-B-x,-Bct+x) = [[y,-yBL.[-YB.Y]] = A

d[K-Xzs] = 9[K]-Xs+K-d[Xs] = A"YK = K; = a Lorentz Boosted K, as expected

0-Kg = 0-AVK = A, (9-K) = AW(0) = 0 = 0-K = Divergence of K = 0, as expected

(9-0)[K-Xg] = 9-(9[K-Xg]) = 9Kz = 0-K = 9-(9[K-X]) = (2-9)[K-X]: Lorentz Time-Space Boost Invariances (3)
Conservation of Relativistic Mass-Moment n
Temporal-Spatial part of M** = XAP

SR Waves: see Wikipedia: Relativistic Angular Momentum

Let W = ae™-i(K-X), W1 = ae™-i(K-X1), Ws = ae’-i(K-Xs), Wr = ae’-i(K-Xg), Ws = ae”-i(K-Xg)

(6-9)[K-X1] = (0-9)[K-Xs] = (-9)[K-Xr] = (2-9)[K-Xzs] = (2-0)[K-X]: Wave Equation Invariant under all Poincaré transforms

Total of (1+3+3+3 = 10) Invariances from Poincaré Symmetry

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar

(0,0)-Tensor S

orentz Scala

Trace[T"] =N T" =T =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V




SR — QM 4-Vector SRQM Interpretation

SR 4-Vector Magnitudes
Dot Product, Lorentz Scalar Product
it EINSteIn Summation Convention ST

An example of the magnitude of a 3-vector is the length of a 3-displacement Ar = (r, - r ).

Examine 3-position r, — r = (x,y,z), which is a 3-displacement with the base at the origin r, — 0 = (0,0,0). Galilean Invariant

The Dot Product of r, { r-r = 8,1 = 1,/ = r. = (X*x + y*y + 2°2) = (x* + y* + 22) = I } is the Pythagorean Theorem. rr= (><)2|j'(y)2t;(2)2 =(ry’
= Dj = rqn eng r

The Kronecker Delta Sjk Diag[1,1,1] = L) 3-position

The magnitude is \[r-r] = V[r] = |r|. 3D magnitudes are always positive. r= ri_)(x,y’z)

The magnitude of a 4-Vector is very similar to the magnitude of a 3-vector, but there are some interesting differences.

One uses the Lorentz Scalar Product, a 4D Dot Product, which includes a time component, and is based on the SR:Minkowski Metric
SR:Minkowski Metric Tensor. | typically use the “Particle Physics” convention of the Minkowski Metric JR]=0"R"=n"=V"+ H" —
n, — Diag[1,-1,-1,-1] {Cartesian form}, with the other entries zero. Diag[1,-1,-1,-1] = Diag[1,-1:3] = Diag[1,-6"]
{in Cartesian form} "Particle Physics” Col i
AA'=AA= A A= AA = AA =3 [aal] = (a0’ +aa' +aa’ +aa’) =3 [a'a] {Nue} = 1AN™} i ny" =6,
= (a%a’-a'a’ - a%a’ - a’a®) = (a’a’ - a-a) SR:L
. . : : e :Lorentz Transform
using the Einstein summation convention where upper-lower paired indices are summed over. Lorentz Invariant 3V[R“'] = ORY/AR" = AV,
RR = (Ct)z -rr= (Ct)2 _ (X2 + y2 + 22) - (CA’L’)2 4_POSIt|on R-R = (Ct)z_r-r = (C’I,')2 /\uv = (/\-1 )VU c /\HGAGV = n = 8“\/
for 4-Position R = (ct,r) Interval ct A = N
4D magnitudes can be negative,zero,positive R =R*" = (ct,r
The 4-Vector version has the Pythagorean element in the spatial components, the temporal component is of opposite sign. SpiceTlum_e
This gives a “causality condition”, where SpaceTime intervals (in the [+,-,-,-] metric) can be: a'R_‘ auR_ =4
- ) Dimension
(cAr)” Time-like (+) {causal} _
AR-AR = [(cAt)? - Ar-Ar]= 0 Light-like:Null:Photonic (0) {causal, maximum signal speed} ‘T‘
-(Ar,)* Space-like (-) {non-causal} =3
SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T*  J(1,0)-Tensor V* =V = (v*,v) P SR 4-Scalar Classical (scalar A 3-vector) Trace[T*1 =Nl "= T =T "
(0,0)-Tensor S Galilean Not Lorentz V-V = Vi, Vo= [(V)7 - vev] = (V)

(1,1)-Tensor T*, or T, SR 4-CoVector

orentz Scala Invariant Invariant = Lorentz Scalar



SRQM Study:
Lorentz Scalar Product A-B = A B"
e EXtErior Product AAB = A"B'-A'B* oo

4-Vector SRQM Interpretation
of QM

4-Gradient Minkowski Lor’entz’
0=(0/c,-V) [ RI="[R=n*"} A[R']I=A", |}

Metric Transfor

There are at least three 4-Vector relations which use the Exterior Product.

oMA = 0" M A" = 0"A"-0"A" = F* . the Faraday EM 4-Tensor
RAP = R* A PY = R*P'-R'P* = M* : the 4-Angular Momentum
RAF = R A FY = R'F'-R'F* = "' : the 4-Angular Torque

This gives the components of each remarkably similar properties.
Likewise, each of these has a physical Dot Product relation as well.

d-A = 9,A" = 0 : the Lorenz Gauge, a conservation of 4-EMVectorPotential
R-P = R,P" = -S.cionfree : the Action Scalar
R-F = R,F¥ = 7?7 : probably something important

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T (1,0)-Tensor V* = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V

[ J
3 4-Position
R=(ct,r)

R-P = 'Saction,free _
Action Scalar EM Faraday

M =

RAP=R'P'-R'P"

4-Tensor

4-AngularMomentum @ 4-EMVectorPotential

4-Tensor

Energy:Mass A=(¢/c,a)

""" (9-9)A-0(0-A)=HoJ
4-Momentum Maxwell EM Wave Eqgn

P=(mc,p)=(E/c,p)

L
4-ChargeFlux @
4-CurrentDensity

J=(pc,j)=p(c,u) 'f/'acgigrll/lignetic

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SR —- QM

S RQ M Stu dy : 4-Vector SRQM Interpre;?tiQo'\;l\
4-Momentum, 4-Force
S Pmysestectrs 4-AngularMomentum, 4-Torque B

paceTime Minkowski Lorentz 4-Gradient
pR oX=0,x'=4 BROXI=IXT=n" B o=, o e A
4-Force is the Dimensio Transfor -

ProperTime Derivative of 4-Momentum.

Angular:
4-Torque is the
ProperTime Derivative of 4-AngularMomentum.

4-AngMomentum

Tensor
Tensor
I Mpv=quv_vap=XAP ruvzquv_Z(vFu=XAF
d/dt[ M¥ ] . =
= "PY - X'P* X el dM*/dt
= ?/Sfé)vx_l_PXHFVX_PUv]Pu — X'F*] 4-Velocity [[+OCI’1X -Cg ?l-rllj C_Ty]]
=[ U'moU" + X'F' — U'moU* — X'F" ] LSvicu) [+cnY - 0 +11]

= [UPmoU’ — U'moU¥ + X*FY — X ] [+cn® + ¥ 0]
= [ mo(UPUY — U'UY) + XFY — X'F¥ | =

= [ mo(0*) + X°F' = X'F¥ ] [0 ,-cn']

= [ X¥FY = XF¥ ] [+cn, €1 1]

didi[ M ] = = [ X"F' = X'F*]=XAF 4-Momentum
P* = P=(mc,p)=(E/c,p)

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar

Trace[T"] = nuTW =TH, =T

V= — VOV _ ey = (10 \2
(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S V-V = Vi VY= [(V)7 - vev] = (Vo)
0,1)-Tensor V, = (Vo,-v orentz Scala = Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SR Minkowski SpaceTime
4-\Vectors, 4-CoVectors, Scalars, Tensors
wmeeieos  INVAriant Lorentz Scalar Product S

4-Vectors are actually tensorial entities of Minkowski SpaceTime, (1,0)-Tensors, which maintain covariance for inertial observers,

meaning that they may have different components for different observers, but describe the same physical object.

(like viewing a sculpture from different angles — snapshots look different but it's actually the same object) Einstein & Lorentz “saw” the physics of SR,

There are also 4-CoVectors, or One-Forms, which are (0,1)-Tensors and dual to 4-Vectors. Minkowski & Poincaré “saw” the mathematics of SR.

We are indebted to all of them for the simplicity,

Both GR and SR use a metric tensor g" to describe measurements in SpaceTime. beauty, and power of how SR and 4-vectors work...

SR uses the “flat” Minkowski Metric g*¥ — n* = n,— Diag[1,-Is] = Diag[1,-5%] = Diag[1,-1,-1,-1] {Cartesian form},
which is the {curvature ~ 0 limit = low-mass limit} of the GR metric g"".

4-Vectors = (1,0)-Tensors - -
A=A = (@) = (@) = (@) = (2@ ) — (@'l a) e e
B = B* = (b) = (b°b') = (b°b) = (b°,b",b%,b%) — (b',b"b",b) A=A'=(aa B=B'=(b
4-CoVectors = (0,1)-Tensors .
A=(a)=(a,a)=(a,a)=(a,a,a,a) —»(a,a,a,a) whereA =n A'andA*=n"A Invariant Lorentz
b T T VAR H ! It Scalar Product
= (ao!ai) = (a ,-a) = (a ,-a ,-a,-a ) - (a ,-a v'ay1'a ) raising & |OWering - , y
B, = (b,) = (b,b) = (b,-b) = (b, b, b, b) —(b,b b b) whereB =n B'andB*=n"B, A-B=AB'=A"'B,=A’-B
= (b,,b) = (b°-b) = (b%,-b",-b% -b°) — (b',-b* -b",-b) =(a’p’ - a-b)

=(a0!b0!_ a!_b!)

A“B'=AB=An B'=AB'=AB =3  [abl=%  [a'b]= (@°v° - a-b) = (a’° - a'b" - a%b? - a°b?)

using the Einstein summation convention where upper-lower paired indices are summed over
4-Vector 4-Vector

A’:A“’:(ao’,a’) B’:sz(bo’,b’)

Proof that this is an invariant:

A"B' = A'n,B" =

(VoA N8P = (WanwV's) ATBP = (N'o\"5) ABP = (Nap/\e\'p) ABP = (168°%) ABP = () A'BP =
A*(n)B* = A‘B

Lorentz Scalar Product — Lorentz Invariant Scalar = Same value for all inertial observers

Lorentz Invariants are also tensorial entities: (0,0)-Tensors ‘m @

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (\°,v

SR 4-Scalar Trace[T"] =n, " =T =T
(0,0)-Tensor S V-V = Vi, VY = [(VO)? - vev] = (V0)?

(1,1)-Tensor T*, or T, SR 4-CoVector
= Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

of QM
SR 4-Vectors & Lorentz Scalars
(1 p b
Rest Values (“naughts”=,) are Lorentz Scalars

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

A-A = (a%a° - a-a) = (a%)?, where (a%) is the rest-value, the value of the temporal coordinate when the spatial coordinate is zero.

The “rest- values of several physical properties are all Lorentz scalars.

4-Vector

P = (mc,p) K = (w/c k) A=(a’a)=(a’a’,a’a’)

P-P= (mc)2 -Pp K-K = (w/C)Z LY _)(aoo,o) {in spatial rest frame}

(P-P) and (K-K) are Lorentz Scalars. We can choose a frame that may simplify the expressions.

Choose a frame in which the spatial component is zero. Notation:

This is known as the “rest-frame” of the 4-Vector. It is not moving spatially. 8 ::g: ’::rsr;[pV:rI:Iec?o(r:ggaztnst)s (0" index)

P-P = (mc)* - p-p = (McC)’ KK = (w/c)® - kk = (wJ/c)? P-P=(m.c)*=(E./c
The resulting simpler expressions then give the “rest values”, indicated by ( . ). ° E
RestMass (m,) and RestAngularFrequency (ws) @ 4-Momentum
They are Invariant Lorentz Scalars by construction. P=(mc,p)=(E/c,p)

2—-C Y e
-VeIOC|ty
—y(C u)
And gives nice Scalar Product relations between 4-Vectors as well.

; , A @ 4-WaveVector
P-U = (m,)U-U = (m,)c® = (E,) K-U = (wo/c?)U-U = (wo/c?)c” = (wo) K=(()J/C,k)=(UJ/C,(,Uﬁ/V ) )
phase

This property of SR equations is a very good reason to use the “naught” convention for specifying the difference between
relativistic component values which can vary, like (m), versus Rest Value Invariant Scalars, like (m,), which do not vary.
They are usually related via a Lorentz Factor: { m = ym, } and { E = yE, }, as seen in the relation of P and U.

This leads to simple relations between 4-Vectors.
P = (m,)U = (E./c?)U K = (w./c?)U

P=(mcp) =(my)U =(mo)y(cu) = (ymeC,ymou) =(mc,mu) =(mc,p)
P = (E/c,p) = (Eo/c)U = (E./c?)y(c,u) = (YEo/c,yEou/c?) = (E/c,Eu/c?) = (E/c,p)
SR 4-Tensor SR 4-Vector V] = v — —
(2.0)-Tensor T (1,0)-Tensor v* =V = (v",v) " SR 4-Scalar v_vTia\(;frETi,]v i r[](”v;r; _VT\:]“ 1 g,o 2
= % . - ViV = o

(0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR — QM 4-Vector SRQM Interpretation

SR 4-Vectors & 4-Tensors
Lorentz Scalar Product & Tensor Trace
AlensorStucy Similarities SoReamor

All {4-Vectors:4-Tensors} have an associated {Lorentz Scalar Product:Trace} Lorentz Scalar Invariant

V-V=VAV=(VVY - vev)=(V0)
Each 4-Vector has a “magnitude” given by taking the Lorentz Scalar Product of itself. IVecior
V-V = Vi VY = VRV, = VWY = (Vv + viv! + vov? + vav®) = (VOVO - vev) = (V0)?

The absolute magnitude of V is V[|V-V]]

Trace Tensor Invariant

Each 4-Tensor has a “magnitude” given by taking the Tensor Trace of itself. TrT*]=TH=(T-TH-T2-T%)=T

Trace[T"] =TrT"] =N T =T, =T = (T + T + T2+ T3) = (TP -T"-T>2-T¥) =T ~_4-Tensor
Note that the Trace runs down the diagonal of the 4-Tensor. ™= Eﬁiﬁ:ﬁﬁ%
Notice the similarities. In both cases there is a tensor contraction with [T20,72, T2 7%

[TSO T31 T32 T33

the Minkowski Metric Tensor n, — Diag[1,-1,-1,-1] {Cartesian basis}

P-P=(m,c)’=(E./c)

ex. P-P = (E/c)? - p'p = (EJ/c)? = (M,C)?
which says that the “magnitude” of the 4-Momentum is the RestEnergy/c = RestMass*c  Ls&AIE(=1A:

)Y (0]0] 11 22 33
ex. Trace[n™] =(n"-n"-n"-n")=1-(-1)-(-1) -(-1) = 1+1+1+1 =4 Minkowski Metric
which says that the “magnitude” of the Minkowski Metric = SpaceTime Dimension = 4 €]iElEamsI:Ye| i I

SR 4-Tensor SR 4-Vector V] — v — —
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Trace i r]pv;l"; = Tl To 2
(0,0)-Tensor S V-V = Vi VY= [(V)° - vev] = (Vo)

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, o 0,1)-Tensor V, = (Vo,-V




SR —- QM

4-Vector SRQM Interpretation
of QM

SRQM Study: SR 4-Tensors

- Oeneral - Symmetric & Anti-Symmetric .

of Physical 4-Vectors

Any SR Tensor T* = (S* + A*') can be decomposed into parts:
S = (TH+T™)/2

Symmetric

Anti-Symmetric AY = (T™-T™)/2

with S = +S™
with A* = -A™

SH 4+ AW = (TW+THY2+(TW-T)2 = TW/2 + TW2 + T%2 - T2 = TW + 0 = TW

Independent components: {4°=16=10+6}
Max 10 possible

Max 16 possible

General
4-Tensor
T =
[TOO’TO1 ,TOZ’TOB]
[T10,T11,T12,T13]
[TZO,T21 ,T22,T23]
[TSO,T31 ,T32,T33]

Symmetric
4-Tensor
S =
[800,801 ,802,803]
[810,811 ,812,813]
[820,821 ,822,823]
[830,831 ,832,833]

[SOO 801 _802 803]

[+SO1 S11 812 813]
[+SOZ’+S15 825 823]
+803:+S13:+82;§,S33

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

SR 4-Vector

SR 4-CoVector

(1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Max 6 possible

Anti-Symmetric
4-Tensor
A¥ =
[AOO,Am ,AOQ,AO3]
[A10,A11 ,A12,A13]
[A20 A21 A22 A23]

[A30 A31 A32 A33]

[0’ A01 ,_AOZ, AO3]
[_A01 0 A12 A13]
[_AO2:_A’12, 0,’ A23]
[-AO?’,-A13,-A23, 0]

aka
Skew-Symmetric

ciRealm.org
John B. Wilson

Importantly, the Contraction of any
Symmetric tensor with any

Anti-Symmetric tensor on the same index is
always 0.

*Note* These don’t have to be composed from a
single general tensor.

S Aw=0

Proof:

SY Aw

= 8" A,.: because we can switch dummy indices
= (+S")A,,: because of symmetry

= S"(-A.): because of anti-symmetry

=-S" A

= 0: because the only solution of {c = -c} is 0

Physically, the anti-symmetric part contains
rotational information and the symmetric part
contains information about isotropic scaling and
anisotropic shear.

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensors
e OyMmetric — Isotropic & Anisotropic ...

of Physical 4-Vectors John B. Wilson

Any Symmetric SR Tensor S¥ = (T_*""+ T

iso aniso

") can be decomposed into parts:
) P P Importantly, the Contraction of any

Isotropic T. "= (1/4)Trace[S"] n™ = (T) n** Symmetric tensor with any
; : — Anti-Symmetric tensor on the same index is
AnlStr0p|C Tanisouv = S“V - Tisouv alwang.

The Anistropic part is Traceless by construction, and the Isotropic part has the same Trace as the  *Note* These don't have to be composed from a

original Symmetric Tensor. The Minkowski Metric is a symmetric, isotropic 4-tensor with T=1. single general tensor.
Independent components: S™A,=0
Max 10 possible Max 1 possible Max 9 possible o
roof:
; : Symmetric SWA,,
Symmetric Symmet_rlc Anisotropic = SV”UAVU: because we can switch dummy indices
4-Tensor Isotropic 4-Tensor = (+S*)A,: because of symmetry
S = 4-Tensor T w= = S"(-A,): because of anti-symmetry
[S%,S°",5%,8%] T = ST 8 g g0 =-S" Aw . .
[Sm g gn2 813] [T, 0,0,0] [ I, 13] = 0: because the only solution of {c = -c} is 0
[820’821’822’823] [0 ’-T’O’O] [S™,S"+T,S'7,S™] : : .
830’831 ,832’833 R [S®,S¥,S*+T,5%] Physically, the isotropic part represents a
[S,S7,5%,5™] [0,0,-T,0] [Sso 31 g2 S33+T] direction independent transformation (e.g., a

[0,0,0,-T]

= uniform scaling or uniform pressure); the
[S®, S S% S% deviatoric part represents the distortion
[+S%, 8", S, §"] with T=
[ESErSENsENsa] (1/4)Trace[S*]

[+803,+S13,+823,833]

[SOO_T 801_ 802 803]
[+SO1, S11+T, 812, S13]
[+SOZ,+S12, 822+T, 823]

03,+S13,+823,333+T

aka

Deviatoric
MV]—
Tr[Taniso ]_O
SR 4-Tensor SR 4-Vector W — Wo— TH —
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Trace[T*] = Il

— Vv — 0\2 — 0 \2
(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S V-V = Vi VY= [(V)7 - vev] = (Vo)
, orentz Scala = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensors
SR Tensor Invariants

of Physical 4-Vectors John B. Wilson

Trace
Tensor Invariant

(0,0)-Tensor = Lorentz Scalar S: Has either (0) or (1) Tensor Invariant, depending on exact meaning
(S) itself is Invariant

Tr
. Set of 4 4-Tensor
(1,0)-Tensor = 4-Vector V*: Has (1) Tensor Invariant = The Lorentz Scalar Product igenValues[T,” T = [T T T2, 7%
V-V =Vin, VY = N VPV = TriVEPV] = VY = (VoW + vav! + vov? + vav®) = (VVO - vev) = (V)2 J 4 [T0T" 72T
Eigenvalues Tensor ot 00
V=VE=(V)=(vE, VL VA V) C VRV = (VA - vev) = (V)2 e [T, 74,7, T
® [T, T3 7% 7%
(2,0)-Tensor = 4-Tensor T*': Has (4+) Tensor Invariants (though not all independent)

a) T% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) T('a”n’;%rr'mgﬁg;t : ) Determinant
b) T%T? = Asymm Bi-Product — Inner Product Tensor Invariant

Asymm Tri-Product

c) T°uT% Ty = Asymm Tri-Product — ?Name? Tensor Invariant
d) T TP TY, T% = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors
owered 4-Tenso

eg. ToTPy = ToTP - TOTP, = (TV,)2 - To%TP{1} = (T,)2 - To%TPu{(Ya)nvan"®} The lowered-indices form of a Tuv = NueNve T°°
and, bending tensor rules slightly: = (T",)? - T%TPo{(V4)nesn™} = (T")? - T%(N*°) TPa(nea){(Y4)} = (TY)? - TToo{(V4)} tensor just negativizes the =
and, since linear combinations of invariants are invariant: (tlme.-space) and (spac_:e-tllme) [Too . Tor ,Too , Tos]
Examine just the (T®Ts,) part, which for symm|asymm is (£)(T®T.s) ie. the InnerProduct Invariant sections of the upper-indices 00,1015 1028510108

tensor [T10 ,T11 ,T12 ,T13]

a): Trace[T™] = THT™] = NuT™ = T = T = (T + To' + T2 + To¥) = (T - T" - T2- T%) = (T) [T20 ,T21 , T2z, T2s]

Invarlants sometimes seen as

for anti-symmetric: = 0 = (1)TA(T™)] [Ts0,T31,Ts2, T3]
b): InnerProduct T, T* = ToeT® + ToT + To T + TyT! = (T)? - Z[T) - L[TP + Zy[ TP 1 = (1/2)Tr[(T*)] =

for symmetric | anti-symmetric: = (T%)? - 25 [T + &[T = £, [T™]? - 25[TP + 2%5[T")? 2 = (1/3)TH(T*)] [T, -T°' -T% ,-T%
¢): Antisymmetric Triple Product T T8sTY = Tr[TJ - 3(Tr[TW])(T%TE) + ToT8, TV, + To,T8,T% £ . [T +T" +T% +TY]

for anti-symmetric: = 0 If 1 got all the math right... ! [T ,+T% +T%2 +T%]

d): Determinant Det[T"'] =?= -(1/2)€qp,5 T*T*®
for anti-symmetric: Det[T"] = Pfaffian[T*']? (The Pfaffian is a special polynomial of the matrix entries)
SR 4-Tensor SR 4-Vector
K v o 0 SR 4-Scalar Trace[T"] =N, T =T =T
(2,0)-Tensor T (1,0)-Tensor V¥ =V = (V°,v) (0.0)-Tensor S V-V = VNV = [(VO)? - vev] = (V)2
orentz Scala = Lorentz Scalar

[_TBO ,+T31 ,+T32 ,+T33]

SR 4- CoVector

(1,1)-Tensor T*, or T,
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SRQM Study: SR 4-Tensors
SR Tensor Invariants
e for Faraday EM Tensor b

Faraday EM
that contains the Electric and Magnetic Fields. 3=3”=(6t/c,- V) Tensor

The 3-electric components (e = ') are in the temporal-spatial sections. F#= AP -PA° =0~ A
The 3-magnetic components (b = b¥) are in the only-spatial section. =

[ Ftt th Fty FtZ]

[FXt FXX FXy FXZ]
Trace [Fyt B> FY F¥7]
Tensor Invariant [F* F*F? F=

The Faraday EM Tensor F* = g°Af - °A° = 8"A is an anti-symmetric tensor 4-Gradient

(2,0)-Tensor = 4-Tensor T*: Has (4+) Tensor Invariants (though not all independent
a) T% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed)

b) T TP = Asymm Bi-Product — Inner Product

c) T%T?eTY; = Asymm Tri-Product — ?Name?

d) T°uTPTY T% = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors FuF ) [ 0 a'-a'a° _aoaz_azao 3°a3—33a°]
R p2{(b"b)-(e-e/c [0'a%Pa' 0 d'atPa' d'a’-da’]

a): Faraday Trace[F"] = F," = (F®-F"-F*-F*)= (0-0 -0 -0) = 0 Inner Product 200007 Pa'-g'g? 0 PP

b): Faraday Inner Product F,,F" = o [F"]? - 25[F°F + 25[F"]* = (0) - 2(e-e/c?®)+ 2(b-b) = 2{(b-b)-(e-e/c?)} [0a’-d'a a-oa a’-0'a’]

): Faraday AsymmTr[F*] = TrF*]* - 3(THFPT)(FeF%) + FoF%FYa + Fo PR, = 0-3(0)+F P8,y (-Fi)(-FP,)(-F1) = 0 Tonsor Invariant [0°a%-d’a® d*a'-d'a’ dfa>-da® 0 ]
d): Faraday Det[anti-symmetric F*Y] = Pfaffian[F*']* = [(-e*/c)(-b*) - (-e¥/c)(bY) + (-e%/c)(-b?)]* = [(e*b*/c) + (e¥b¥/c) + (e?b/c)]? = {(e-b)/c}?

(d'a*+V*g)c (da+VYp)c (da*+Vig)lc

Importantly, the Farad:zay EM Tensor has only (2) linearly-independent invariants: (-Vx(p-a‘ax/c) 0 -Va'+VYa* -V*a*+Vza*
3; ?(ﬁb';’/)'}(ze'e/c )} (-VYe-da'lc) -V¥a+Va 0 -V'a+Va
‘e)/C -V - to2Z -Vz2a*+V*a? -VZa'+V'a?

a) & c) give 0=0, and do not provide additional constraints p-da‘/c) ! 0
The 4-Gradient and 4-EMVectorPotential have (4) independent components each, for total of (8). [0 . -e’lc -eyz/c 'ezl(;']

Subtract the (2) invariants which provide constraints to get a total of (6) independent components Asymm Tri-Product [+elc 0 -b* +b’]

= (6) independent components of a 4x4 anti-symmetric tensor Tensor Invariant [te’lc +b* O -b*]

= (3) 3-electric e + (3) 3-magnetic b = (6) independent EM field components Det[F"] [+e’lc b’  +b* 0]

—f(a. 2 =
{(eb)ic [ 0 ,-elc]

d ™ A is the exterior product of the 4-Gradient with the 4-EMVectorPotential. Determinant

. [+elc, -€¥ b“]
Tensor Invariant

4-(EM)VectorPotential | [ O ,:—e/c ]

A=A"=(¢p/c,a [+eT/c, -V A a]

gl _is the Levi-Civita symbol, the fully anti-symmetric tensor.
with Latin indices it ranges from {1..3}, with Greek indicies it ranges from {0..3}

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar Trace[T"] =n, " =T =T
(0,0)-Tensor S V-V = Vi, VY = [(VO)? - vev] = (V0)?

(1,1)-Tensor T*, or T, SR 4-CoVector
= Lorentz Scalar
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SRQM Study: SR 4-Tensors
SR Tensor Invariants
saees fOr 4=AngularMomentum Tensor S

oy 4-AngularMomentum ».
The 4-AngularMomentum Tensor M*® = X°P? - XPP* = X"P is an anti-symmetric tensor 4-Position Tensor

The 3-mass-moment components (n = n') are in the temporal-spatial sections. X=X"=(ct,x l M = X°PP - XPPe =X A P

The 3-angular-momentum components (I = I¥) are in the only-spatial section. —

[ Mtt Mtx Mty MtZ]
(2.0)-Tensor = 4-Tensor T*; Has (4+) Tensor Invariants (though not all independent [Mxt M= M M)

a) T = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) [V P Y M)
b) T%T%; = Asymm Bi-Product — Inner Product Trace M2 M M2 M2
c) T%TPTY,; = Asymm Tri-Product — ?Name? Tensor Invariant [ 0 1
d) T%T%TY, T%; = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors

[ 0 X°p'-x'p® x%p2x%p° X°pi-xp°]

a): 4-AngMom Trace[M™] = M,* = (M®-M"-M2-M*)= (0 -0 -0 -0) = 0 [X'p%-x°p’ 0 x'px*p' x'p’x’p']
b): 4-AngMom Inner Product M, M** = . [MP] - 25[M°F + 25, [M° = (0) - 2(c’n-n)+ 2(Il) = 2{(Il)-(c’n-n)} Inner Product Xp%xp? x’p'x'p? 0 x*p’-x’p?
c): 4-AngMom AsymmTri[M*] = Tr[M"* - 3(Tr[M*])(MsM®5) + MsMP®, MY, + M°,M®Mg = 0 Tensor Invariant Cp®-xp® x°p'x'p® x’p’-xp® 0

d): 4-AngMom Det[anti-symmetric M*'] = Pfaffian[M"]* = [(-cn®)(+I¥) - (-cn¥)(-IY) + (-cn?)(+I%)]? = [-(cn*I¥) - (cn¥P) - (cn??)]? = {c(n-1)}? =
[ O ctpxElc ctp’-yE/c ctp*zE/c]

Importantly, the 4-AngularMomentum Tensor has only (2) linearly-independent invariants: [XE/c-ctp” 0 Xp'-yp*  xp?-zp*]
(tj); {2(5((::2;]&02n-n)}: see Wikipedia Laplace—Runge—Lenz_vector, sec. Casimir Invariants [YE/c-ctp! yp-xp’ 0 ypi-zp']

[zE/c-ctp* zp*-xp* zp’-yp* 0 ]

a) & c¢) give 0=0, and do not provide additional constraints

Asymm Tri-Product
The 4-Position and 4-Momentum have (4) independent components each, for total of (8). Tensor Invariant [ 0 c(tp*xm) c(tp’-ym) c(tp*-zm)]
Subtract the (2) invariants which provide constraints to get a total of (6) independent components [c(xm-tp¥) 0 Xp’-yp* xp*-zp*]
= (6) independent components of a 4x4 anti-symmetric tensor [c(ym-tpY) yp*-xp’ 0 yp*-zp']
= (3) 3-mass-moment n + (3) 3-angular-momentum | = (6) independent 4-AngularMomentum components [c(zm-tp?) zp*-xp® zp’-yp* 0 ]

3-massmoment n = xm - tp = m(x - tu) = m(r - tu) = m(r - t(w x r)) : Tangential velocity ur = (w x r) Determinant

- X - y - VA
Tensor Invariant [0 cn” -cn” -cn’]

(-k/r)n = -mK(F - t(w x 7)) = mkt(w x f) - mk# = t * d/dt(p) x L - mk# : d/dt(p) x L = mk(w x F) [tcn® 0 +7  -P]
n is related to the LRL = Laplace-Runge-Lenz 3-vector: A = p x L — mkf [+cn’ -F 0 +*]
which is another classical conserved vector. The invariance is shown here to be relativistic in origin. [+cn® +P - 0]
Wikipedia article: Laplace-Runge-Lenz vector shows these as Casimir Invariants. 4-Momentum =

See Also: Relativistic Angular Momentum. [0 ,-cn']
[ +cn, € 1]
SR 4-Scalar Trace[T"] =n, " =T =T =
(0,0)-Tensor S V-V = VP, VY = [(VO)? - vev] = (V0)? [ 0 ,-cn ]
= Lorentz Scalar [+cn”, x A p]

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

(1,1)-Tensor T*, or T, SR 4-CoVector
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SRQM Study: SR 4-Tensors
SR Tensor Invariants
Ay for Minkowski Metric Tensor SResmon

Trace Tensor Invariant

The Minkowksi Metric Tensor n™ is the tensor all SR 4-Vectors are measured by. y
Tr[n"]=n"%=(1)-(-1)-(-1)-(-1) =4

(2.0)-Tensor = 4-Tensor T¥: Has (4+) Tensor Invariants (though not all independent 4-Gradient » Y
a) T% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) 0=0"=(d/c,- [R] = ¢"R"=n"
b) T%T? = Asymm Bi-Product — Inner Product t —

c) T%T%TY,; = Asymm Tri-Product — ?Name? Diag[1,-1,-1,-1]
d) T%TPeTY, % = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors Diag[1,-13)]

. . EigenValues[n"\] Diag[1,_6jk]
a): Minkowksi Trace[n™'] = 4 =Set{1,1,1,1} Lo
b): Minkowksi Inner Product n,.n"' = 4
¢): Minkowksi AsymmTri[n"'] = 24 = 41 | if | did the math right...
d): Minkowksi Det[n"'] = -1

Eigenvalues Tensor [+1000] Inner Product
Invariants [ 0-100 ] Tensor Invariant

[00-10]

[000-1]

{in Cartesian form}

Signature Tensor
i = o vV — % V] = _
K=, " [Ny = 1/ : 0y’ = 5, (‘Detin®] = -1
SR:Minkowski Metric aDetn"] =
4-Position | Particle Physics” Conventio Determinant

Signature[n™'] = (+,-,-,-
={1,3,0} = (1-3)=-2

Det(Exp[A])=Exp(Tr[A]) R=R"=(ct,r Tensor Invariant

Det(A)=((tr A)* - 6 tr(A2)(tr A)? + 3(tr(A2)) + 8 tr(A%) tr A - 6 tr(A%))/24

Asymm Tri-Product
Tensor Invariant

EigenValues not defined for the standard Minkowski Metric Tensor since it is a type (2,0)-Tensor, all upper indices. However, they are defined for the mixed form (1,1)-Tensor
EigenValues are defined for the Lorentz Transforms since they are type (1,1)-Tensors, mixed indices

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

SR 4-CoVector

(1,1)-Tensor T*, or T,
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SRQM Study: SR 4-Tensors
SR Tensor Invariants for
Continuous Lorentz Transform Tensors

A Tensor Study

SciRealm.org
of Physical 4-Vectors

John B. Wilson

Rotation(0)

Identity

Lorentz SR
Identity Lorentz SR
Tensor \*,—n", Boost
=R¥,[0] = B¥,[0] Tensor \¥,—B",

The Lorentz Transform Tensor { A¥ = dx*/ox" = 9 [X"] } is the tensor all SR 4-Vectors must transform by. Boost(0)

. ) Inner Product
(2.0)-Tensor = 4-Tensor T*: Has (4+) Tensor Invariants (though not all independent) Tensor Invariant

a) T% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) ' .
b) T T = Asymm Bi-Product — Inner Product @ Tensor A",—R¥,
c) T TP TY,; = Asymm Tri-Product — ?Name? =
d) T TP TY, T%; = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors [1 0 d 0]
[0 cos[B] -sin[6] O]
[0 sin[B] cos[O] 0]
[0 O 0 1]

Lorentz SR
Rotation

m
v

a): Lorentz Trace[A"'] = {0..4..Infinitiy} Lorentz Boost meets Rotation at Identity of 4 Asymm Tri-Product
b): Lorentz Inner Product A,AY =4 from {n,/\"a/\'s = Nee} and {n.n" = 4} Tensor Invariant

0 [
0 [-By
0 [
1 [

= Minkowski

c): Lorentz AsymmTri[A"] =

d): Lorentz Det[A"] = +1 for Proper Transforms, Continuous Transforms Proper

An even more general version would be

. .
with a & b as arbitrary complex values: SteeniElnss i)

=Set{e’,e? e e”

could be 2 boosts, 2 rotations,

or a boost:rotation combo _ Sumof
: EigenValues[AY\]
=Tr[A" =AY,
={ea+e-a+eb+e—b}
=2(cosh[a]+cosh[b])
= ={-4..Infinity
SR:Lorentz Transform
3V[R“'] = dR"/OR" = N\¥, i "
Ay = (N T AVAS, =, = 8%, Elge:n[\)/:tl[t;\?][/\ v
B ={e*e?e"e™}

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector

SR 4-Scalar

(0,0)-Tensor S
orentz Scala

AsymmTri[A"\]=7
Not yet calc...

Trace Tensor Invariant

Tr[Cont. A*\]={0..4..Infinity}

Depends on “rotation”
amount

Determinant Tensor Invariant

Det[Proper A¥,]=+1
Proper Transform

always +1

EigenValues[R"\]
=Set{1,e°,e™,1}

Sum of
EigenValues[R"]
=Tr[R",]=R¥,
=1+e%+e™+1
=2+2cos[0]
={0..4}

Product of
EigenValues[R"]
=Det[R")]
=1-¢%e%1
= +1

Proper

Delta

EigenValues[n"\]
=Set{1,1,1,1}

Sum of
EigenValues[n*.]
=Tr{n"J=n",
=1+1+1+1

Product of
EigenValues[n“\]
=Det[n"\]
=1-1-11
= +1

Proper

EigenValues[B"\]
=Set{e’e® 1,1}

Sum of
EigenValues[B"\]
=Tr[B",]=B",
=e®+e+1+1

EigenValues[B"\]
=Det[B"]
=e%e®11

= +1

Proper

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensors
SR Tensor Invariants for
rmeees . DISCrete Lorentz Transform Tensors e

SR:LSrfntzuTravifO:m Inner Product Lorentz SR Lorentz SR Lorentz SR Lorentz SR
d.[R"] = dR"/OR" = N\, Tensor Invariant TPcombo Parity-Inversion Flip-xy-Combo Time-Reversal
Ny = (N AN = by = 8 @ Tensor A¥,—TP¥, Tensor A¥,—P¥, Bl Tensor AV, —Fxy*, Tensor A¥,—T,

Asymm Tri-Product ] ]

Tensor Invariant ] ]
] ]
-11] ]

EigenValues[TP"\] EigenValues[P",] W EigenValues[Fxy"\] EigenValues[T",] EigenValues[n"\]
The Trace of =Set{-1,-1,-1,-1} =Set{1,-1,-1,-1} =Set{1,-1,-1,1} =Set{-1,1,1,1) =Set{1,1,1,1}
various discrete Trace Tensor Invariant

Lorentz transforms _ . : ' _ : »~Sum o ) _ )
varies in steps from Tr[Discrete A¥\]={-4,-2,0,2,4} " r lues|F u 1 ElgenVel\J!ueS[u,T J ElgenVe:!ueSEn v
{-4,-2,0,2,4} Depends on transform =Tr[TP*.J=TP, = =TriFxy" J=Fxy*, =Tr[T*\]=T", =Tr[n"JJ=n",

=-1+1+1+1 =1+1+1+1
=4

This includes Mirror Determinant Tensor Invariant

Flips, Time 5 , | ' : Product of
. Det[A¥,]=+1 EigenValues[TP".] EigenValues[P"\] [ u EigenValues[T"\] EigenValues[n*\]

Reversal, and Proper Transform = +1 =Det[TP",] =Det[P"\] = j =Det[T",] =Det[n"\]

Parity Inverse — Improper Transform = -1 =1-1-1--1 =1--1-1--1 q-q- =-1111 =111-1

= +1 =1 =-1 = +1

essentially taking all
combinations of £1
on the diagonal of Proper Improper Proper Improper Proper
the transform.

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SR —- QM

A Tensor Study
of Physical 4-Vectors

SR:Lorentz Transform
a,[R"] = dR"/ORY = N\¥,
A% = (AP DAY =0 =8

The Flip-xy-Combo is the
equivalent of a

| suspect that this may be
related to exchange symmetry
and the Spin-Statistics idea
that a particle-exchange

is the equivalent of

a spin-rotation.

A single Flip would not be an
exchange because it leaves a
mirror-inversion of <right-|-left>.

But the extra Flip along an
orthogonal axis corrects the
mirror-inversion, and would be
an overall exchange because
the particle is in a different
location.

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector

SRQM Study: SR 4-Tensors

4-Vector SRQM Interpretation
of QM

More SR Tensor Invariants for

Lorentz SR Lorentz SR
0-Rotation-z Identity

' u' p 0
Tensor/_\ V—R"  Tensor A0,

A%

[1 O 0 0] 0
[0 cos[0] -sin[0] O] 0
[0 sin[0] cos[0] O] 0
[0 O 0 1] 1

= Minkowski

EigenValues[n“\]
=Set{1,1,1,1)

EigenValues[R"\]
=Set{1,e",e",1}

EigenValues[R"\]
=Tr[R",]=R¥,
=1+e"’+e""+1 = 1+1+1+1
=2+2cos|0] =2+2cos|[0]
=4 =4

Product of
EigenValues[n“\]

Product of
EigenValues[R"] :
=Det[R"] =Det[n"\]
=1_ei0_e-i0_1 = 1111

= +1 =+1

Proper Proper

SR 4-Scalar

(0,0)-Tensor S
orentz Scala

Lorentz SR
Flip-x
Tensor N\¥,—Fx",

0
-1

0
0

EigenValues[Fx"\]
=Set{1,-1,1,1}

Sum o
igenValues[Fx",
=Tr[Fx"\]=Fx",

EigenValues[Fx"\]
=Det[Fx"\]
=1-111

=1

Improper

Discrete Lorentz Transform Tensors

Lorentz SR
Flip-y
Tensor A\¥,—Fy*,

Improper

SciRealm.org
John B. Wilson

Lorentz SR
11-Rotation-z
Tensor A¥,—RY,

Lorentz SR
Flip-xy-Combo

0 0]
[0 cos[tm] -sin[m] 0]
[0 sin[mr] cos[m] 0]
[0 0 1]

EigenValues[Fxy"\]
=Set{1,-1,-1,1}

EigenValues[R"\]
=Set{1,e",e" 1}

Sum of
EigenValues[R"\]
=Tr[R¥,J=R",
=1+e'"+e"+1
=2+2cos[1T]
=0

Sum of
EigenValues[Fxy*\]
=Tr[Fxy"\]=Fxy*,
=1-1-1+1
=2+2cos[1T]

Product of
EigenValues[R"\]
=Det[R"\]
=1-eme "1
= +1

Proper

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SR 4-Scalars, 4-Vectors, 4-Tensors
Elegantly join many dual physical
e properties and relations S

SR 4-Scalars, 4-Vectors, and 4-Tensors beautifully and elegantly display the relations between lots of different physical properties and relations.
4-Tensor T*

Their notation makes navigation through the physics very simple.

They also devolve very nicely into the limiting/approximate Newtonian cases of { |v| << c }
by letting{y — 1and y’ = dy/dt — 0 }.

SR tells us that several different physical properties are actually dual aspects of the same thing, @
with the only real difference being one's point of view, or reference frame.

[Ttt Ttx Tty TtZ]
[Txt Txx Txy TXZ]
['l'yt TyX Tyy TyZ]
[th sz sz TZZ]

SR 4-Vector V = V°
Examples of 4-Vectors = (1,0)-Tensors include: =(V,V)=(V}, V5, V", V)
(Time , Space), (Energy , Momentum), (Power , Force), (Frequency , WaveNumber),
(Time Differential , Spatial Gradient),
(ChargeDensity , CurrentDensity), (EM-ScalarPotential , EM-VectorPotential), etc.

[temporal,mixed]
[ mixed ,spatial]

=(temporal * ¢c*',spatial)

One can also examine 4-Tensors, which are type (2,0)-Tensors.

The Faraday EM Tensor similarly combines EM fields:

Electric { e = ' = (¢,e”,e7) } and Magnetic { b = b* = (b*,b",b?) } Faraday EM
®o----p ® ---- > Tenscsz

Fe? = i -e’/c 4-Velocity @ 4-Momentum -
+e'/c U=y(c,u) P=(mc,p)=(E/c,p)

Also, things are even more related than that. @

[0 -e*/c -e’lc -e%/c]
[+e*/c 0 -b* +b]
[+e'lc +b* 0 -b*]
[+e®lc -b¥ +b* 0]

4-WaveVector
The 4-Momentum is just a constant times 4-Velocity. ave vecto

The 4-WaveVector is just a constant times 4-Velocity.

K=(w/c,k)=(w/c,wﬁ/vph
M -- > [ 0 ,-elc]

ase

In addition, the very important conservation/continuity equations seem to just fall out of the notation.
The universe apparently has some simple laws which can be easy to write down by using a little math and a super notation.

[+e'lc, -€l b¥]

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram: SR 4-Vectors and
e LOF€Ntz Scalars | Physical Constants .....,

of Physical 4-Vectors John B. Wilson

Minkowski Lorentz Secrmeis ]
IR]="[R|=n"§ a.[R"]=A\", 74l 4-Gradient
Metric - 0=(9/c,-V)

paceTime Dim
M=4= “ pv

O—@ |Hearfof SR Spg.cRe?I"ilme 4-Acceleration

4-Displacement A=y(cy',y'u+ya) 4-Polarization
AR=(cAt,Ar)  [MESO E=(c%,¢)=(B.£)
dR=(cdt.dr

4-Position - Conservation of 4 C?/r\?plex Hamilton-
R=(ct.r\=<Event> ol.. 1. Polarization o 4-TotalWaveVector ane-viaves Jacobi
° I, ——— is Rest Spatial > Sum of Plane-Waves K, =-9[P] P, =-3[S]
nvariant Interva
R-R=(ct)r-r = (12 @ 4-WaveVector @ 4-Total\WaveVector
.. K=(w/c,k)=(w/c,wn/vphase) K,=(w./c,k,)

Wave Velocity {(),=0} < {K-U=0} < {K is null =-0[Dphase]

*,

group  phase

4-Ve|ocity Rest AngFrequency @
P T-S=0 U=y(c,u) N '
o =dR/dt @ o>y 4-TotalMomentum
@ E=mc? b

4-UnitSpatial Rest Energy:Mass A-Momentum P.=(E./c,p;)=(H/c,p,)
A NUloET Rest Charge P=(mc,p)=(E/c,p)

—Units =-9[Saui
S_’Yﬁn(n'p’n‘)J_ Density . [ actlon]
e DenSIty® » {m.=0} < {P-U=0} < {P is null} 4-TotalMomentum @
A @ Rest Scalar ||H_|_ } - Sum of Momenta
%>

Conservation of
Potential ;
Minimal 4-MomentumincField
- > ®
EM Charge

, - ' Coupli
4-ChargeFlux 4 EMXe_cto/rPotentlal EM Charge Pciuz ing
4-NumberFlux @ =(¢/c,a)
N=(nc,n)=n(c,u)

4- tDensit
Jgtjfarfzejr;:p?gi)y {9.=0} > {A-U=0} < {A is null} Q 4-EMPotentialMomentum SRSl VEsEtIE 1
. : Q=(U/c,q)=qA

SR 4-Tensor SR 4-Vector Wy — WooTh =T
2,0)-T Twv K b=y =\ SR 4-Scalar Trace[T"] = n T" =T, =
(2,0)-Tensor (1,0)-Tensor V¥ =V = (v°,v) V-V = Vi, Y = [(Vo)z e (v°o)2

(0,0)-Tensor S
orentz Scala = Lorentz Scalar

4-UnitTemporal
T=y(1,f e

) Speed
Time:Space of Light
Orthogonal

ProperTime
Derivative

P=(E/c,p,)=P+Q=P+gA

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V




SR —- QM

SRQM Diagram: SRQM 4-Vectors and

4-Vector SRQM Interpretation
of QM

-, LOr€Ntz Scalars | Physical Constants ...,

0-R=4

John B. Wilson

O—@ | Heartof SR

4-Displacement
AR=(cAt,Ar)
dR=(cdt.d

4-Acceleration

SpaceTime o
b : A=y(cy',y'u+ya)

Dimensio

Invariant Interval
R-R=(ct)?r-r = (ct)?

4-UnitTemporal
T=y(1,f

Soul of SR |

4-Gradient
A a=(8t/c,-V)

4-Polarization

Spin is
E=(e°€)=(e"B.€)

Minkowski & Lorentz
ARI=0[R1=n""} &[R'I=A",
actually Metric ansfor -
an outcome of -

paceTime Dim
Poincaré Invariance, W1 =4 = A, M
not QM )

Conservation of
4-TotalWaveVector
Sum of Plane-Waves

B D

s’ s)=(s'B,s

Polarization:Spin
is Rest Spatial

Complex
Plane-Waves
K, =-0[®],K=io

Hamilton-
Jacobi
P_=-0[S]

===
4-WaveVector

4-TotalWaveVector

K=(oo/c,k)=(ou/c,our“1/vph K,=(w,/c,k,)

Wave Velocity  {,,=0} «» {K-U=0} « {K is null} =-0[®phase] 3
Speed e group phase=C A
Time:Space B Light 4-Velocity Rest Al ‘% Einstein m
Orthogonal U= Einstein®§( h ) - 4-Force [, (@B
@ =y(c,u) de Broglie — yd/dt[..] F=y(E'/c,f) R
Rest Number =dR/dt P=K @ --- -V —dP/d I 4-TotalMomentum
. Density @ E=rmc? p - L I P.=(E./c,p.)=(H/c,p,)
4-UnitSpatial . Rest Energy:Mass ProperTime o g T 38T !
S=yn(i-B,), [N ONNREY ‘p Rest Charge P=(mc,p)=(E/c.p) IEEEIEID onsor I
Densi : onservation
| 2w Peom ty@ v (D {m.=0} < (P-U=OSHIEERER 4-TotalMomentum AD
‘ Sood Probability Ru]e Yy Rest chlar ||H_|_ } - Sum of Momenta
2-NumberFlix Rest Prob Density . ---pp  Potential S e 4-MomentumincField
- ) i Coupli = =P+Q=P+
et charge PRSI 4 EM\Aca:czto/rCPg;tentlal EM Charge  SOURIINg P=(E/c,p)=P+Q=P+gA
4-ProbCurrDensity @ 4-CurrentDensity 2.c
4-ProbabilityFlux

J=(pc,j)=p(c,u)

Jorob=( adn)

SR 4-Tensor

SR 4-Vector
(2,0)-Tensor T+

(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector
0,1)-Tensor V, = (vo,-V

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T,

{9o=0} < {A-U=0} < {A is null}

0 4-EMPotentialMomentum SESIale]YEsiErTEN
Q=(U/c,q)=qA
Existing SR Rules
Quantum Principles

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar




SR - QM 4-Vector SRQM Interpretation

SR 4-Vectors = (1,0)-Tensors
and 4-Tensors = (2,0)-Tensors

of Physical 4-Vectors John B. Wilson
4-Vector = Type (1,0)-Tensor [ Temporal_: Spatial ] components
4-Position R = R* = (ct,r) [Time (t) : Space (r)]
4-Velocity U = U" = y(c,u) [Temporal “Velocity” Factor (y) : Spatial Velocity (yu)]
4-Momentum P = P¥ = (E/c,p) [Energy (E) : Momentum (p)]
4-TotalMomentum Py = P;* = (E+/c,ps) = (H/c,p) [TotalEnergy (Er) = Hamiltonian (H) : Momentum (pr)]
4-Force F = F* = y(E/c,) [Power (yE) : Force (yf)]
4-WaveVector K = K" = (w/c,k) [AngularFrequency (w) : WaveNumber (k)]
4-CurrentDensity J = J* = (pc,)) [ChargeDensity (p) : CurrentDensity = ChargeFlux (j)]
4-VectorPotential A = A = (p/c,a) [ScalarPotential (9) : VectorPotential (a)], typically the EM versions (Qew) : (aem)
4-Gradient dr = 0 = 0" = dldR,, = (d/c,- V) [Time Differential (0;) : Spatial Gradient(V)]
4-NumberFlux N = N¥ = n(c,u) = (nc,nu) [NumberDensity (n) : NumberFlux (nu)]
4-Spin 8 = 8" = (s%5)=(s"B,3) [Temporal Spin (s°) : Spatial Spin (s)]
4-Tensor = Type (2,0)-Tensor _ [ Temporal-Temporal : Temporal-Spatial : Spatial-Spatial ] components
Faraday EM Tensor F* = [ 0 ,-el/c] [ 0 : 3-Electric-Field (e = €') : 3-Magnetic-Field (b = b*) ] F* = orA = g"A’ - 'AY
[+e'c, ]
4-Angular Momentum Tensor M"Y = [ 0 , -cn’'] [ 0 : 3-Mass-Moment (n = n') : 3-Angular-Momentum (I = [¥) ] M® = XAP = XPY - X'P*
[+cn', -1 1]
Minkowski Metric n** = Diag[1,-1:] = Diag[1,-0"] [1:0:-I3]1=[1:0:-8] n" = o"[R"]
Perfect-Fluid Stress-Energy Tensor T* — Diag[p-., ] [Pe:0:plz]=[pe:0:pd*] T = (PeotPo) TT" - (Po)@"[RY]

4-Tensors can be constructed from the Tensor Outer Product of 4-Vectors



SR —» QM 4-Vector SRQM Interpretation

SR 4-Scalars = (0,0)-Tensors
e (LOrentz Scalars = Physical Constants) .

of Physical 4-Vectors John B. Wilson

4-Scalar = Type (0,0)-Tensor

RestTime:ProperTime (1,) = (1) (1) = [R-U)J/[U-U] = [R'R}/[R-U] **Time as measured in the at-rest frame**
Speed of Light (c) (c) = Sqrt[U-U] = [T-U] with 4-UnitTemporal T = y(1,B)

RestMass (m,) (m,) = [P-U]/[U-U] (my,—me) as Electron RestMass

RestEnergy (E,) (Eo) = [P-U]

RestAngFrequency (w,) (wo) = [K-U]

RestChargeDensity (p,) (po) = [J-UY/[U-U] = (q)[N-UJ/[U-U] = (9)(n,)

RestScalarPotential (¢.) (@o) = [A-U], (@.—9g,,0) as the EM version RestScalarPotential
ProperTimeDerivative (d/dt) (d/dt) = [U-0] = y(d/dt) **Note that the 4-Gradient is to right of 4-Velocity**
RestNumberDensity (n,) (no) = [N-UJ/[U-U]

SR Phase (& ) (©) )=-[K-R] = (k'r—wt) : (® . ) =-[KyR] = (ky'r — wrt)

phase phase,free phase

SR ACtion (Saction) (Saction,free) = -[PR] = (pr B Et) : (Saction) = -[PTR] = (pT-r - ETt)

Planck Reduced Constant (h) (h) = [P-UJ/[K-U] = [P-R]/[K-R]

SpaceTime Dimension (4) (4) = [0'R] **4-Divergence of the 4-Position gives SR Dimension**

EM Charge (q) U-F® = (1/q)F Lorentz Force Eqgn. (g— -e) as Electron Charge
Electric : Magnetic Constants (g, : o)  @-F%® = (uo)d = (1/e,c%)J Maxwell EM Eqgn.

RestEnergyDensity (Peo) (Peo) = Ve T = Temporal “Vertical” Projection of Perfect Fluid Stress-Energy Tensor

RestPressure (p,) (po) = (-1/3)HqT°® = Spatial “Horizontal” Projection of Perfect Fluid Stress-Energy Tensor

Lorentz Scalars can be constructed from the Lorentz Scalar Product of 4-Vectors



SR — QM 4-Vector SRQM Interpretation

SR Gradient 4-Vectors = (1,0)-Tensors
SR Gradient One-Forms = (0,1)-Tensors

ATensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

4-Vector = Type (1,0)-Tensor [ = ] components

4-Position R = R" = (ct,r) [Time (t) : Space (r)]

4-Gradient or = d = ¢" = 9/0R, = (d/c,-V) [Time Differential (¢;) : Spatial Gradient( V)]

Standard 4-Vector Related Gradient 4-Vector (from index-raised Gradient One-Form)

4-Position R = R" = (ct,r) 4-PositionGradient dr = dr* = 9/0R, = (9.C,-V ;) = 9 = &" = 4-Gradient

4-Velocity U = U" = y(c,u) 4-VelocityGradient dy = dy* = d/dU, = (9,/c,-V )

4-Momentum P = P* = (E/c,p) 4-MomentumGradient d = dp* = 9/0P,, = (d./c,-V )

4-WaveVector K = K" = (w/c,k) 4-WaveGradient ok = d* = d/oK, = (9,/c,-V )

In each case, the (Whichever)Gradient 4-Vector is derived from an SR One-Form or 4-CoVector,
which is a type (0,1)-Tensor
ex. One-Form PositionGradient d., = 9d/dR" = (d,//c, VR)

The (Whichever)Gradient 4-Vector is the index-raised version of the SR One-Form (Whichever)Gradient
ex. 4-PositionGradient d.* = d/dR, = (9./c,-V ) = n*"'d., = N"0/dR" = n*(d./c, V . )v = N*(One-Form PositionGradient),

This is why the 4-Gradient is commonly seen with a minus sign in the spatial component,
unlike the other regular 4-Vectors, which have all positive components.

4-Tensors can be constructed from the Tensor Outer Product of 4-Vectors




4-Vector SRQM Interpretation

Some Basic 4-Vectors
Minkowski SpaceTime Diagram
Oyt ectors Events & Dimensions somg s

-~ Classical
future * Event | At time-like interval Mechanics
time displacement
s —— Ar space-like interval FRSISIEIFIENG @ ‘
/\ CM

AR, =(cAt @ Ar) 3-displacement

Ar = Ar'—(Ax,Ay,Az)

ast
b Note the separate dimensional units: (time + 3D space)
“Stack of Motion Picture Photos” Atis [time], |Ar|is [length]
Special

At time-like interval (+) 4-Displacement Relativi
VI
AR=(cAt,Ar) e ty

c light-like interval (0) = null 4-Position

R=(ct

(et (cATY Time-Like  (+)

AR-AR = [(cAt — Ar-Ar]=0  Light-like:Null (0)
-(Ar,)? Space-like ()

Ar space-like interval (-)

Note the matching dimensional units: (4D SpaceTime)

(cAt) is [length/time]*[time] = [length], |Ar]| is [length], |AR| is [length]

T is the Proper Time = “rest-time”, time as measured by something not moving spatially
The Minkowski Diagram provides a great visual representation of SpaceTime

SR 4-Tensor SR 4-Vector - W — Wo— TH —
(2,0)-Tensor T (1,0)-Tensor V* = v = (v*.v) P SR 4-Scalar Classical (scalar f 3-vector) Trace[T™] = Nw T = T il
(0,0)-Tensor S Galilean Not Lorentz V-V = Vi VY= [(V)7 - vev] = (Vo)

orentz Scala Invariant Invariant = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-v



SR — QM 4-Vector SRQM Interpretation

Some Basic 4-Vectors
Minkowski SpaceTime Diagram, WorldLIines,
e LightSpeed to the Future! S

The 4-Position is a particular

At | time-like interval 4-Displacement g
O e mterval 0)= i [ESKESI tpeof 4 Dipecenent o
at-rest inertial motion 4-Position origin (0,0,0,0) = 4-Zero.
WorldLine (u=0) WorldLine (O<u<c) R=(ct,r)=<Event>

An Event (*) is a point in SpaceTime ARr.aAR = [(CAt) - Ar-Ar] = 0 for light-like (0)

elsewhere The 4-Position points to an Event. -(Ar,)* for space-like ( )

4-Position is Lorentz Invariant,
’ c but not Poincaré Invariant.
N, A standard 4-Displacement is
* future =l space-like interval () both. .
(cAt)* for time-like (+)

4-\elocity 4-Velocity . 4-Velocity

\ A WorldLine is a series of connected U=y(c,u)=dR/d U =(c'6 Uy (
Events which trace out a path in i S o \C o L
SpaceTime, such as the track of a a=> ar> (U U=
moving particle. U-U = y(c,u)y(c,u) = y*(c*-u-u) = (c*)
y = 1N[1-(u/c)?] = 1N[1-(B)}]
past
- Massive particles move temporally into future

-C ‘/ at the speed-of-light (c) in their own rest-frame.

- Massless particles (photonic) move nully into the future
LightCone at the speed-of-light (c), and have no rest-frame.

(photonic)

SR 4-Tensor
(2,0)-Tensor T+

R 4-Vect V] = v — —
(1 ,0)-Tesnsor Vueg 3": (V°v) SR 4-Scalar Trace[T"] = nuv;rl; =N TO )
(0,0)-Tensor S V-V = Vi VY= [(V)° - vev] = (Vo)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector

0,1)-Tensor V, = (vo,-V




SR Invariant Intervals
Minkowski Diagram:Lorentz Transform

of Physical 4-Vectors

SciRealm.org

John B. Wilson
SR:Lorentz Transform SR:Minkowski Metric
8[R"] = ORVIOR" = NV, 9[R] = R" =" = VW + H" —
Since the SpaceTime magnitude of U is a constant (c), Ho= (ATVH - AH AT — H — SH ‘ =y e ik
changes in the components of U are like rotating the 4-Vector Ny = (VW NGNS =y = 8 Dlag_['lc,:-'lt,-_‘l "fﬂ N 'Elﬁ'gl[1|°’r:l(?)] _C Diag[1,-5]
without changing its length. It keeps the same magnitude. {in Cartesian form} “Particle Physics” Go
Rotations, purely spatial changes, {eg. along x,y} result in circular displacements.

{Nu} = 1"} iy’ =8,
Boosts, or temporal-spatial changes, {eg. along x,t} result in hyperbolic displacements.
The interval between the origin and a given topograph-line is a Lorentz Invariant Constant.

U-U = y(c,u)y(c,u) = y*(c*u-u) = (¢?) Rotation (x,y): Purely Spatial

Boost (x,t): Spatial-Temporal

The Minkowski Diagram provides a great visual representation of SpaceTime



SR — QM 4-Vector SRQM Interpretation

of QM

SR Invariant Intervals
Minkowski Diagram

SciRealm.org
of Physical 4-Vectors

John B. Wilson
Since the SpaceTime magnitude of U is a constant (c), changes in the components of U are S_R:N'Pfoﬁsf' Imetrlcw
like rotating the 4-Vector without changing its length. It keeps the same magnitude. , J[R] = o"R" = n = V¥ +H T ik
Rotations, purely spatial changes, {eg. along x,y} result in circular displacements. Dlag{i[n1 6;1;;33;"201:} ,B;ﬁigl£1|;r:léfg]s,,=coD'ag.1 0]
Boosts, or temporal-spatial changes, {eg. along x,t} result in hyperbolic displacements. (N} = 140" " = é v
The interval between the origin and a given topograph-line is a Lorentz Invariant Constant. = L

RIS T T N (cAt)? (+) {causal = temporally-ordered}
\ “‘==.."" AR-AR = [(cAt)’ - Ar-Ar] = (0) Light-like:Null:Photonic (0) {causal, maximum signal speed (|Ar/At|=c)}
- .."0,1'/ 4 ~(Ar,)? (-) {non-causal, spatially-extended}
--!!-gﬁﬁ”
I I S o

L0

Disconnected

‘\“. 3N SV ¥ -_" ""[‘
SNl

Future

. Past

Space-Like (-) Light-Like:Null (0)
The Minkowski Diagram provides a great visual representation of SpaceTime




SR — QM 4-Vector SRQM Interpretation

SRQM: Some Basic 4-Vectors
4-Position, 4-Velocity, 4-Acceleration
e SpaceTime Kinematics S

roperTime Derivative
U-d=y(c,u)-(9,/c,-V )=y(d,+ u-V )=yd/dt

ProperTime
R-U/U-U=(ct,r)-y(c,u)/c*=y(c?t - r-u)/c’*=(c*,)/c?
=] to =T

4-Gradient
9=(0,/c,-V )—(9, /c,-ax,-ay,-az) =d/dT

_ o ®------ >
Special - : A[.. : 4-Vectors:
Relativity 4-\elocity 4-Acceleration R =
|V| H] |u| = {O PR C} R=(Ct’r) U=Y(C’u) A=Y(CY )Y u+Ya) U = dR/dT
y = 1h[1-(v/c))] A = dU/dt

! Newtonian/CIassicaI Limit |

Classical .~ =

Mechanics 4 Position,,, @, 4- Velocnty @, 4-Acceleration_

Iv| = u| <<c =(ct u,=(c A.=0 aa)

y—1+O[(v/c)]

vy —0 Since time:space don’t mix in CM, Since temporal velocity (c) always constant in CM Since temporal acceleration (0) always constant in CM,

Typically use time t & 3-position r separately Typically use just 3-velocity u Typically use just 3-acceleration a scot
3-position 3-acceleration RS
r=ris(xy,z) CENPLPP O 3-vectors:
r=

The relativistic Gamma factor y = 1/3[1-(v/c)]] u = dr/dt
The 1* order Newtonian Limit gives y ~ 1 + O[(v/c)’] a = du/dt
The 2™ order Newtonian Limit gives y ~ 1 + (v/c)?/2 + O[(v/c)’] For historical reasons, velocity can be represented by either (v) or (u)

SR 4-Tensor SR 4-Vector

X v SR 4-Scalar i - Trace[T"] =n, " =T =T

(2,0)-Tensor T* (1,0)-Tensor V¥ = V = (v°,v) Classical (scalar j 3-vector) VAV = VY = [(VO)2 - vev] = (veo)?

(0,0)-Tensor S
orentz Scala

Galilean Not Lorentz
Invariant Invariant

(1,1)-Tensor T*, or T, SR 4-CoVector

= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM: Some Basic 4-Vectors
4-Position, 4-Velocity, 4-Acceleration, 4-Momentum, 4-Force
ATensor Study SpaCETime Dynamics SciRealm.org

of Physical 4-Vectors John B. Wilson

roperTime Derivative

ProperTime
R-U/U-U=(ct,r)-y(c,u)/c?=y(c? - r-u)/c?=(c’t,)/c? 4-Gradient U-0=y(c,u):(9,/c,-V )=y(d,+ u- V )=yd/dt
=t,=T 9=(d,/c,-V )—(9,/c,-9,,-9,,-0,) =d/dT
) () ®------ > ®: --------. >
Special 4-Vectors:
. 4-Position 4-Velocit 4-Acceleration R=
Relativit Y e
v] = Jul = {0 Z o) R=(ct,r) U=y(c,u) A=y(cy’,y'u+ya) U = dR/dt
A = dU/dt

v = 1N[1-(vic)]

This group of 4-Vectors are the main ones that are )
connected by the ProperTime Derivative. @

U-d = d/dt = yd/dt = y(cd/c+u- V) = (3 + u-V) -

.
-
.

=y(E/c.f) F = dP/dt

The classical part of it, the convective derivative, 4-Momentum
(@ + u-V), is known by many different names: P=(E/c,p)=(mc,p)

The convective derivative is a derivative taken with
respect to a moving coordinate system. It is also called
the advective derivative, derivative following the motion,
hydrodynamic derivative, Lagrangian derivative, material
derivative, particle derivative, substantial derivative,
substantive derivative, Stokes derivative, or total

derivative
SR 4-Tensor SR 4-Vector w1 — W TH —
2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V%,v SR 4-Scalar Trace [T =i T
e (10 VR (0.0)Tensor s VAV = ViV = (V) - vev] = (Vi)

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V

orentz Scala = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM: Some Basic 4-Vectors
... 4-Velocity, 4-Momentum, E=mc* ...

of Physical 4-Vectors John B. Wilson

LP-U = 1(E - pru) = E, = mecig U =y(c.u)

®o---- r —I. ------- » P =(E/c,p) =m.U =ymy(c,u) = m(c,u)

Special 4-Velocity @ 4-Momentum

Relativity U—y(C u) P=(E/c,p)=(mc,p) Temporal part: E = ym.,c®> = mc? ) 2

U ! RS P-P = (E./c) = (m.c) hld; E = moc® + (y-1)moC
RestMass = Eo + ('Y'1)Eo

(rest) + (kinetic)

Spatial part:
| Newtonian/Classical Limit | {momentum} p =ym,u =mu

Classical _Veloc|ty
|V| = |u| << C

u—(u,u,u)
4-MomentumCM Xy oz A
PCM=(E/c ey )] P = (Elc,p) ~ (1+(vic)/2)mo(c,u)

Classmal
Vo (A Temporal part: E ~ (1+(v/c)*/2)m.c* = moC? + moV?/2
\ 2-momentum R et 2
Since time:space don’t mix in CM, p—(p*,p",p?)
Typically use energy E & 3-momentum p separately
The relativistic Gamma factor y = 1/[1-(v/c)] Spatial part:
The 1* order Newtonian Limit gives y ~ 1 + O[(v/c)’] {momentum} P~ (1 )mou = MoUu — Mmu
The 2 order Newtonian Limit gives y ~ 1 + (v/c)/2 + O[(v/c)'] For historical reasons, velocity can be represented by either (v) or (u)
(fgf{gfs"oﬂv (1,0)- TeiZot-\\;“eﬂ?/r (V°,v) SR 4-Scalar Classical (scalar g 3-vector) VVT;a\(;perER/]Z?(”\I;r)ZZT\:]“ : (Tvoo)z

(0,0)-Tensor S
orentz Scala

Galilean Not Lorentz
Invariant Invariant = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector




SR —- QM

SRQM: Some Basic 4-Vectors

4-Vector SRQM Interpretation
of QM

4-Velocity, 4-Acceleration,

A Tensor Study
of Physical 4-Vectors

9-R=4 o[R]=n""—Diag[1,-1,-1,-1]

SpaceTime Orthogonality

SciRealm.org
John B. Wilson

A =U =R”is normal

Vi

SpaceTime Minkowski Metric

DImensio

ProperTime
Derivative

4-Position
R=(ct,r)

4-Velocity

U=y(c,u)

roperTime Derivative
U-d=y(c,u)-(d,/c,-V )=y(4,+ u-V )=yd/dt

= d/dT

ProperTime
Derivative

4-Gradient ‘0 WorldLi
a=(at/c,-v)H(at/c,-ax,-ay,-az) o WorldLine
— (A is Spatial)
@ - — - - . >

4-Acceleration
A=y(cy',y'u+ya)

The Lorentz Scalar Product can be used to show
SpaceTime orthogonality when the result is zero.

4-Vectors U =R’ is tangent
R = (ct,r) ¢ to WorldLine

SpaceTime Orthogonality U=dR/dt=R’ (U IS Temporal)
A=dU/dt=U’

4-Velocity U (a Temporal 4-Vector)

U-u=c¢ is orthogonal to its own PSS
d/d’C[U'U] — d/d’C[Cz] =0 4-Acceleration A = U’ (a Spatial 4-Vector)

d/dt[U-U] = d/dT[U]-U + U-d/dT[U] = A-U + U'A=2(U-A)=0 WorldLine

U-A = U-U’ = 0: The 4-Velocity is SpaceTime orthogonal to it's 4-Acceleration. Y

4-Velocity is the direction along a WorldLine.

R moves along
Worldline

4-Acceleration is the thing which causes a WorldLine to bend/curve.

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector
0,1)-Tensor V, = (vo,-V

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T,

Trace[T"] = nuT" =T =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SR —- QM

SRQM: Some Basic 4-Vectors ¢
4-Displacement, 4-Velocity,
e Relativity of Simultaneity b

0-X=4 A [X¥1=ax"1aX "=/, I 9[X]=n""—Diag[1,-1,-1,-1]

A 4-Gradient

ot . . \
ez Lorentz Transform Minkowski Me 9=(9/c,-V)
4-Displacement ol.. .

AX=(cAt,Ax)

Rest-Frame Lorentz
ProperTime Boost-Frame
il - T t C

4-Acceleration u
A=y(cy’yutya)

ProperTime

ProperTime
Derivative

Derivative

At=0
([ -AX = y(c,u)-(cAt,Ax) = y((32At - u-Ax Simultaneous in {t’,x’} ‘
= c?At, = c°At S .

Not Simultaneous in {t,x
If Lorentz Scalar (U-AX = 0 = ¢?At), then the ProperTime displacement (A1) is zero,
and the event separation (AX = X, - X,) is orthogonal to the worldline U.

X, and X, are therefore simultaneous for the observer on this worldline U.

X
Examining the equation we get y(c?At - u-Ax) = 0. The coordinate time difference between the events is (At = u-Ax/c?)
The condition for simultaneity in an alternate frame (moving at 3-velocity u wrt. the worldline U) is At = 0, which implies (u-Ax) = 0.
This can be met by:
(lu] = 0), the alternate observer is not moving wrt. the events, i.e. is on worldline U or on a worldline parallel to U.
(|Ax| = 0), the events are at the same spatial location (co-local).
(u-Ax = 0), the alternate observer's motion is perpendicular (orthogonal) to the spatial separation Ax of the events in that frame.
If none of these conditions is met, then the events will not be simultaneous in the alternate reference frame.
This is the mathematics behind the concept of Relativity of Simultaneity.
SR 4-Tensor SR 4-Vector V] — v — -
(2,0)-Tensor T+ §(1,0)-Tensor V* =V = (V°,v) SR 4-Scalar Trace[T] = M

(0,0)-Tensor S

V-V = Vi VY = [(V)7 - vev] = (Vo)
orentz Scala

= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR — QM - 4-Vector SRQM Interpretation

SR Diagram:
SR Motion * Lorentz Scalar
s = [Nteresting Physical 4-Vector b

OR=4 R |R]=n"—Diag[1,-1,-1,-1] I 4 Interesting note:
pacelime . . . — _
Dimensio Minkowski Metric 5 (a‘/C’ V) Most 4-Vectors have
4-Displacement d[.. TR __— e - .. —.._. p- 4 independent components.

AR=(cAt,Ar) (1 temporal, 3 spatial)

4-Acceleration

A=y(cy’,yutya) RIEESEIGIAEEN I\ AYCK]
ProperTime spatial however, due to its
Derivative invariant magnitude U-U=c?.

ProperTime
Derivative

o
This fact allows one to multiply

it by a Lorentz Scalar to make

Rest Charge Rest Scalar Rest Rest Angular a new 4-Vector with 4
Rest Number Density Density Potential Mass:Energy Frequency |ndeper_1dent cgmponents, as
E=mc? shown in the diagram.
@ Wave Velocny @ _

=c? Proof of non-varying (c).

group phase

AA (@ /C)z ”H | } P-P=(m.C)’=(E./c W -
4-NumberFlux 4- ChargeFIU)g 4-EMVectorPotential 4-Momentum 4-WaveVector
i = 4-CurrentDensity 2 _ @ _ ) .
N=(nc,n)=n(c,u) J=(pc.j)=p(c,u) A=(¢p/c,a) P=m(c,u)=(mc,p)=(E/c,p) K= (uu/c,k)—(uu/c,uun/vphase

{9.=0} & {A-UH0} & {Ais null}  {m,=0} « {P-U=0} < {P is null} {0,=0} & {K-U=0} < {K is null}

EIectric:Magnetict% (8-0)A-8(3-A)=poJ

/(g0 )=C? Maxwell EM Wave Eqn

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T (1,0)-Tensor V* =V = (\,v) ¢ SR 4-Scalar Trace[T"] = n, T" =T =T

(0,0)-Tensor S V-V = Vi, VY = [(VO)? - vev] = (V0)?
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
SRQM Motion * Lorentz Scalar
s = [Nteresting Physical 4-Vector b

o-R=4 d[R]=n""—Diag[1,-1,-1,-1] 4-Gradient BRAEES e Nalo1 (=R

SpaceTime — ; ; ; = -
Dimensio Minkowski Metric 5 (a‘/C’ V Most 4-Vectors have

4-Displacement d[.. TR __— e - .. —.._. p- 4 independent components.
AR=(cAt,Ar) (1 temporal, 3 spatial)

4-Acceleration

A=y(cy’,yutya) RIEESEIGIAEEN I\ AYCK]

4-Position ProperTime ProperTime spatial however, due to its

R=(ct,r) RelEHE Derivative invariant magnitude U-U=c
[ . ,
Rest Number Density Thls fact allows one to multiply
Rest Probabilty Density it by a Lorentz Scalar to make
Rest Charge Rest Scalar Rest Rest Angular anew 4-Vector with 4
—— Density Potential Mass:Energy Frequency independent components, as
Born @0, o0 = X \p E=mc? shown in the diagram.
Rule | X|‘V | @ EM @ Wave Velocity @ ,
*  =c? Proof of non-varying (c)

group  phase

. - ||H | } Einstein
..... de Brogli = o
4-NumberF|UX EM w A A= ((p /C)Z ‘ > Pe h:(og & K- K—(wo/c) W >

— — Charge
N=(nc,n) n(c,u) q %Sﬁ;?gz:]u;t 4-EMVectorPotential 4- Momentum 4-WaveVector
44—1PFr)obt()3ubr.r|Dan|S|ty I (e )= y A=(¢/c,a) P=m(c,u)=(mc,p)=(E/c,p) (h) K=(w/c,k)=(w/c,wilv_
-ProbabilityFlux {©o=0} & {A-UH0} < {Ais null}  {m,=0} < {P:U=0} < {P is null} {w,=0} « {K-U=0} < {K is null}

J prob:( ! )
Electric: Magnetlc % (0-0)A-3(8-A)=piod

/(€00 )= Maxwell EM Wave Eqn

Existing SR Rules
Quantum Principles

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)

SR 4-Tensor

(2,0)-Tensor T+ Trace[T"] =n,T" =T =T

V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar

SR 4-Scalar
(0,0)-Tensor S

SR 4- CoVector

(1,1)-Tensor T*, or T,
, orentz Scala



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
ProperTime Derivative
- Very Fundamental Results S

A 4-Gradient
0=(d/c,-V)

0-R=4

ProperTime Derivative
SpaceTime

U-a=y(c,u)(d,/c,-V }=y(3,*+ u-V)

J[R]=n""—Diag[1,-1,-1,-1]

Minkowski Metric
Dimensiop

Continuity of =yd/dt=d/dT

4-Velocity Flow: 0-U=0

i ProperTime [@%Ze /e |1 ]
4- AD:B;?X?TZ?)M Derivative i N e ProperTime
pal 4-Acceleration
Acceleration of Event A=y(cy’,y'u+ya)
is perpendicular to
R=(Ct,r) Event WorldLine
o i : ProperTime »
Derivati e
2R = 4: SpaceTime Dimension is 4 ‘ STEES :
U-U = ¢% Tensor Invariant of 4-Velocity
dd(oR) = dldeh) =0 4-Momentum
(U-3)(8-R) = (U-9)(4) = d/dt[U-U] = d/d[c?] = 0 P=(E/c,p)=(mc,p) F=y(E/c,f)
(U-9)[U-U] = (U-9)[c’] = 0

d/dz(6-R) = d/dz(d)-R + o-d/dt(R) = 0
d/dt(8-R) = d/dt[d]R + 3-U = 0 d/dt[U-U] = d/d<[U]-U + U-d/d7[U] = A-U + U-A =2(U-A) =0
d-U = -d/dt[d]'R U-A = U-U’ = 0: The 4-Velocity is SpaceTime orthogonal to it's 4-Acceleration. R "
2U = -(U-2)[2|R 4-Vectors:
a-U = -(U,8")[0,]R 4-Velocity is the direction of an Event along a WorldLine. R = <Event>
o-U =-Ud"9,R" 4-Acceleration of an Event is the thing which causes a WorldLine to bend. U = dR/dt
U =-Ud,0R" A =dU/dt
o-uU =-U,g,n"*
o-U =-U,(0") _
2-U = 0: Conservation of the 4-Velocity Flow (4-Velocity Flow-Field) P=m.U

F = dP/dt

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ =V = (\°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Local Continuity of 4-Velocity leads to
all the Conservation Laws

A Tensor Study

SciRealm.org
of Physical 4-Vectors

John B. Wilson

0-R=4
SpaceTime

A 4-Gradient
0=(d/c,-V)

J[R]=n""—Diag[1,-1,-1,-1]

Minkowski Metric

ProperTime Derivative
U-9=y(c,u):(9,/c,-V)=y(6,+ u-V)

Dimensiop

4-Displacement Derivative
AR=(cAt,Ar)

4-Position
R=(ct,r)
o

aR=4
d/de(@-R) = d/dt(4) = 0

d/de(@-R) = d/dt(d)-R + d-d/dt(R) = 0
d/dt(d-R) = d/dt[d]-R + &-U =0

a-U = -d/dt[d]'R

a-U = -(U-9)[9]-R

aU = -(U,8")[3,]R"

a-U = -U,'9,R¥

ProperTime 'Yd/dt [ ]

a-U = -U,0,0'R": | believe this is legit, partials commute

a-U = -U,g,n"
a-U = -U,(0")
aU=0

Conservation of the 4-Velocity Flow
(4-Velocity Flow-Field)

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v)
SR 4-CoVector

(1,1)-Tensor T*, or T,

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

4-Velocity

Continuity of
4-Velocity Flow: 0-U=0

U=y(c,u)

orUu=0

d-(Lorentz Scalar)U = O(Lorentz Scalar)
0+(Lorentz Scalar)U =0

J-(Interesting 4-Vector) = 0

Example:

9-(po)U =0

oJ=0

(9fcpc+ Vij)=0

(6p+ Vij)=0

= Conservation of Charge
= A Continuity Equation

=yd/dt=d/dT

4-Acceleration
A=y(cy',y'u+ya)

Conservation L aws:

All of the Physical
Conservation Laws are in the
form of a 4-Divergence, which
is a Lorentz Invariant Scalar
equation.

These are local continuity
equations which basically say
that the temporal change in a
quantity is balanced by the
flow of that quantity into or out
of a local spatial region.

Conservation of Charge:
oJd=(@p+Vij=0

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SR —- QM

SRQM Diag ram: 4-Vector SRQM Interpre;?tiQo,\;l\
SRQM Motion * Lorentz Scalar
o CONServation Laws, Continuity Eqns st

o-R=4 J[R]=n""—Diag[1,-1,-1,-1] A 4-Gradient O T RS
SpaceTime Minkowski Metric 9=(3/c,-V) _
Continuity All of the Physical _
4-Displacement . of 4-Velocity Flow: Conservation Laws are in the

N 2U=0 A P> form of a 4-Divergence, which
AR=(cAt,Ar) 4-Velocity = A-Acceleration IRLNEL-ANEIENSSEET
U=y(c,u . A=y(cy’,y’u+ya) equation.
ProperTime
Derivative

These are local continuity
equations which basically say

Rest Number Density that the temporal change in a
Rest Probabilty Density Rest Charge quantity is balanc.ed.by the
Density@ Rest Scalar Rest Rest Angular ﬂ(f)w IOf thlat qu['.a"?t'ty intolciSsy
EM Potential Mass:Energy Frequency of a local spatial region.
E=mc?
- @ @ wave VeI00|ty @ Conservation o_f Charge:
w . _CZ a.J = (atp + V-]) = 0

group phase

Charge 4-ChargeFlux

Einstein
4-CurrentDensity de Bro lie W—---
et it~ 0> TR o

4-NumberFlux

N=(nc,n)=n(c,u)

4-ProbCurrDensity, o (RS @8- - - - - 4-EMVectorPotential 4-Momentum ‘m 4-WaveVector
4-ProbabilityFlux @ . A=(¢/c,a) P=m(c,u)=(mc,p)=(E/c,p) L4 K=(wic k)=(wic,wilv )

phase

Jprob_( ) ) Rest
Mass:Energ

Conservation of Lorenz Gauge

Particle #: :-N=0 Conservation of i Conservation of

Mass: 9-G=0

{p,=0} < {A-U40} < {A is null} {m,=0} <> {P-U30} <> {P is null}

0} < {K'is null}

Conservation of
4-Momentum: 9-P=0Q

Conservation of
4-\WaveVector: 9-K=0.

These are Individual Particle/Wave/Delta-function Conservation/Continuity Laws

Existing SR Rules
Quantum Principles

SR 4-Tensor SR 4-Vector Trace[TuV] = I.]W-I-uv = Tuu =T

V-V = Vi, VY = [(VO)? - vev] = (V0)?
= Lorentz Scalar

(2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v) SR 4-Scalar
(1,1)-Tensor T", or T, SR 4- CoVector (0,0)-Tensor S
orentz Scala




4-Vector SRQM Interpretation

SRQM: Some Basic 4-Vectors
- d-Velocity, 4-Gradient, Time Dilation ...,

of Physical 4-Vectors John B. Wilson

SR —- QM

U-U = y(c,u)-v(c,u) = y*(c*-u-u) = (c?)

. P Ti .
at-rest const inertial motion g:((;ar/aflevn§ - U'3=::|)7;r’[:n; i dt4l]\_/eIOCIty
\(Nor(l)c;“ne U, \(/é()!l(ﬂln)e U ; Derivative =y(C.u) y = 1N[1-(u/c)] = 1N[1-pF
u= u<c

trades some time for space

fully temporal

The Minkowski Diagram provides
a great visual representation
of SpaceTime

roperTime

dt=(1/y

4-Velocity Everything moves into future (+t)
U.=(c 6a)"re3‘> at the speed-of-light (c)
T in its own spatial rest-frame

Since the SpaceTime magnitude of U is a constant,
changes in the components of U are like “rotating”

the 4-Vector without changing its length. However,
as U gains some spatial velocity, it loses some
“relative” temporal velocity. Objects that move in
some reference frame “age” more slowly relative to
those at rest in the same reference frame.

Time Dilation! At = yAt = yAt,
dt =vydt
d/dt = yd/dt

Each observer will see the other as aging more
slowly; similarly to two people moving oppositely
along a train track, seeing the other as appearing
smaller in the distance.

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector
0,1)-Tensor V, = (vo,-v

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar

SR 4-Scalar

(0,0)-Tensor S
orentz Scala




SR — QM 4-Vector SRQM Interpretation

of QM
. ic 4-Vect
SRQM: Some Basic 4-Vectors
SR 4-WaveVector K |

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

4-WaveVector, aka. Wave 4-Vector, solution of d’Alembertian Wave Eqn. Wn(X) = A, e-i(Kq-X): Explicit form pf an SR plane wave

K = (w/c,k) = (wic,wnlv )= (w/c,wu/c?) = (w/c?)(c,u) = (w/c)(1,B) = (1/cF,ak) =-a[d_ gJL(IXé: Esni[tiqér;l()g‘ ]r;glfc)inlue)le;[aenvéav\v/;;:sa
There are multiple ways of writing out the components of the 4-WaveVector, 9 EJ(Xp) 1=9[ AeA_i(K.;)() ]p= K AeA_i('K.X) 1=-iIK[ p(X)]

with each one giving an interesting take on what the 4-WaveVector means.

s Phess d = -iK as the condition for a complex-valued plane wave.

An SR wave Y is actually composed of two tensors: K-R
(1) 4-Vector propagation part = K% (the engine) = (w/c,k)-(ct,r)
(2) Variable amplitude part = A (the load), depends on what is waving... =(wt’ _ k-r),
4-Scalar A: W = A eM(-iK®X) =(tF - A-r/X) yi
ex. KG Quantum Wave L = -Ophase,plane 4-WaveV K :
_Positi -WaveVector : 4-Gradient
_ 4-Position el .
4-Vector A¥: W¥ = A¥ eM(-iKX,) R=(ct,r) d[.. =(w % ) 0=(d/c,-V)
ex. Maxwell Photon Wave ; =(wlc,whlv, ) W -0
' — 2 [P g .
4-Tensor A™: W = A eAKX,) n\llaa};einttlr;te-rva —_(w/c,zwu/c ) d’Alembertian
ex. Gravitational Wave Approx. =(c )2'r r =(w/c%)(c,u) 0-0=
=(cr) =(w/c)(1,B) =(8,/c)*-V-V
The W tensor-type will match the =(ct, ) =(1/cF,n/x)

=(a,/c)’
=(3/cat,)?
=(0lcor)?

A tensor-type, as the propagation
part e*(-iIK®X,) is overall dimensionless. 32 2
- 7\ w (for photon)
One comparison | find very interesting is: = )\2V2(for photon)
R-R = (ct,)* = (c1)?

KK = (1/cF,)?

90 = (dlcat,)? = (dlcar)?

| believe the last one is correct: (9-:9)[R] = 0 = (9/cat)’[R] = Ao/c® = 0: The 4-Acceleration seen in the ProperTime Frame = RestFrame = 0
Normally (d/dz)*[R] = A, which could be non-zero. But that is for the total derivative, not the partial derivative.

SR 4-Tensor SR 4-Vector Y, W TH —
2,0)-Tensor T 1,0)-Te WVW=V-= 0’ SR 4-Scalar Trace[T ] B r]uvT =h HT T
e (1.0)-Tensor vv) (0,0)-Tensor S V-V = Vi, VY = [(V)F - vev] = (V)2

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



. SRQM: Some Basic 4-Vectors  “ """
4-Velocity, 4-WaveVector
s WAVE Properties, Relativistic Doppler Effect ........

of Physical 4-Vectors John B. Wilson

Relativistic SR Doppler Effect
(i) here is the unit-directional 3-vector of the photon

o> ,—W 1 M-

4-Velocity @ 4-WaveVector Choose an observer frame for which:

U=y(c,u) LS (VIA S (VINGUANE K = (w/c k), with k,i pointing toward observer
@ RestAngularFrequency w Uobs = (C,0) K-Uqps = (w/c,k)*(c,0) = w = w_ o
Uemit = y(C,u) K-Uemit = (w/c,k)-y(c,u) = y(w - k-u) = w
K= (w/ck) = (w/c,wﬁ/vphase) = (wo/c*)U
= (wo/c?)y(c,u) = (w/c?)(c,u) = (w/c,(w/c?)u) K-Uobs /K-Uemit = W, o/W_ 0 = W/[y(w - k-u)]

R ) For photons, K is null - K-K =0 — k = (w/c)i

LG, ) S BT, W, oW, o= W/ly(w - (w/c)i-u)] = 1/[y(1 - A-B)] = 1/[y(1 - |Blcos[B,, ])]

obs®

emit®

Taking just the spatial components of the 4-WaveVector: — .
wn/\/phase = (w/cz)u wobs/wemit ywobso/(ywemito) wobso/wemito
£ = 2 ~ * * A
Witase = (U/C) Wy = W /[(1 = AeB)] = W, NIHBIN-[BII(1 - -B)
u* _ 2 with y = 1A[1-B7 = 1/(N[1+[BI1*V[1-IBI])

phase
Voo~ Vonase = € Withu=v For motion of emitter B: (in observer frame of reference)

. . Away from obs, (A-B) = -B, w . = w_ *N[1-|B]IN(1 + [B]) =

Wave Group velocity (vgroup) is mathematically the same as Particle velocity (u). Toward obs (A-B) = +B, w_._ = w__ *N[1+|B[IN(1 - |B]) =

Wave Phase velocity (vphase) is the speed of an individual plane-wave. Transverse’ (A-B) =0 ’ wObs = wemn/y = Transverse Doppler Shift
2 . obs emit

The Phase Velocity of a Photon {vphase = c} equals the Particle Velocity of a Photon {u = c}
The Phase Velocity of a Massive Particle {vphase > c} is greater than the Velocity of a Massive Particle {u < c}

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V




SR — QM 4-Vector SRQM Interpretation

SRQM: Some Basic 4-Vectors
4-Velocity, 4-WaveVector
s . Wave Properties, Relativistic Aberration s

Relativistic SR Doppler Effect
e I U = (%2~ ku) = weg M-

(i) here is the unit-directional 3-vector of the photon
4-Velocity 4-WaveVector W, = w,_/y(1-AB)=w_ /y(1-|Blcos[B,])]
U=y(c,u) @ K=(w/c,k)=(w/c,wilv ) . ‘ b

@ RestAngularFrequency w Change reference frames with {obs—emit} & B — -B }

K= (w/c,k) = (w/c,wﬁ/vphase) = (wo/c*)U W, = W, /y(1+AR) =w,, [y(1+ |B|cos[O, ])]
= (wo/c?)y(c,u) = (w/c?)(c,u) = (w/c,(w/c?)u)

i (Wpe) (Wep) =(w, i /[v(1 - |Blcos[B , D) *(w,,/[¥(1 + |Blcos[O, ])])
(wie,whlv ) = (w/c,(w/c®)u)

Tak/ing jus_t th(/e gpatial components of the 4-WaveVector: 1= (1y(1 - |Blcos[6_, DI)*(1/[y(1 + |B|cos[6, . ])])
‘j’/" VphaSE = (/‘*’ZC Ju 1= (y(1 - |Blcos[B,,]))*(v(1 + |B|cos[6,,]))
AV oo = (U/C7) =y%(1 - |Blcos[6,,.])*(1 + |Blcos[6,.])
* = A2
Vp:ase © . Solve for |B|COS[90bS] and use {(72'1) = BZ'YZ}
aroup - Vonase = C with u = V group

Relativistic SR Aberration Effect
cos[8,,] = (cos[®,, ] + BI) / (1 + [Blcos[®,,J)

Wave Group velocity (vgroup) is mathematically the same as Particle velocity (u).
Wave Phase velocity (vphase) is the speed of an individual plane-wave.

The Phase Velocity of a Photon {vphase = c} equals the Particle Velocity of a Photon {u = c}
The Phase Velocity of a Massive Particle {vphase > c} is greater than the Velocity of a Massive Particle {u < c}

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-v




o SRQM: Some Basic 4-Vectors
4-Momentum, 4-WaveVector,
s d=POsition, 4-Velocity, 4-Gradient, Wave-Particle

ciRealm.org
of Physical 4-Vectors

John B. Wilson

P-P = (m,c)*= (Eo/C

4-Momentum

| P=(mC1 p)=(E/C’p)
/ P=-a[Saction free

Treating motion like a particle @ -1 -
Moving particles have a 4-Velocity
4-Momentum is the negative 4-Gradient of the SR Action (S)

IP'dR =-S Rest Mass:Energy

action,free

_ S Ti
> T@ams Y Tam TR
° > - . action,free A l:’l Dimension
4-Position i Wo/Eo = Einstein Al o e
Relotn de Broglie B 9[R]=n*"—Diag[1,-1,-1,-1]

P =hK 0=(9/c,-V)—(9/c,-0,,-0,,-0,) M. Minkowski Metric

d’Alembertian

"ﬂ,‘ ProperTime
-9 = (9,/c)*-V-V = (d./c ¥ U-9=d/dT=yd/dt
o : Derivative

phase,plane

RestAngFrequency
Wave Velocity

¥, =c?

phase,plane

4-\WaveVector

N ey s _ ¢ " Treating motion like awave A\ >
L K=(w/c,k)=(w/ C’w“/Vphase) Moving waves have a 4-Velocity
K=-0® plane] 4-WaveVector is the negative 4-Gradient of the SR Phase (®P)
See Hamilton-Jacobi Formulation of Mechanics See SR Wave Definition
for info on the Lorentz Scalar Invariant SR Action. for info on the Lorentz Scalar Invariant SR WavePhase.
{ P = (E/c,p) = -9[S] = (-d/cat[S], V[S]) } { K= (w/c,k) = -0[®] = (-d/cat[®], V[P]) }
{temporal component} E = -9/0t[S] = -9[S] {temporal component} w = -d/at[P] = -at[CD]
{spatial component} p = V[S] {spatial component} k = V[®]
**Note** This is the Action (Sacion) for a free particle. **Note** This is the Phase (®) for a single plane-wave.
Generally Action is for the 4-TotalMomentum Py of a system. Generally WavePhase is for the 4-TotalWaveVector K of a system.
SR 4-Tensor SR 4-Vector V] — v — —
(2.0)-Tensor T  §(1,0)-Tensor V¥ = V = (v*,v) (g§)4T-3°a'afS Existin SR Rules Vv VTia\(;frETi/]v B r[](”\,oT)Z _VT\:]“ 3 g,o Y
5 1 v - ,U)-lensor : H "V = % _ -V = o
(1) ’Tensor TvorT, 0,1S_$e‘:1§)?\\l/ec=t°;0’_v orentz Scala Quantum Principles =uLorentZ Scalar




SR — QM 4-Vector SRQM Interpretation

Some Cool Minkowski Metric Tensor Tricks
4-Gradient, 4-Position, 4-Velocity
SpaceTime is 4D S

of Physical 4-Vectors

4-Gradient A
9=(d/c,-V )H(at/c,-ax,-ay,-az)

roperTime Derivative
U-9=y(c,u)(d,/c,-V)=y(6,+ u-V)
= d/dt = yd/dt

Trn"]=n,"=4

SpaceTime
dR] = n" o-R=4 oIR] = v\ Dimension
—Diag[1,-1,-1,-1] SpaceTime D'[ ]1—1r] 1
Minkowski Metric i ' —Diag[1,-1,-1,-1]
Index-Raised
Minkowski Metric
4-\elocity
=y(c,u) 5V
o----p ° —Diag[1,1,1,1] G
Index-Mixed — il 1

Nes(nN'®) = N’ = Diag[1,-1,-1,-1]*Diag[1,-1,-1,-1] = Diag[1,1,1,1] Kronecker Delta
thus

Single Index-Lowering the Minkowski Metric (n**) gives the Kronecker Delta

Minkowski Metric

Index . n”"
(O'R) = (0"R") = (¢"naR®) = Nep(9°RP) = Neg(nF) = No” = 8a” = 4 Lowes Iﬂgg[lg\j\lg :é'(;]
i i icl = ap1 = ap1 = 0=8 ¢ = =
Trace[Minkowski Metric] = Tr[n™] = Ne[n™] = N«” = 64" = 4 Minkowski Metric

thus
The Divergence of 4-Position (8-R) = “Magnitude” of the Minkowski Metric Tr[n®] = the Dimension of SpaceTime (4)

(U-9)[R] = (U*0")[R'] = (U"nepd”)[R"] = (Upd)[R'] = (Up)d"[R"] = (Up)n™ = U¥ = U = (d/d7)[R]
thus
Lorentz Scalar Product (U-9) = Derivative wrt. ProperTime (d/dt) = Relativistic Factor * Derivative wrt. CoordinateTime y(d/dt):

SR 4-Tensor SR 4-Vector Wy — WooTh =T
2.0)-T T L bV = (VO SR 4-Scalar Trace[T"] = N, T =T, =
(2,0)-Tensor (1,0)-Tensor V¥ =V = (v°,v) V-V = Vi, Y = [(Vo)z e (v°°)2

(0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V




SR — QM 4-Vector SRQM Interpretation

SRQM+EM Diagram: 4-Vectors

4-Displacement 8 A=vy(cy’,y'u+ya E=(:§':)=(:_%§) 4-Gradient
AR=(cAt Ar) a=(3/c-V)
dR=(cdt.dr)

4-Position 4-TotalWWaveVector
R=(ct,r 4-WaveVector K,=(w./c,k;)

K=(w/c,k)
4-UnitTemporal 4-Velocity
T=y(1,8) U=y(c,u)
4-TotalMomentum
4-Force
4-Momentum F=v(E'/c.f P.=(E /c,p;)=(H/c,p,)

4-UnitSpatial P=(mc,p)=(E/c,p)

S=Ypn(-B,0).

4-MassFlux
4-MomentumDensit

4-ForceDensity
Fden= (Eden’/cafden) 4-MomentumField

P=(E/c,p,)

4-NumberFlux

N=(nc,n)=n(c,u)

4-ProbCurrDensity 4-ChargeFlux
4-ProbabilityFlux

4-EMPotentialMomentum
Q=(U/c,q)=qA

SR 4-Tensor SR 4-Vector L. Y, W TH —
(2,0)-Tensor T §(1,0)-Tensor V¥ = V = (\°,v) (glé)4T-ScalarS Existing SR Rules y VTIa\(;’?rETV]V B r[‘(“\;;r)z ‘VTV]“ i X/O .
1,1)-Tensor T¥ or T, SR 4-CoVector ,U)-lensor * i = WV = 7 VEVIEA\I
(1) y ’ orentz Scala Quantum Principles = Lorentz Scalar




SR —- QM

4-Vector SRQM Interpretation
of QM

SRQM+EM Diagram: 4-Vectors, 4-Tensors

A Tensor Study
of Physical 4-Vectors

d[R]=n*""—Diag[1,-1,-1,-1]

Minkowski Metric

SR Perfect Fluid
M=((PeotPo)/c?)UMU"-(po)n*

4-Polarization:
E=(¢%¢€)=(e"B,€)
s's)=(s'B.s

4-Acceleration

4-Displacement
AR=(cAt,Ar)

TV'=(Peo)V*~(po) H*"
StressEnergy 4-Tensor,

4-Total\WaveVector
K.=(w,/c.k;)

4-Velocity i

U=y(c,u)

4-Force
F=y(E'/c f

4-MassFlux
4-MomentumDensit

A=y(cy’,y'u+ya

dR=(cdt.dr)

4-Position
R=(ct,r
4-UnitTemporal
T=y(1,8)

4-UnitSpatial
S=ypn(A-B, 1),

4-\WWaveVector

K=(w/c,k)

4-Momentum

P=(mc,p)=(E/c,p)

4-NumberFlux
N=(nc,n)=n(c,u)
4-ProbCurrDensity

4-ProbabilityFlux

4-ChargeFIlux

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Existing SR Rules
Quantum Principles

(1,1)-Tensor T*, or T,

SciRealm.org
John B. Wilson

Einstein GR

G"=R"-g""R/2
4-Tensor

4-Gradient
9=(0/c,-V)

Fof=09AP-0PA°

=[ 0 ,-€c]
[+e'lc,-€ib"]
4-Tensor

4-TotalMomentum
P.=(E /c,p;)=(H/c,p,)

4-EMPotentialMomentum
Q=(U/c,q)=qA

Trace[T"] = nuT" =T, =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM+EM Diagram: 4-Vectors, 4-Tensors
. Lorentz Scalars | Physical Constants |

a-R=4 J[R]=n""—Diag[1,-1,-1,-1]

Minkowski Metric

'a'Tpv=Fden

| GQWV=0F
Fi)r?:;er}\-girge @ SR Conservation of Ei i R SR gocr?se:vgtion
SR Perfect Fluid 8 StressEnergy if Faen=0" instein G of Einstein Tenso

4-Acceleration 4-Polarization: ”V=((peo+po)/02)U”UV-(po)r'I” G"=R"-g"'R/2
4-Displacement @ A=v(cy’,y'u+ya E=(:§’:)=(:_%§) Dot po)iC T*=(Peo)VH"-(Po)H @ el 4-Gradient
AR=(cAt,Ar) R -

StressEnergy 4-Tensor, 9=(0/c,-V)
dR=(cdt,dr T
4-Position ) 4-TotalWaveVector, "a“
R=(ct.r : R= -q> 4- WaveVector

K,=(w,/ck;)

’ d/dtl. ]—Yd/dt : @ K=(w/c k) — [Py
. = roperTime
-Lﬁlz/r%nir U-a-d/dt=yd/dt % .. o =M Faraday
. Derivative Fo=0°A -8j A
4-UnitTemporal O 4-Velocity =[[+e30,—-s? /b(;"]]
T=y(1.6) U=y(c.u) 5 - 4-Tensor
@) 4 Force 4-TotalMomentum
4-Momentum U-a[..] Elcf
d/dr[

= P.=(E /c,p;)=(H/c,p,)
4-UnitSpatial @ [ 0o/C2) P=(mc,p)=(E/c,p)
S=Ypn(A-B,A /
U 0k 42§nsenl;:mDensit U-ar..] 4-ForceDensity
_C.Q § y d/dt[.. Fden= (Eden’/cafden) 4-MomentumField
P=(E/c,p,)

4-NumberFlux

N=(nc,n)=n(c,u) 4-EMVectorPotential
4-ProbCurrDensity - A=(p/c,a o

i, ) .
4-Pr?babllltyFqu : 4-EMPotentialMomentum
S —— @ (8-0)A-0(8-A)=pcd A= Q=(U/c,q)=gA

Maxwell EM Wave Eqgn

Conservation of EM Field
= | orenz Gauge

" Conservation of
Conservation of Charge

Particle # : Probabilt;

SR 4-Tensor SR 4-Vector L. Y Wo— TH —

(2.0 Tensor T J(1,0)-Tensor v* =V = (v°) " SR d-Scatar, EX'S“” SR e VAV = VP = L0 ] = (A
1,1)-Tensor T or T," SR 4- CoVector ,0)-Tensor inci AN\ = - VVI= Vo
( ), Y | | s Quantum Principles = Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SRQM+EM Diagram: 4-Vectors, 4-Tensors
. Lorentz Scalars | Physical Constants |

>Rt = ARI=n"—Diag[1,-1,-1,-1] P =
, Minkowski Metri -0"T"'=Fgen —
?ri%?]glrge none e SR Conservation of S SR g'Gp _0:_
— D, SR Perfect Fluid W StressEnergy if Fan=0" GEJTSR’(SIH IJ(‘?II;/Q > Einzrt.‘esiiﬁgr:gg
4- Acceleratlon 4'592?{'33}'(2% il © W= ((PeotPo)/C2)UPUY-(po)® @ . Tensgor
i &)= ) UV — 0y uv - .

4- Dls_placement A= ‘u+ya $05)=(s'B.s peo+po)/C T"=(peo)V*"-(po)H Gravitaame Const - 4-Gradient
AR=(cAt,Ar) StressEnergy 4-Tensor K R Plang Waves ! ERCCRY)
dR=(cdt,dr T .

) {,=0} < {K-U=0} < {Kis null} i [T papsysprse "“e K,=-9[®].K=

4-Position
R=(ct,r
d/dt[..]=Yyd/dt[.

- 4- WaveVector AD K, (w Ick,) :
w/ k) %
. - ProperTime "
T-AR/c=At Prop_erTyme @ Wave Veloc U-o-d/dt= Yd/dt 8
ProperTime Derivative Derivative npv F“B=3°AB-aBA°
VA Lorentz EM Forcs Eqn =[ 0 ,-elc]

l Q
4-UnifTemporal O 4-Velocity Elnsteln { UFSE [+e'lc,-glb']
T:V(1 B) Speed of U=y(c,u) . 7, ) de Broglie : 4-Tensor
Light me (h) P ShK
@ - _ ‘-_ 4-TotaIMomentum

Born 4-Momentum =(E./c,p,)=(H/c,p;)
Rule @ @ P=(mc,p)=(E/c,p) @
Conservation

{mo=0} < {P-U=0} < {P is nuII}
4 ForceDensity 4-TotalMomentum
{9s=0} <> {A-U=0} < {A is null} o ca)=(o/e ¢ Fden (Eden/C. faen) f4-MomentumField

4-EMVectorPotential P=(E/c,p,)
A=(p/c,a

probo W
4-UnitSpatial | w2
S=ypn(A-B,N),

4- NumberFqu 0
N=(nc,n)=n(c,u)

4-ProbCurrDensity o 4-ChargeFlux =P+Q=P+gA
ﬁ Pro?abulutyFIw)( = 4- CurrentDenS|ty H{{- » l 4-EMPotentialMomentum Minimal Coupling
prob ’ A P+Q
r " Charge 0-0)A-0(0-A)=pJ
in/2mi (ra[wl-[w W)+ (/M)W w)A <] % (6-9)A-0(0-A)=Po i ;
Corplex Maxwell EM Wave Eqn M Conservation of EM Field

= Lorenz Gauge Maxwell EM Eqgns: Gauss-Ampére : Gauss-Faraday

{8FP =pod } : { Au(Vee™F ) = 0° }
Existing SR Rules
Quantum Principles

Conservation of
Charge

Conservation of
Particle # :

SR 4-Tensor SR 4-Vector

Trace[T"] = nuT" =T, =T
V-V = VP, VY = [(V0)? - vev] = (VO,)?
= Lorentz Scalar

(2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v) SR 4-Scalar

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S
orentz Scala




4-Vector SRQM Interpretation

SRQM+EM Diagram: 4-Vectors, 4-Tensors
Lorentz Scalars / Physical Constants
with Tensor Invariants SoReaimorg

of Physical 4-Vectors
N

aR=4 @ OIR]=n"—Diag[1,-1.-1.-1 3T"=F
RR=(ct)*rr g SpaceTime j Minkowski Metric % TwT"= Peo-3po o T hden g 0-G*'=0"
Dimensio Det[T"1= -(pec)(po) SR Conservation of Einstein GR W SR Conservation

AR-AR=(cAt-Ar- A1 . CIICh
2 W= o : =
dR-dR~(odt) dr Ph A= (o) 171 P30~ SR Perfect Fluid W StressEneray if Fo=0 G,JV_RW _g"R/2 |ofEinsteinTenso

SR —- QM

variant Interv 4- Accelera on 4-Polarization: W=((PeotPo)/C)UPU (o)
(0 £\ (g 0 eo™ Mo o .
4-Displacement A ‘u+ya E (:0':) (:_%Z) . TH=(Peo) VM- (Po)H" Gra%onst o @ 4-Gradient
AR=(cAt,Ar) ® eoFo StressEnergy 4-Tensor K R Plc;\rr?gl\(j\)l(aves 3=(9/c,-V)
dRcdt.dy {0,=0} < {K-U=0} < {Kiis null} PR TotaIWaveVector T "“e > THFY=0
r[F"

R=-0 W4 WaveVector .@ K, (w Ik ) . “P.. PP =2((bb-(e e/c?)}
t .

4-Position
R=(ct,r
d/dt[..]=yd/dt[. @ ProperTime .
-I;;AR/-CrzAT PrOperTlme Wave VelOC U-8=d/dt= 'Yd/dt = ) ' e A
roperTime Derivative Derivative npv Lorentz = Force Eqn on FP=0"A"-0"A
=[ 0

group phase ) -eJ/C]

I
4-UnitTemporal 4- VeIOC|ty Elnsteln { U-F* =(1/q)F } [+e/c. b
T= 7(1 B) Speed of @ =y(c,u) E-mc (h Pde Broghe : 4-Tensor

Light P =hK
4-TotaIMomentum

2_ @- - - ‘-_
‘ — 4(E|v/|;ment m U-ar..] 4 Force 2 P -(E /c,p.)=(H/c.p,)
Born u Elc,f T T @
Rule @ @ P= (mc p)=(E/c,p) d/dr[

w Fden Fden_Y [ Eden/C) - fden

{m,=0} < {P-U=0} < {P is nuII} fucg Conservation
U-o[..] 4-ForceDensity 4-TotalMomentum
d/d'[[ Fden (Edenlcyfden 4-MomentumField

probo W
4- UnltSpatlaI | w2
S=ypn(A-B,N),

— (9,20} > {A-U=0} > {A is nul}

4- EMVectorPotentiaI EM — P=(E/c,p,)

4- ProbCuerenS|ty 4-ChargeFlux A=(p/ Ch =P+Q=P+gA
AA=(0./C) arge

4- Prc_>bab|I|tyFqu 4- CurrentDenSIty "H-I-I o I (9/) Q -EMPotenUaIMomentum Minimal Coupling

A= P+
(0-3)A-3(9-A)=oJ oA=0_ 5
Maxwell EM Wave Eqn i Conservation of EM Field L
= Lorenz Gauge Maxwell EM Eqgns: Gauss-Ampére : Gauss-Faraday

{8FP =pod } : { Au(Vee™F ) = 0° }
Existing SR Rules
Quantum Principles

U Conservation of
Conservation of Charge
Particle # :

SR 4-Tensor SR 4-Vector

Trace[T"] = nuT" =T, =T
VV = VIV = (V)2 - vev] = (VVo)?
= Lorentz Scalar

(2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v) SR 4-Scalar

(0,0)-Tensor S

(1,1)-Tensor T*, or T, SR 4- CoVector
orentz Scala



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
. Physical Constants Emphasized ...,

of Physical 4-Vectors John B. Wilson

0-R=4 & 5[R]=n""—Diag[1,-1,-1,-1]
SpaceTime Minkowski Metric
Dimension

-0"T"'=F gen d-G"=0"
SR Conservation of SR Conservation
StressEnergy if Fgen=0" of Einstein Tensor

ProperTime

Notice that all the main “Universal” or “Fundamental” @
Physical Constants are here: G,c,h,&,[o.

Some depend on the actual particle type: q,mo,w,
Some depend on regional conditions: T, Peo,Po;Po;Po, W*W
Some depend on interaction:® S

phase’ — action
Some are mathematical: 0,4,,i,Diag[1,-1,-1,-1],d/dt
Conservation Laws are also a type of “zero” constant in

0 this regard.
The majority of the constants are Lorentz Scalars, but
0-A=0 some are 4-Vector or 4-Tensor, and all are valid for all
Conservation of EM Field inertial observers
0-J=0 = | orenz Gauge :

Conservation of Fundamental Physical Constants are SR Lorentz Scalars
SR 4-Vector The fact that these “tie together” a network of 4-Vectors is

1,0)-Tensor V* = V = (\°,v) (gl;)4T-ScalarS Existing SR Rules a?ood_ argument for wh;lldth?]ir valu;ahs areI c;_onstﬁ_nt.
SR 4-CoVector ,0)-Tensor h i anging even one would change the relationship
orentz Scala Quantum Principles properties among all of the 4-Vectors.

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,




SR —- QM

SRQM Diagram:

4-Vector SRQM Interpretation

Projection Tensors

s 1E€Mporal, Spatial, Null, SpaceTime

of Physical 4-Vectors
4-UnitTemporal
T=y(1,8) e

o-R=4
SpaceTime
Dimension

ProperTime

U-9=d/dt=yd/dt

Derivative
4—VeI00|ty
U=y(c,u)

J[R]=n*"
—Diag[1,-1,-1,-1]
Minkowski Metric
SpaceTime Tensor

4-Position 4-Gradient

R=(ct,r) 9=(0/c,-V)

TP T=V
—Diag[1,0,0,0]

Temporal “Vertical”

nH-V*'=H"

—Diag[0,-1,-1,-1]
Spatial “Horizontal”
Projection Tensor

VP-(1/3)H"=N"
—Diag[1,1/3,1/3,1/3]
Null “Light-Like”
Projection Tensor

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector

SR 4-Scalar

(0,0)-Tensor S
orentz Scala

Projection Tensors act as follows: Time-like
Generic 4-Vector: Interval (+)
A’ = (a%a) = (a°a',a%,a’) At | (V)
"Vertical”
Temporal
Projection /

Temporal Projection:
VH = nuwV** — Diagl[1,0,0,0]
VLA = (20,00) = (00) <

future

Spatial Projection:

H", = nwH" — Diag[0,1,1,1] Ar
H", A' = (0,a',a%a®) = (0,a) e
(n™)
"SpaceTime”
Projection

SpaceTime Projection:
VHAY + HY AY = nf AY
=" A’ = A¥ = (a°%a)

now)Xhere

Vuv + Huv = npv = Suv
VY + HW = nuv

The Minkowski Metric Tensor is
the Sum of Temporal & Spatial

Projection Tensors, all of which
are dimensionless.

LightCone

of QM

SciRealm.org

John B. Wilson

Light-like
Interval (0)
(N™)

"Null”
Projection

Space-like
Interval ()
(H)
"Horizontal”
Spatial
Projection

P a~L

Trace[T"] =N, T" =T =T

(VAVERVVY

= [(v°) - vev] = (Vo)?

= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram: Projection Tensors & |
s Perfect-Fluid Stress-Energy Tensor ... ..

of Physical 4-Vectors John B. Wilson

4-UnitTemporal ProperTime Projection Tensors act as follows: Tmeake
T=y(1,B) e U-0=d/dt=yd/dt A’ = (a%a) = (a%a’,a%a’) Interval (+)

Derivative
B R At| (VpV)
T V2, = 0\ — Diag[1,0,0,0] Nertical w
@ M3 PRI\, A" = (a°,0,0,0) = (a°,0) Teriea Light-like
0

Projection / Interval (0)

4-Position

- 0=(d/c,-V u
R=(ct,r) (Tr[n*]=4] A . ., - Diagl0,1,1,1] Nl
9-R=4 d[R]=n"" HA = 08" d ) = (00) < ¢ pojcion
"R= Diag[1,-1,-1,-1
SpaceTime _)Mink?)\[/vski Metric] VA A"+ HYVAT= 0t AT it Space-like
s SpaceTime Tensor = A" = A = (a’a) Ar InF’:ervaI ()
riH"1=3 i} (H)
T =™ N-V*=H x:x I ::z ; p]:z . "SHorti;?ntal”
(®) —Diag[1,0,0,0]rest Diag[0,-1,-1,-1]res The Minkowski Metric Tensor is nowXpere ”gpaceTime" Prp(;c}elzition
Temporal “Vertical” Spatial “Horizontal” the Sum of Temporal & Spatial Projection
rojection Tenso Projection Tensor N ;
_ Projection Tensors, all of which
Perfect-Fluid rest-energy-density  rest-pressure are dimensionless.
StressEnergy 4-Tensor: o
T = ((PeotPo)/c?)UPUY - (po)™ ol 1he rest-energy-density (Peo)
Tr[T“] Peo-3Dc Coans-le-rvatig)n B is the Temporal Projection. -C
can be written in much Perfect-Fluid StressEnergy
simpler form using StressEnergy 4-Tensor The neg rest-pressure -(p.)
P a~L

Projection Tensors: T est—Diag[PeosPo,Po;Po is the Spatial Projection.
DR <\ LightCon
1= (peo) WA (po) H™ (p ) ( p ) X Tuvrest_> Diag[peo,po,po,po] g CO ©

SR 4-Tensor

SR 4-Vector wafl o) S
(2,0)-Tensor T Trace[T"] =n,T" =T =T

. =V =(° SR 4-Scalar
(1,0)-Tensor V¥ =V = (v°,v) V-V = Ve, Y = [(v°)2 -vv] = (V00)2

SR 4-CoVector (0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T,



SR — QM 4-Vector SRQM Interpretation

SRQM+EM Diagram: Projection Tensors &
Stress-Energy Tensors: Special Cases

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
Farlill\(;la 4-UnitTem oral W - Mogfntum | % 4-Force < 4-ForceDensity
Fo8 y (1 E) 4-Velocity P=(E/c.p) Elc,f Fgen=7(Eden/C, fuen
=9°AP-0PA” _Y(C u ProperTime N RS

= - 4-Position = = : : .
[[+e(‘)/c:-s?:/k)(:k]] R=(ct.) % @ U-d=d/dt=yd/d 4-Gradient | _5.Tw=F, Afew interesting special cases:
4-Tensor, @ a=(3t/c,- \% ) B SR Conservation of i i i

@ 9-R=4 n—= {for Perfect Fluid (no viscosity)}
@ SpaceTime _)Dlag[1 ’ -1 ’ -1 ’ 1]

TuvPerfechIuid = (peo) VUV - (po) HDV
Dimensio Minkowski Metric @

T pertectriuid = ((peo+po)/02)U“U" - (Po)n™
4 Momentum SpaceTime Tensor
4- VecPotentlaI P=(E/c,p) @ 4 @
A=(pl/c, a)

StressEnergy
if Faen=0"

TrT*] = 1(Peo) - 3(Po)

1f (o) = (Peo)/3:
VH=THTY H*"=n"-V* Lambda-Vacuum then {NullDust = PhotonGas = Radiation}
—Diag[1,0,0,0] —Diag[0,-1,-1,-1] SvtressE.nergy 4-Tensor T enotonGas = (Deo) V¥ = (Deo/3) H* = (Deo) N
Temporal “Vertical” Spatial “Horizontal” THes—Diag[Pe,-pe,-Pe,-Pe] T eroencas = (Pa)(AV™ -11%) -
() jecti Projection Tensor TH=(Peo)N™ Tr{T"enotences] = 0: Null (Light-Like) Projection
— If =0:
o @ SPo=-Peo/ S (+] then {Cold Matter Dust (pressureless) }

T Matierust = PYNY = (pmo)U”U . (p 0) A

. Tr[T"vaternust] = (Peo): Temporal Projection
Cold Matter-Dus Perfect-Fluid Null-Dust=Photon-Gas

StressEnergy 4-Tensor StressEnergy 4-Tensor g StressEnergy 4-Tensor 1 (Do) = =(Deo):

T"res—Diag[pe,0,0,0] T est—Diag[pe,p,p.p] Tres—Diag[pe,e/3,pe/3,06/3] ?en {Lamtid(ave;C\L/lvuT (E ne;raﬁ (L
e (OO VU NSl (N | 17 1% . SvaceTime Projecti
eo eo eo Tr[T"Vaceeneray] = 4(Peo): SpaceTime Projection

If (Do) = (Pe) = 0

then {ZeroVacuum Energy}
T VaccEnergy = 0 7
Tr[T"vaccenergy] = 0: Zero Projection

ElectroMagnetic (s, <
StressEnergy 4-Tensor

Special cases of
a Perfect Fluid

SR 4-Tensor SR 4-Vector Tr[ ] = Trace Function = n,, Tr T =TV =T¢ =T
. v e 0 SR 4-Scalar Ve v v — o ace[T"] = nu T =T, =
(2,0)-Tensor T¢ (1,0)-Tensor V* =V = (V°,v) N® = V* - (1/3) H*" = Null Projection Tensor V-V = VPV = [(VO)? - vev] = (Vo2

1,1)-T T or T, SR 4-CoVect (0,0)-Tensor S W _, Di ] W) =
(o) ETer 1, Il o orentz Scala N* — Diag[1,1/3,1/3,1/3 ]S HENHINEE = Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SRQM Study:
4D Gauss’ Theorem

of Physical 4-Vectors John B. Wilson

Gauss' Theorem in SR:
Jod*X (.V*) = $oadS (VN,)
Jod*X (8-V) = $oadS (V-N)

where:

V = V¥is a 4-Vector field defined in Q

(9-V) = (6,V") is the 4-Divergence of V

(V-N) = (V¥N,) si the component of V along the N-direction

Q is a 4D simply-connected region of Minkowski SpaceTime

dQ =S is its 3D boundary with its own 3D Volume element dS and outward pointing normal N.
N = N" is the outward-pointing normal

d*X = (c dt)(d’x) = (c dt)(dx dy dz) is the 4D differential volume element

In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem,

is a result that relates the flow (that is, flux) of a vector field through a surface to the behavior of the vector field inside the surface.
More precisely, the divergence theorem states that the outward flux of a vector field through a closed surface

is equal to the volume integral of the divergence over the region inside the surface.

Intuitively, it states that the sum of all sources minus the sum of all sinks gives the net flow out of a region.

In vector calculus, and more generally in differential geometry,

the generalized Stokes' theorem is a statement about the integration of differential forms on manifolds,

which both simplifies and generalizes several theorems from vector calculus.



SR —- QM S RQ M D iag ram : 4-\/ector SRQM Interpre;]?tiQo,\;ll
Minimal Coupling = Potential Interaction
rmeaees CONservation of 4-TotalMomentum SeRsamarg

o—o S?;'}e;fn‘e ¥ 2IRI=n""—Diag[1,-1,-1,-1] . /

4-Displacement [liaRmersio Minkowski Metric 4-Gradient
AR=(CAt Ar)

P = (E/c,p): 4-Momentum

Q = (V/c,q): 4-PotentialMomentum

A = (¢/c,a): 4-VectorPotential

P, = (E/c,p,): 4-MomentumincPotentialField

P; = (E/c,p,) = (H/c,p,): 4-TotalMomentum

8=(3/c,-V)

P =P, - gA = (E/c-q¢/c,p,-ga): Minimal Coupling Relation

..-II[PT-dR]

ProperTime

Derivative J[P-U]d

P.=P + Q=P + gA: Conservation of 4-MomentumIncPotentialField Hamilton-Jacobi

Pr = -9[S]

P=P+Q Rest H =-4(S], pr=V[S] 2
Pf =iy ) Mass:Energy
g’ ) EE/)CE)G (+q((p°/0 /)Cl:)u 4-Velocity E=mc? 4-TotalMomentum
i e U=y(c,u) P.=(E./c,p.)=(H/c,p,)
P, = ((Eo*qg.)/c*)U s > @ == -
P, = ((E+qo)/c*)(c,u) Conservation of
P = ((E+qg)/c,p+qa) Rest Scalar 4-Momentum 4-TotalMomentum
' q¢)/c.p*q Potential@ P=(mc,p)=(E/c,p) P,=% [P,] @
4-MomentumIncPotentialField has a contribution from {m.=0} < {P-U=0} & {P is null} .
a Mass “charge” (m,) Minimal 4-MomentumlincField
an EM charge (q) interacting with a potential () ||H| } . gzl;plgg Pf=(E/c,pf)=P+Q=P+qA
_ . - EM Charge !
SRyl Censervation of 4-TelalMomegiuy 4-EMVectorPotential 4-EMPotentialMomentum
4-TotalMomentum is the Sum over all such 4-Momenta A=(¢/c,a) Q=(U/c,q)=gA

{9.=0} <> {A-U=0} < {Ais null}

SR 4-Tensor SR 4-Vector
Trace[T"] =N T =TH =T
2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v SR 4-Scalar H W
(2.0) (1,0) VN 0.0)Tensor s VAV = VPV = [(V) - vev] = (V)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR —- QM

4-Vector SRQM Interpretation
of QM

SRQM Hamiltonian:Lagrangian Connection

H+L=(pru)=
A Tensor Study
of Physical 4-Vectors

4-Momentum P = m,U = (E./c*)U ; 4-VectorPotential A =
4-TotalMomentum Py = (P + gA ) = (H/c,pr)

P-U=y(E-pu)=E,=mc’; AU=y(¢-au)=q,
Pr-U = (P-U + gA-U) = Eo+ q@o = MC* + Qs

v = 1/Sqrt[1-B-B]: Relativistic Gamma Identity

(®o/c*)U

(vy-1/y)=(yB-B ): Manipulate into this form... still an identity
(v-1/y)P+U)=(yB-B )P+ U): Still covariant with Lorentz Scalar
y(Pr-U) + (PT U)/iy = (vB-B )(P+-U)
Y(Pr-U) + -(Pr-U)ly = (vB-B )(Eo + q9o)

Y(Pr-U) + -(Pr-U)ly = (yu-u )(E i qcpo)/c
v(Pr-U) + (PT U)ly = (y(Eo/c*+ q@o/c?)u-u)
v(Pr-U) + -(Pr-U)/y = ((YEou/c*+ yqoou/c?)-u)
v(Pr-U) + (PT U)/y = ((Eu/c*+ qou/c®)-u)
y(Pr-U) + (PT U)ly = ((p+qa) u)
Y(Pr-U) + -(Pr-U)/y = (pr-u)
{ H }+{ L } = (pr-u): The Hamiltonian/Lagrangian connection
H=y(Pr-U) =vy((P+gA)-U) = The Hamiltonian with minimal coupling
L = -(Pr-U)/y = -(P+qA)-U)/y = The Lagrangian with minimal coupling

v(Pr-U

P H+ L=l =
luf=c

t |gr| = e.evelc

i Poynting Vector |s| =

)+ -(PrU)y

SciRealm.org
John B. Wilson

--------------------------------------------------------------------------------------------------------

i H:L Connection in Density Format
i H+L=(pru) =
{ nH + nL = n(pr-u), with number density n = yn, i
P+ L= 5
i momentum density {gr = npr}

i Hamiltonian density {# = nH}

i Lagrangian Density {£ = nL = (yn,)(Lo/y) = NoLo}
Lagrangian Density is Lorentz Scalar

(gr-u), with

for an EM field (photonic):

= (1/2){e.e-e + b-b/u.}
L = (1/2){e.e-e - b-b/us} = (-1/4u)F  F*"
(gru)

lg|c? — ce.ece

L = Loy

4-Vector notation gives a very nice way to find the Hamiltonian/Lagrangian connection:

(H)+(L)=(pru), where H=vy(Pr-U) & L = -(P+-U)/y



4-Vector SRQM Interpretation

SRQM Study:
SR Lagrangian, Lagrangian Density,
S and Relativistic Action (S) S

Lagrangian {L = (pr-u) - H} is *not* Lorentz Scalar Invariant

SR —- QM

Relativistic Action (S) is Lorentz Scalar Invariant

S =]Ldt= : (Lo /V)(Vd_T) (I )((jr) 5 N ) A Rest Lagrangian {L, = yL = -(P,-U)} is Lorentz Scalar Invariant

S = [Ldt = [(£/n)dt = [£/(n)dt = |£(d®x)dt = [(L/c)(dx)(cdt) = [(L/c)(d*x) Lagrangian Density {£ = nL = (yn,)(Lo/y) = n.Lo} is Lorentz Scalar Invariant

Explicitly-Covariant Relativistic Action (S) n = yn, = #/d°x = #/(dx)(dy)(dz) = number density

Particle Form Density Form {= n,*Particle} dt = ydr )

S = [L.dt = -[H.dt S = (1/¢)j(noLo)(d*x) = -(1/c)J(neHo)(d*x) ng_z nC}(cd;)“(dx)(dy)(dz) = no(d’x)

S = -J(P,-U)dt S = (1/c)l(£)(d*x) ,"(”C)(X)
- : H:L Connection in Density Format for Photonic System (no rest-frame
= JP -dR/dt)dt : H DS .
= I(P -dR) S = [(£/c)(d*x) i nH + nL = n(pr-u), with number density n = yn,

P g+ L= (gru), with
{ momentum density {gr = npr}

S = -I(PT.U)dT S= '(1/C)In°(PT'U)(d4X) ! Hamiltonian density {% = nH}
S= f((P + gA)-U)dt' S= -(1/C)fno((P + gA)-U)(d*x) i Lagrangian Density {£ = nL = (yn,)(Lo/y) = noLo}
S = I(P U + gA-U)dt S = -(1/c)J(noP-U + noqA-U)(d“x) : Lagrangian Density is Lorentz Scalar
S=-f(E,+qUAKdt S =-(1/c)|(nE, + nqU-A)d")  for an EM fied (photonio):
: (photonic):
S = -J(E, + q@o)dt S = -(1/c)(pgo + J-A)(d*x) { %= (1/2){e.e-e + b-blj} = noE, = pyo = EM Field Energy Density :
S = -J(E, + V)dt i £ = (1/2){e.ee - b-b/po} = (-1/4,)F,F* = (-1/4y,)*Faraday EM Tensor Inner Product :
S = -J(m.c? + V)dt S = (1/c)j(L)(d*x) i J+ L=¢ee=(gru) :
S = (1/c)[((1/2){e.e-e — b-b/o})(d*x) };l e
. . _ v 4 H T| = €0€*
with V = q, S = (1/c)J((-1/4po)F  F* )(d*x) i Poynting Vector |s| = |g|c® — cece-e

for an EM field = no rest frame i
i €oMo= 1/c® :Electric:Magnetic Constant Eqn

The Relativistic Action Equation is seen in many different formats




4-Vector SRQM Interpretation

SRQM Study:
SR Hamilton-Jacobi Equation
S and Relativistic Action (S) S

Lagrangian {L = (pr-u) - H} is *not* a Lorentz Scalar ?[?ST'lt?;['S‘J]aSOb' Equation

Rest Lagrangian {L, = yL = -(P-U)} is a Lorentz Scalar

SR —- QM

Relativistic Action (S) is Lorentz Scalar g ) :{EEo:qu()Pcﬁg:

S = [Ldt
= -(Eo + qo.)(t +

S = [(Loly)(ydt) S = -(Es *+ q@o)(t + const)
S = [(L,)(d7) -S = (E, + q@.)(t + const)
Explicitly Covariant 4-Scalars 4-Vectors a[_g] f(E" I a%9) g[(r + coidl
Relativistic Action (S) Relativistic Action Eqn Relativistic Hamilton-Jacobi Eqn a[-S] =(Eo + q@o)al1] .
S = J'L dr = _J‘H dr Integral Format Differential Format a[-S] =(E, + q@,)d[R-U/c?]

= (P Uyt [-S] =((Eo + q@o)/c?)3R-U]
S JP dR/dod 4-TotalMomentum 9[-S] =(E./c*+ q@./c?)U

( t)dt P, = (E./c,p,)=(H/c,p;) 9[-S] =(m, + Q(PO/CZ)U
S= I P dR :-I[(H/C’pT)-y(C’u)]dr PT = -0[Sacton] J-S] =mo,U + Q((Po/cz)u
S = P ‘U)dt =-[[y(H-p,-u]dz (H/c,p;)=(-8/c[Saction], V [Sacion]) a[-S] =||: + gA
S=-J (P + gA)-U)dt d[-S] =
S = -J(P-U + gA-U)dt Verified!
S =-|(Eo + q@o)dt
S=-(E,+V)dt with V= qg, R-U = ¢t : 1= R-U/c?
S= I(moc +V)dt : : S : : :
SERI(! The Hamilton-Jdacobi Equation is incredibly simple in 4-Vector form

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S
, . orentz Scala



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Hamilton-Jacobi Equation
sy (P = -g[S]) Differential Format : 4-Vectors

John B. Wilson
e e 0-R=4

J[R]=n""—Diag[1,-1,-1,-1] |

4- Displacement ‘i’;‘fnTS‘ir;‘e Relativistic Action (S) is Lorentz Scalar Invariant Minkowski Metric 4-PositionGradient
=(cAt,Ar) S = [Ldt = [(Lofy)(ydr) = [(Lo)(dr) = Lode 4-Gradient
.dt.dr) — ; — ; dr=0=(d/c,-V)
\ SExr)IIchly-C?l\_/'agant Relativistic Action (S): dt=(1/c)V[dR-dR] —(8ldct,-31%,-1dy -3157)
@ = 0 0 = - fo) T
R= (Ct - S = -[(P,-U)de v
R g L
Invanant Interval S = J'(p -dR)
S =-J(P;-U)dr :
(MID S = -J( (P +qA)-U)dt EmperTT ° Pr=-3[S
ProperTime S=-(P-U+ gA-U)dt U.a_D(i{s;;;Zd/dt H= -8t[[S]], pr=V[S]
Derivative AfIEYg S= I(E + q@,)dt Hamilton-Jacobi Equation
RO S =-J(E, + V)dt with V = qo, Proper Time
Proper Time S = -[(moc” + V)dt dt 4-TotalMomentum

t=(1/c)V[dR-dR] i P.=(E,/c,p,)=(H/c,p,)
Differential Invariant Rest Hamiltonian Conservation
= -Invariant Rest Lagrangian 4-TotalMomentum

- - 4-MomentumincField
P=(mc,p)=(E/c,p) P=(E/c,p,)=((E+U)/c,p+qa)

[ ] > @’ 4-Force @
4-Momentum 0 F=y(E/c,f
[+

: ||H'|' } - Minimal Coupling
4-NumberFlux 4-EMVectorPotential 0 4-EMPotentialMomentum
N=(nc,n)=n(c,u) A=(p/c,a) Q=(U/c,q)=qA

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector N ¥ _ _
(1,0)-Tensor V¥ =V = (\°,v) SR 4-Scalar Trac;a[T“ 1= ”“VOTZ T _ To 2
' SR 4- CoVector ’ (0,0)'Tensor S V'V = V r]vaV = [(V ) = V'V] = (V o)

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T,



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Action Equation
s (S = -J(P-dR)) Integral Format : 4-Scalars

of Physical 4-Vectors John B. Wilson

e =aeu— 0R=4 J[R]=n""—Diag[1,-1,-1,-1] ]

4-Displacement ?;ZenTsiirge Minkowski Metric e 4-PositionGradient
AR=(cAt,Ar) : . dt=ydr=ydts 4-Gradient
R Relativist % Lagrangian Density VAl  5e=0=(3/c-V)

=nL=(yN,)(Lo/y)=nNoLg agrangian

_ Bl —(P.-U)ly=Ly/ 0 —(Blact,-310x,-01y,-9157)
@ @ Relajtivistic Action (S)
ProperTime N Q SR S = |Ldt
° Derivative - Relativistic (X S = [(Lo(yd)
: .

(+) egendre Factor S = JLodt = [-Hodt

calar}/c Number density p.-u
& 0 T = [(-P_-
@ 9 H+L=(p S = [(-P-U)dt
‘ ot Lo=

OT'”) S = [(-P,-dR/d)dt R
— X )

@ H 3 J[P-dR]
................ . = 1/\[1-B-B1: Relativistic Identit , S—.[(-PT'dR) T
Relativistic zY = 1/“{[ ) Efip.;fxlse:ﬁateegé% amiltonian ..J[PT-U]dr

Coordinate Time (v- 1y )(Pr-U) = (yB-B )(P-U)) =y(P-U)=yH, Hamilton-Jacobi \EHIRM(sL

(L+ -1|/_Y )((PT.U))z L Proper Time H PT;[é?[S] VIs] <
+ L=(pru t = odS), pr=
U-9=d/dt=yd/dt 4-TotalMomentum
®------ > Derivative P_=(E_/c,p.)=(H/c,p.)
4-Velocity _ _ ProperTime Conservatio A o
U=y(c,u Invariant Rest Hamilto.nian P 4-TotalMometEsy
° @ i =R w
4-Momentum
- - 4-MomentumincField
@ P=(mc,p)=(E/c,p)
. o VB b —(E /c,p)~((E+U)/c,p-qa)
IIH'l' } - Minimal Coupling

4_—NumbfrFqu entDensity 4-EMVectorPotential 0 4-EMPotentialMomentum
N=(nc,n)=n(c,u) T flee A A=(p/c,a) Q=(U/c,q)=qA

SR 4-Tensor SR 4-Vector . . _
(2,0)-Tensor T+ §(1,0)-Tensor V* =V = (V°,v) SR 4-Scalar R Relativistic Scalar Trac?[T“V] a n“";rzv =T = TO i
(1,1)-Tensor T* or T, SR 4-CoVector (0,0)-Tensor S (not Lorentz Invariant) V-V = VP VY = [(VO)2 - vev] = (VY)
’ - orentz Scala = Lorentz Scalar

0,1)-Tensor V, = (vo,-V




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram: Relativistic Factors
Hamiltonian & Lagrangian
e RElativistic Euler-Lagrange Equation s

=== 0'R=4 = 0[R]=n""—Diag[1,-1,-1,-1]
4-Displacement rinrerl]véenTslirge Minkowski Metric
AR:(CAt,Ar) .......................................................................................................

4-PositionGradient

4-Gradient
or=0=(d/c,- V)

; Q —(0/act,-9/0x,-dldy,-0l0z)
Lagrangian
Action S = [Ldt Relativistic

Euler-Lagrange Eqn
Or= (d/d’C)au

Lagrangian Density

R Relativisti

=nL=(yno)(Lo/y)=NoLg

ProperTime @ a @’

Derivative Relativistic

® tem
poral
@ Number density
Cl

o
o
o
o
0
o

vy = 1/[1-B-B]: Relativistic Identity
(y-1/y)=(vyB-B ): Alternate Form

4-VelocityGradient
au=(aut/C,- \V U)

—(319yC, 319Uy, -dldyu,,-ldyus,)

) , (v-1y)(PrU) = (BB )(PrU)) =
Coordinate Time (y+-1hy )(|T:>T.U) = (pr-u) | —" Hamilton-Jacobi
g e 15, P; = -9[S]
Note Similarity: H+ L=(pru) T !
- , . H =-0(S], pr=VI[S]
4-Velocity is ProperTime ; i _ _ du[U]=n"*—Diag[1,-1,-1,-1 :
Derivative of 4-Position S AR U-0=d/dT=yd/dt " ]M?nkowskig I£/Ietric ] Scalaric 4-TotalMomentum
U= (d/dt)R [m/s] = [1/s][m] Qo - Belivatie ) P.=(E./c,p.)=(H/c,p.)
. 4-Velocity T ProperTi LG —
Relativistic Euler-Lagrange Eqn U=v(c.u =v(H-p.-u)=H,=-L, D:aorR/Zrti\l/rge 4-Force N ??hr)lservattlon
R meuR M= s s/l . Invariant Rest Hamiltonian F=v(E'/c.f -lotalMomenturg
_ E=mc? = C
The qn"fereljtial forrr_1 just inverses @ 4-Momentum .
the dimensional units @ P=(mc p)=(E/c p) 0 4-MomentumIncField

&> . e AR

4_—NumbfrFqu entDensity 4-EMVectorPotential 0 4-EMPotentialMomentum
N=(nc,n)=n(c,u) T flee A A=(p/c,a) Q=(U/c,q)=qA

SR 4-Tensor SR 4-Vector - - —
(2,0)-Tensor T* (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar SR Relativistic Scalar Tracpe[T“"]v B nw;rl;v =T = To :
(1,1)-Tensor T, or T, SR 4-CoVector (0,0)-Tensor S not Lorentz Invariant V-V = VP, VY = [(V0)? - vev] = (VY)
’ = orentz Scala = Lorentz Scalar

0,1)-Tensor V, = (vo,-V




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Euler-Lagrange Equation
sy 1 €@ E@sy Derivation (U=(d/dT)R)—(dr=(d/dT)dy)  scremos

of Physical 4-Vectors John B. Wilson

Relativistic Dynamics Eqn (4-Vector)

Note Similarity:
U = (d/d7)R
4-Velocity is ProperTime Y Classical limit, spatial component (3-vector) @------- >
Derivative of 4-Position 4-Positi 0 Natural
U= (ddr)R [m/s] = [1/s]*[m] h=CZ<S:It 'ro)” Lo 4-Vector
Relativistic Euler-Lagrange Eqgn - U, 0) e
dr = (d/dv)dy [1/m] = [1/s]*[s/m] du[U]=n"—Diag[1,-1-1,-1]
The differential orm just inverses it Minkowski Metric TR nterestingy, ths has its own
the dimensional units, so the A _ Ty ’ ;
placement of the R and U switch. U aREedr{g;f\;yd/dt z;r;]"a_r 'Z‘/’de{se relations.
B 50 & or[R]=n**—Diag[1,-1,-1,-1] !
at is it: so simple! Mink ki Metri dt = ydt
Much, much easier than how o -4Ll-p INKOWSKI VIEtriC
| was taught in Grad School. : . - : "
4-VelocityGradient y 4-PositionGradient:4-Gradient Index-raised One-
3UB=8U=8/3U=(3U/C,- V) . 8RB=3R=8/8R=3=(8/C,- V) Form

To complete the process and

create the Equations of Motion, —(d/dyc,-0/dyuy,-0ldyu,,-0ldyu,) —(dldct,-0/0x,-01dy,-0/0z)  GmElslel
one just applies the base form Relativistic Euler-Lagrange Eqn (1,0)-Tensor
to a Lagrangian. rlaﬁ dr = (d/d1)dy rlaﬁ

, Saice | d/loR = (d/dt)adloU Doica

: d aise inde
-Ela-rg;g:igableLagrangian T d[L])/oR = (d/d7)d[L]/oU - .
a relativistic Lagrangian VelocityGradient One-Form [JReIEEStee N Ty M e i Reelas e n - at OsitionGradient One-For
a Lorentz scalar Lagrangian 0,a=(du/c, V u) J[L]/ar = (d/dt)d[L)/du Gradient One-Form One-Form
a quantum Lagranglan a[L]/ax = (d/dt)a[l_]/au aRa=(at/C’ V) (0,1 )'Tensor
—(0/act,0/0x,0/0y,0/0z
SR 4-Tensor SR 4-Vpector . i Trace[TpV] =n vTuv =Tv =T
(2,0)-Tensor T* (1,0)-Tensor V¥ = V = (\°,v) (3§)ng::(|)er V-V = VeV = [(“Vo)z ) V_Vf = (VO

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V

orentz Scala = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Euler-Lagrange Equation
et Alternate Forms: Particle vs. Density  Sww

K-R=-0 4-WaveVector

e K=(w/c,k
I ° o N - ( )
Particle Dynamics
U = (d/d7)R

4-Position
R=(ct,r)
or'R=4 e ou[U]=n**—Diag[1,-1,-1,-1] K=aR[-<D

Relativistic 4-Vector Kinematical Eqn el Minkowski Metric e
U = (d/d7)R iy
U-K = (d/dr)R-K U-dr=d/dt=yd/dt

Derivative

4-Velocity U is ProperTime Derivative

of 4-Position R. The Euler-Lagrange Eqgn
can be generated by taking the
differential form of the same equation.

phase]

du-U=1 —
Spl;ceTime ar[R]=n B_’D|ag[1 ~1,-1,-1]

Relativistic Euler-Lagrange Eqns o-A-» Dimension Minkowski Metric

{uses gradient-type 4-Vectors}

o = (d/dt)dy: {particle f 4-VelocityGradient . Relativistic 4-PositionGradient:4-Gradient
R - _( d/fj) u.a{par’nc e format} 8 f=8uy=010U=(dy/c,-V u) ) EuIe;—L_ag(;’j\dng: Eqn 8 P=0r=0/3R=0=(3/0,-V )

a ( o dr) o —(1ByC,-01dyu,-8ldyu,,-AlAyu,) o —>(dlact,-01x,-81dy,-810z)
pr EU aT)) L = (1/2){ 8,[®]-9,[®] - (moc/h)? ®? }: KG Lagrangian Density
-0) = R

Sgg él‘;; i Eg )a Raaaa[/é][u Kl 901 L = (9g) dsren L: Euler-Lagrange Eqn {density format}

= (9r (9%) 9 |

919(-®) = (9r) 9/9[Or(-D)] -(moc/h) di = (9g) aR[2¢]

819(®) = (3r) IB[Gr(D)] (2,20 = - (miclh)* @ |

8[¢] = (BR) 8[3R(¢)]: {density format} (aa) ha (m0C/h) : KG Eqn of Motion

Klein-Gordon Relativistic Quantum Wave Eqgn

SR 4-Tensor SR 4-Vector Trace[T"] =N T =T =T
(2,0)-Tensor T (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar V-V = Vi,V = [(“Vo)z _ v-vij = (V)2

(0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Euler-Lagrange Equation
Equation of Motion (EoM) for EM particle  SoRealmorg

of Physical 4-Vectors

e Or'R=4 &= 0Rr[R]=n""—Diag[1,-1,-1,-1]
. S Ti . B .
4-Displacement [l Drooe o0° Minkowski Metric

AR—(cAt,Ar)
QUL.O

4-PositionGradient

A 4-Gradient
3r=8=(3/c,-V)
—(dlact,-0l0x,-dldy,-0l0z)

L, = -(PrU)

dulLo] = -Pr = -(P+qA)

(d/d0)[8u[Lo]] = (d/dr)[-P1] = -(d/dr)[P+gA] = ~(F+q(d/d0)[A]) = -(F+qU-3[A]) = -(F+qU.&'[A])
Or[Lo] = Or[-Pr-U] = -0r[(P+qA)-U] = (0) + -qdr[A-U] = -qdr[U.A"] = -qU.dr[A]

Relativistic

assuming the 4-Gradient dr of the 4-Velocity U is zero. Euler-Lagrange Eqgn
ProperTime Proper Time or = (d/dt)dy
Derivative Euler-Lagrange Eqn: (d/dt)du = or U-0~=d/dt=vd/dt . :
@ -(F+qU.d"A]) = -qU.dr[A] RDerivativeY 4-Ve|_00|tyGrad|ent
0 F = qU.dr[A] - qU.0'[A] ov=(du/c,-Vyu)
F = qU.(dr[A"] - 0'[A]) —(810yc,-010yuy,-0/dyuy,-8/oyu,)
—

F = qUU(@A - FTA))

F* = qU.(F") = (dP"/dt): EoM for EM particle =] adu]l\??i?ﬂﬁ?ﬂé}:ig%ﬂ Hag”io_"a'[JSa]‘CObi
Lorentz Force Equation Spuace'lqme - H = -8(S], pr=V[S]

2 >// Dimensio 4-TotalMomentum
g : (py P_=(E./c,p.)=(H/c,p,)
4-Velocity N ConseratilT\ !

Note Similarity:
4-Velocity is ProperTime
Derivative of 4-Position

U = (d/dt)R [m/s] = [1/s]*[m]

Relativistic Euler-Lagrange Eqn

or = (d/dt)dy [1/m] = [1/s]*[s/m] U=y(c,u ||H-I-} . g Invariant Rest Hamiltonian 4-EMPotentialMomentum RSl Uit
The differential form just inverses @ Q=(U/c,q)=qA @
the dimensional units @ Q 4-MomentumincField
.‘} - cp M.gwm
4-NumberF| | argor = Fo=Al-o°A°
N=_(nucnr]1 )S; (Cu>lj) 4- CurrentDenS|ty B _4-Mom<intum @ 4_-quce o 0 4 o ,_'ej/c]
, ’ E=mo =(mc,p)=(E/c,p) d F=y(E/cf B o lowed [ZeiT/c,-svkbk]
20rTorser T J1.01Tomor Ve < v = () PP SR 4-Scalar L Ug ey PR oot S \cocity
(1,1)-Tensor T*, or T,Y SR 4- CoVector (0,0)-Tensor S ViV = ViV = [(V) - v-v] = (Vo) for charged particle

orentz Scala = Lorentz Scalar



SR —- QM

4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Euler-Lagrange Equation

A Tensor Study

woswy - Equation of Motion (EoM) for EM particle

v = 1/Sqrt[1-B-B]: Relativistic Gamma Identity

(y-1/y)=(yB-B ): Manipulate into this form... still an identity
Y(Pr-U) + «(Pr-U)/y = (yB-B )(Pr-U)

y(Pr-U) +-(PrU)y = (pru)

{ H }+{ L }=(pru): The Hamiltonian/Lagrangian connection

H =vyH, = y(P+'U) = y((P+gA)-U) = The Hamiltonian with minimal coupling
L = Lo/y = -(P+"U)/y = -(P+gA)-U)/y = The Lagrangian with minimal coupling

H, = (Pr-U) = -L, = (U-P1): Rest Hamiltonian = Total RestEnergy
Lo = -(Pr-U) = -H,

(d/dt)ou[Lo] = OR[Lo]

4-Velocity is ProperTime
Derivative of 4-Position
U = (d/dt)R [m/s] = [1/s]*[m]

Relativistic Euler-Lagrange Eqn
Or = (d/dt)dy [1/m] = [1/s]*[s/m]

dIéR = (d/dt)d/ou
J[LI/4R = (d/dr)d[L}/ou

Classical limit, spatial component
d[L]/or = (d/dt)d[L)/ou
d[L]/ox = (d/dt)J[L]/ou

Fewm = va{ (u-e)/c, (e) + (uxb)}
e=(-Vo-da)and b =[V x a]

If a~0, then f=-qV @ = -V U, the force is neg grad of a potential

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (V°,v) SR 4-Scalar
SR 4-CoVector (0,0)-Tensor S
0,1)-Tensor V, = (Vo,-V orentz Scala

(1,1)-Tensor T*, or T,

SciRealm.org
John B. Wilson

Rest
Lagrangian L, 4-Velocity

4-TotalMomentum
P.=(E./c,p;)=(H/c,p,)

U-9=d/dt=yd/dt
Derivative

Relativistic Rest Lagrangian
Euler-Lagrange

Equations of Motion = aR[_PT. U]

(d/dt)du[Lo] = Or[L] :(-()a;!f?;ggklﬂ]

= -qdr[UsA”]
= -qUd"[A"]

(d/dt)du[Le]
= (d/d1)[-P4]
= -(d/d7)[P+qA]
= -(F+q(d/d7)[A])
= -(F+qU-g[A])
-(F+qUgd"[A])

-(Fe+qUgd"[A%]) = -qUed"[A’]
(Fe+qUpd®[A%]) = qUsa*[AP]
Fe = qUed"[A"] - qUd"[A°)]

Fe = qUg(d"[A®] - 2°[A°])
¢ = qUg(F**)
Lorentz Force Equation

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar



SR —- QM

4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Hamilton’s Equations
Equation of Motion (EoM) for EM particle  SoRealmorg

of Physical 4-Vectors

v = 1/Sqrt[1-B-B]: Relativistic Gamma Identity

(y-1/y)=(yB-B ): Manipulate into this form... still an identity
¥(Pr-U) + -(Pr-U)/y = (yB-B )(Pr-U)

7(Pr-U) + -(Pr-U)/y = (pr-u)

{ H }+{ L }=(pru): The Hamiltonian/Lagrangian connection

H =vyH, = y(P+-U) =1vy((P+qA)-U) = The Hamiltonian with minimal coupling
L = Lo/y = -(Pr-U)/y = -((P+qA)-U)/y = The Lagrangian with minimal coupling

H, = (P+-U) = -L, = (U-P5): Rest Hamiltonian = Total RestEnergy
L, = -(P+-U) =-H,

3p,[Ho] = 3, [U-P1] = “Pr+ U-Gp,[Pr] = 0 + U-dp,[Pr] = U = d/du[X]
Thus: (d/dt)[X] = (3/0P1)[H.]
x[Ho] = ox[U-P+] = *Pr + U-0x[P1] = 0 + U-0x[P1] = d/d1[P1]

Thus: (d/dt)[Px] = (8/8X)[Ho]

Relativistic Hamilton’s Equations (4-Vector):
(d/dT)[X] = (9/oP+)[Ho]
(d/dt)[P1] = (9/6X) [Ho]

(d/dT)[X] = y(d/dt)[X] = (3/8Px)[Ho] = (8/0P7)[(P+-U)] = U
(d/dt)[P1] = y(d/dt)[P+] = (8/8X)[Ho] = (/@X)[(P+-U)] = (8/6X)[y(H-pr-u)]

Taking just the spatial components:
y(d/dt)[x] = (-0/dpr)[H.] = (-0/dp+)[H/y] {hard}
y(d/dt)[p+] = (-9/0x)[H,] = (-9/dx)[H/y] {easy because (d/dx)[y]=0}

y(d/dt)pr] = (-0/0x)[H]
Take the Classical limit {y—1}

Classical Hamilton’s Equations (3-vector):
(d/dt)[x] = (+a/9pr)[H]
(d/dt)[pr] = (-0/ox)[H]

Sign-flip difference is interaction of (-0/dpr) with [1/y]

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T, SR 4-CoVector

4-TotalMomentum Rest

P_=(E /c.p,)=(H/c,p.) il Harz"(tgf_'ﬁg‘ o U=y(c,u)

= (P+gA)-U
= P-U+qA.

4-\elocity

4-Position
X=(ct,x)

(0/0P+)[Ho]

(Elegby = (9/0P+)[P+-U]

- U_Y(C’l:l) = U:y(c u)

= antielleiy = 4-Velocity
= P/mo Relativistic Rest Hamiltonian = P/mo

= (Pr-gA)/m, Hamilton’s

Equations of Motion

(d/d)[X] = (9/0P1)[Ho]

(d/dt)[Pr] = (8/6X)[H]
(d/dt)[P+]
= (d/dt)[P+qA] I = [0 + q(6A/dX)-U]

= [F + q(d/dr)A] M
_=[£f: 3((3 'gﬁ))AA]a] [F* + q(U,8")A% = q(&°[A']U, = %aEﬁgig
= B ok . - g7
P = q@IAIY, - aUAT BB S1A]-(Pr-qA)im,
Fe= q(a“[AB] - EBAO‘)U[3

= (P+-qA)/m,

(9/0X)[Ho]
= (3/6X)[P-U+qA-U]

Fo = q(F“B)UB
Lorentz Force Equation

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar



SR — QM SRQM Diag ram: 4-Vector SRQM Interpre;]?tiQo,\;l\
EM Lorentz Force Eqn

premsor Sudy — Force = - Grad[Potential] Soreamarg

— 4-Displ t
L(cx)r_entz (EM Force Equatlon. AIIRs:p(SZte,Xf)n 9-R=4 9[R]=n*"—Diag[1,-1,-1,-1] 1 4-Gradient |
F*=q(F )UB dR=(cdt,dr) [== paceTi.me = Minkowski Metric 9=(d/c,-V)
Fe = q(0°A® - OPA%)U 4-Position N
B ProperTime /
Examine just the spatial components of 4-Force F: PropeRIe U2 v ydiat
F'= q(a'AB = aBAI)UB d Derivative
F'=q(0A° - 30Ai)UO +q(IA - 3in)Uj : EM Faraday
yf = (- V[o/c] - (8/c)a)(yc) + a(-V[a-u] - -u- V [a])y Ll
f = (- V[o/c] - (dVc)a)(c) + q(u- V[al-V [a-u]) e ol oib]
f=q(-V[o] - da + u-Vla] - V[a-u]) ) 4-Tensor
f=q(-V[¢g] - da+uxb) $ " ® Lorentz EM Force E
oren orce n

l -/ ®-- > (UF*=(UQF)
Take the limitof {| V[g] | >>|da|+|uxb [} 4-Momentum
f~q(-V[9]) =-Vgo] = - V[U] P=(mc,p)=(E/c.p)

. = c,

The Classical Force = -Grad[Potential

| aese ol 4 >

when {| V[p] | >>|da|+|uxb |} or when {a =0}

4-EMVectorPotential
A=(p/c,a

The majority of non-gravity, non-nuclear potentials dealt with in CM
are those mediated by the EM potential.

(3-0)A-3(3-A)=poJ 3-A=0
: . Maxwell EM Wave Eqn === Conservation of EM Field &8
ex. Spring Potential { U = kx?/2 }, then { f = -V [kx?/2] = -kx } Hooke’s Law = | orenz Gauge
SR 4-Tensor SR 4-Vector T, . W= TH —
(2,0)-Tensor T~ (1,0)-Tensor V¥ =V = (\",v) ¢ SR 4-Scalar Trace[T"] = n, T" =T5 =T

V-V = Vi VY = (V)P - vev] = (V)

(0,0)-Tensor S
= Lorentz Scalar

orentz Scala

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V




SR — QM 4-Vector SRQM Interpretation

SRQM: The Speed-of-Light (c)
¢’ Invariant Relations a1

of Physical 4-Vectors John B. Wilson

The Speed-of-Light (c) is THE connection A
between Time and Space: dR = (cdt,dr) |

4-Gradient j N 4-Position

This physical constant appears in several Minkowski
seemingly unrelated places. You don’t notice a=(at/C:_ V)
these cool relations when you set c—1. . :
Also notice that the set of all these relations Invariant 4-Gradient
definitely rules out a variable speed-of-light. Magnitude Schwarzschild g
(c) is an Invariant Lorentz Scalar constant. (8-9) = -(moc/h)? = -(1/A)? GR Metric Invariant
_ 4-Velocity
U-U = y*(c*u-u) = c? Speed of all things into the Future . =
Y(c*-uu) p g M) G VERaREY U=v(c,u) B EM Faraday
(Eo/mo)=(yEo/ym,)=(E/m) = c* Mass is concentrated Energy, E = mc? R, CR ngg/télzre Uu=¢ @------ 4-Tensor
Kk = 81
g @ e 7 . GR Black Hole
* = * — =2 -

UV e ™V oo Vonasel = © Particle-Wave “Duality” Correlation 2GM/c? = R,

N(w2-0,2) = NA(f.2) = c? Wavelength-Frequency Relation: Af = ¢ for photons

(1/€ollo) = C Electric (¢,) and Magnetic (J,) EM Field Constants a ComnIe @ @ 4-EMVectorPotential

Plane-Waves Wave Velocit : A=(¢/c,a
o Yo Energy:Mass (¢/c,a)

group * phase c E = mc?

Relativistic Quantum Wave Equation -

% 5 Klein-Gordon (spin 0), Proca (spin 1), Maxwell (spin 1,m,=0) K=io
-(h/mo)*(0-9) = ¢ Factors to Dirac (spin %)

Classical-limit (Jv|<<c) to Schrédinger

SR

(9-9)A-9(3-A)=poJ

hix_m, 2 = o2 0 S\ =
(/A mo)"=c Reduced Compton Wavelength: & = (/mc) 4-WaveVector 4-Momentum Maxwell EM Wave Egn
GR Black Hole Equation K=(w/c,k)=(w/c,wi/v_ ) P=(mc,p)=(E/c,p) i
2GM/R = c2 R, = Schwarzschild Radius R 2R Einstei ’ ’ . - =P
s G = GR GravitationalConst, M = BH Mass =(1 /C:F: n/A) dlen;reolglie dh
Invariant 4-WaveVector - =
8mG/x = ¢? GR Einstein Curvature Constant: k = 8T1G/c? Magnitude K-K = (w./c)? P=hK 4-ChargeFlux
agnitude K-K = (w./c) 4-CurrentDensity _ :
(c*' * scalar, 3-vector) Every Physical 4-Vector has a (c) factor to maintain J=(pc,j)=p(c,u) Electric:Magnetic
= 4-Vector equivalent dimensional units across the whole 4-Vector . ‘ 1/(€slo ) = C?

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
1,0)-Tensor V¥ =V = (V°,v)

SR 4-Scalar Trace[T"] =n, T =T =T

(0,0)-Tensor S V-V = Ve, VY = [(V)F - vev] = (V)2

SR 4-CoVect
oVector = Lorentz Scalar

(1,1)-Tensor T*, or T,




SR —- QM

4-Vector SRQM Interpretation
of QM

SRQM: The Speed-of-Light (c)

A Tensor Study
of Physical 4-Vectors

The Speed-of-Light (c) is THE connection
between Time and Space: dR = (cdt,dr)

#R7=n"

Minkowski
Metric

This physical constant appears in several
seemingly unrelated places. You don’t notice
these cool relations when you set c—1.

Also notice that the set of all these relations
definitely rules out a variable speed-of-light.
(c) is an Invariant Lorentz Scalar constant.

4-\/ector

U-U = y*(c*u-u) = ¢? Speed of all things into the Future

(Eo/mo)=(YEo/ym,)=(E/m) = ¢ Mass is concentrated Energy, E = mc?

lu*v |=|v

phase

*v | =c? Particle-Wave “Duality” Correlation
group phase

N(w2-0,2) = NA(f.2) = c? Wavelength-Frequency Relation: Af = ¢ for photons

(1/eopis) = 2 Electric (¢,) and Magnetic (Y,) EM Field Constants

Relativistic Quantum Wave Equation
Klein-Gordon (spin 0), Proca (spin 1), Maxwell (spin 1,m,=0)
Factors to Dirac (spin %2)

Classical-limit (Jv|<<c) to Schrédinger

-(WIMe)X(@-d) = ¢
(Rix mo)* = c* Reduced Compton Wavelength: & = (/mc)

GR Black Hole Equation

_ 0 R, = Schwarzschild Radius
ZGM/RS ¢ G = GR GravitationalConst, M = BH Mass
= 2 5 q
8mG/k = ¢ GR Einstein Curvature Constant mass densiy form): K = 8TTG/C?
(c*" * scalar, 3-vector) Every Physical 4-Vector has a (c) factor to maintain

= 4-Vector equivalent dimensional units across the whole 4-Vector

SR 4-Vector
1,0)-Tensor V¥ =V = (V°,v)

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Scalar
(0,0)-Tensor S

SR 4-CoVector

(1,1)-Tensor T*, or T,

¢’ Invariant Relations (a 2)

Scalar Product

SciRealm.org
John B. Wilson

Electric:Magnetic
1/(goMo ) = C°

- D
(e-b)?/Det[F*]
—

Energy:Mass
E =mc?

Invariant 4-Velocity
Magnitude U-U = ¢?

o/Mo = ho/Mo

= (R/A_M,)?

-0@/V-a
in Lorenz Gauge

"V asel

\')
group phase

= A?w? (for photon
Waves

00000e

ProperTime SRQM

Differential

-S /(modt)

action,free

@D &

Trace[T"] = N T =TH =T
V-V = Ve VY = [(VO)? - vev] = (Vo)
= Lorentz Scalar



4-Vector SRQM Interpretation

SRQM 4-Vector Study:
4-ThermalVector
s Relativistic Thermodynamics N

The 4-ThermalVector is used in Relativistic Thermodynamics.

SR —- QM

My prime rr_1_otive}tio_n fo_r the form of this 4-Vector is that FiEeIZTe|l= st ’ [ i 4-Position
the probability distributions calculated by 0=(9/c,-V ) Minkowski g

statistical mechanics ought to be covariant functions t =
since they are based on counting arguments.

Rest Inverse

F(state) ~ e®-(E/ksT) = e*~(BE), with this B = 1/ksT, (not v/c) S . TemperatureEnergy - HAV_AVA = RV
* 4-Velocity Sy I

A covariant way to get this is the Lorentz Scalar Product 4-ThermalVector EM Faraday

of the 4-Momentum P with the 4-ThermalVector ©. 4-InverseTempMomentum 4-Tensor

F(state) ~ e*-(P-O) = e*-(Eo/ksT,)

This also gets Boltzmann'’s constant (kg) out there with the Rest Energy:Mass

. ' A
other Lorentz Scalars like (c) and (h) =(E/c,p)-(c/ksT,8) E= mc@
see (Relativistic) Maxwell-Jittner distribution =(E/kgT-p-0) 4-EMVectorPotential
f[P] = No/(2¢(moc)” Ky 1y2[MoCOl(MocOo/21) 1 * &) = o Rest@ A=(¢/c,a)

FIP] = No/(2c(moc)’ Kamoc@o](moc@s2m *e®® \ @& > AngFrediSis

f[P] = (©o)No/(411c(MoC)? Kiz[MocO,] * €7@
f[P] = No/(4Trke To(MoC)? Kia[MocOq] * €7
f[P] = No/(4TTks To(MoC)? Ki[Eo] * €@

f[P] = BoNo/(4TH(MoC)? Ki[Eo] * €7

(9-9)A-9(3-A)=poJ

4-Momentum Maxwell EM Wave Eqn

P=(mc,p)=(E/c,p)=m.U

>
It is possible to find this distribution written in multiple ways because Einstein@ 7
many authors don’t show constants, which is quite annoying. de Broglie K= ;1 Vll/a_ve\;eCto.r/ 4-ChargeFlux
Show the damn constants people! P=hK =(w/c,k)=(w/c,wn Vphase) 4-CurrentDensity

J=(pc.j)=p(c,u) Electric:Magnetic

kg),(c),(h) deserve at least that much respect.
(ks).(c),(h) P G o

SR 4-Tensor SR 4-Vector Trace[T"] =N T =T =T
. v K “V=° SR 4-Scalar Nuv u
(2,0)-Tensor T (1 ,0) Tensor V¥ =V (V ,V) \VAVAE Vpr]pv v — [(V0)2 _ V'V] = (VOO)Z

(0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
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A Tensor Study
of Physical 4-Vectors

The 4-EntropyVector is used in Relativistic Thermodynamics. |

4-Gradient A
a=(at/c,-V) |
I

Pure Entropy is a Lorentz Scalar in all frames

not finished yet...

Page under construction

4-HeatEntropyFlux

Sent_heatz(s,s)=SentN+Q/To
sent_heat=(s,S)=SemN+EoN/To
Sent_heatz(s,s)zno(sent+ Eo/To)U

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

SR 4-CoVector
0,1)-Tensor V, = (vo,-V

SRQM 4-Vector Study:

4-EntropyFlux

Relativistic Thermodynamics

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

FRT=n"
SpaceTi_me = Minkowski

Metric

o
#§l 4-Position
R=(ct,r)

4-PureEntropyFlux

Sent_purezs N
ent
=n.S_U
ent

Rest Inverse

Temperature

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

4-HeatEnergyFlux

Q=(p.c,q)=p(c,u)=E.N
n.E.U=c?G

Rest Entropy
= Entropy

Conservation
of Particle #

J-A=0
Lorenz
Gauge

d-N=0
d"A'-0'AP=F"
EM Faraday

4-Velocity
U=y(c,u)
[

@ ______ > 4-Tensor
Rest Number
0/C”
EM
[

Density
4-EMVectorPotential

-

A=(¢p/c,a)
(6-0)A-0(0-A)=poJ
0 Rest Maxwell EM Wave Eqgn
EM Charge
Charge Density

L
4-ChargeFlux @
4-CurrentDensity

Electric:Magnetic

/(oo = C?

=(pc,j)=p(c,u)=gN

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar



SR - QM 4-Vector SRQM Interpretation

SRQM Interpretation: °
R ** Transition to QM **

of Physical 4-Vectors John

Up to this point, we have basically been exploring the

SRQM: A treatise by John B. Wilson (SciRe



SR — QM 4-Vector SRQM Interpretation

SRQM Basic Idea (par 1) |
SR - Relativistic Wave Egn

of Physical 4-Vectors John B. Wilson

The basic idea is to show that Special Relativity plus a few empirical facts lead to Relativistic Wave
Equations, and thus RQM, without using any assumptions or axioms from Quantum Mechanics.

Start only with the concepts of SR, no concepts from QM
(1) SR provides the ideas of Invariant Intervals and ( ¢ ) as a Physical Constant, as well as:
Poincaré Invariance, Minkowski 4D SpaceTime, ProperTime, and Physical SR 4-Vectors

Note empirical facts which can relate the SR 4-Vectors from the following:
(2a) Elementary matter particles each have RestMass, ( m, ), which can be measured by
experiment: eg. collision, cyclotrons, Compton Scattering, etc.

(2b) There is a constant, ( h ), which can be measured by classical experiment — eg. the
Photoelectric Effect, the inverse Photoelectric Effect, LED's=Injection Electroluminescence, Duane-
Hunt Law in Bremsstralung, the Watt/Kibble-Balance, etc. All known particles obey this constant.

(2c) The use of complex numbers ( i ) and differential operators { ¢; and } in wave-type
equations comes from pure mathematics: not necessary to assume any QM Axioms

These few things are enough to derive the RQM Klein-Gordon equation, the most basic of

the relativistic wave equations. Taking the low-velocity limit { |v|<<c }(a standard SR technique)
leads to the Schrédinger Equation.




SR — QM 4-Vector SRQM Interpretation

SRQM Basic Idea (par 2 |
e  Kleln-Gordon RWE implies QM

of Physical 4-Vectors John B. Wilson

If one has a Relativistic Wave Equation, such as the Klein-Gordon equation, then
one has RQM, and thence QM via the low-velocity limit { |[v|<<c }.

The physical and mathematical properties of QM, usually regarded as axiomatic,
are inherent in the Klein-Gordon RWE itself.

QM Principles emerge not from { QM Axioms + SR — RQM },
but from { SR + Empirical Facts — RQM }.

The result is a paradigm shift from the idea of { SR and QM as separate theories }
to { QM derived from SR } — leading to a new interpretation of QM:
The SRQM or [SR— QM)] Interpretation.

GR — (low-mass limit = {curvature ~ 0} limit) — SR
SR — (+ a few empirical facts) - RQM
RQM — (low-velocity limit { |v|<<c }) — QM

The results of this analysis will be facilitated by the use of SR 4-Vectors



4-Vector SRQM Interpretation
of QM

SRQM 4-Vector Path to QM

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

SR 4-Vector Definition Unites
Component Notation

4-Position R=R"=(ctr) Time, Space
-when & where

4-Velocity U =U"=y(c,u) Lorentz Gamma * (c, Velocity)
-nothing faster than ¢

4-Momentum P =P" = (E/c,p) = (mc,p) Mass:Energy, Momentum
-used in 4-Momenta Conservation
2 Ptina = Z Pinital

4-WaveVector K =K"= (w/c,k) = (w/c,wi/v__ ) Ang.Frequency, WaveNumber
-used in Relativistic Doppler Shift

wobszwemit/ ['Y(1 - B COS[G])]a k=w/c for photons

4-Gradient d=0"=(d/c,-V) Temporal Partial, Spatial Partial
= (ddc,-0x,-0y,-0-) -used in SR Continuity Egns., ProperTime
(dldct,-0/ox,-dlay,-0l0z) -eg. d-A = 0 means A is conserved

phase

All of these are standard SR 4-Vectors, which can be found and used in a totally
relativistic context, with no mention or need of QM.
| want to emphasize that these objects are ALL relativistic in origin.




4-Vector SRQM Interpretation
of QM

SRQM 4-Vector Invariants

A Tensor Study

SciRealm.org
of Physical 4-Vectors

John B. Wilson

SR 4-Vector Lorentz Invariant What it means in SR...
4-Position R-R = (ct)* - rr = (ct,)* = (cT)’ SR Invariant Interval
4-\elocity U-U =+%(c*- u-u) = ¢* Events move into future at magnitude c
4-Momentum  P-P = (E/c)’ - p-p = (E./c)’ Einstein Mass:Energy Relation
4-WaveVector KK = (w/c) - k-k = (wo/c)’ Dispersion Invariance Relation
4-Gradient 0-0 = (a/c)* - V-V = (aJc) The d'Alembert Operator

All 4-Vectors have invariant magnitudes, found by taking the scalar product of the 4-Vector with

itself. Quite often a simple expression can be found by examining the case when the spatial part is

zero. This is usually found when the 3-velocity is zero. The temporal part is then specified by its
“rest” value.

For example: P-P = (E/c)*p-p = (E./c)* = (M,C)°

E = Sqrt[ (E,)* + p-p ¢? ], from above relation

E=yE , using {y = 1/Sqrt[1-B?] = Sqrt[1+y*B*]} and {B=v/c}

meaning the relativistic energy E is equal to the relative gamma factor y * the rest energy E_




SR — QM 4-Vector SRQM Interpretation

SR + A few empirical facts: |
SRQM Overview

of Physical 4-Vectors John B. Wilson

SR 4-Vector Empirical Fact S| Dimensional Units
4-Position R = (ct,r); alt. X = (ct,x) R =<Event>; alt. X [m]
4-Velocity U = y(c,u) U =dR/dt [m/s]

4-Momentum P = (E/c,p) = (mc,p) P =myU [kg-m/s]
4-WaveVector K = (w/c,k) K=P/h [{rad}/m]
4-Gradient 9 = (d/c,-V) d=-iK [1/m]

The Axioms of SR, which are actually GR limiting-cases, lead us to the use of Minkowski Space
and Physical 4-Vectors, which are elements of Minkowski Space (4D SpaceTime).

Empirical Observation leads us to the transformation relations between the components of these
SR 4-Vectors, and to the chain of relations between the 4-Vectors themselves

These relations all turn out to be Lorentz Invariant Constants, whose values are measured empirically.

The combination of these SR objects and their relations is enough to derive RQM.



SR —- QM

SRQM:

4-Vector SRQM Interpretation
of QM

e OR—QM Interpretation Simplified . %=

of Physical 4-Vectors

SRQM: The [SR—QM] Interpretation of Quantum Mechanics

SR Axioms: Invariant Interval + (c) as Physical Constant lead to SR,
although technically SR is itself the low-curvature limiting-case of GR

http://scirealm. org/SRQM pdf

{c,T,m.,h,i}: All Empirically Measured SR Lorentz Invariants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants
4-Position R = (ct,r) = (R'R) = (ct)’
4-Velocity U =v(c,u) = (U-9)R=dR/dt (U-U) = (c)?
4-Momentum P=(Elc,n) =moU (P-P) = (moC)?
4-WaveVector K= (w/ck) =Ph (K-K) = (moc/h)?
4-Gradient d=(d/c,-V) =-iK (0

|v|<<C

9) = -(moc/h)? = KG Eqn — RQM—QM

SR + Emipirically Measured Physical Constants lead to RQM via the Klein-Gordon Eqgn,

and thence to QM via the low-velocity limit { [v|] << c }, giving the Schrodinger Eqn.

The relation also leads to the Dirac, Maxwell, Pauli, Proca, Weyl, & Scalar \Wave QM Eqgns.

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
RoadMap of SR (4-Vectors)

of Physical 4-Vectors John B. Wilson
{
4-Position
R=(ct,r)
=<Event> ®----- >
A 4-Velocity
U=y(c,u)
4-Gradient
0=(d/c,-V)
M--» o>
4-WaveVector 4-Momentum
K=(w/c,k) P=(mc,p)=(E/c,p)
SR 4-Tensor SR 4-Vector V] = v = =
(2,0)-Tensor T 0(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar VIVT;a\c/;%‘prP ] . ?(“VoT)uz _ VT\:f - (T,oo)z

(0,0)-Tensor S
orentz Scala

= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
s  ROAAMap of SR (Connections)

of Physical 4-Vectors John B. Wilson

o
— 4-Position
av[Rl‘I ]=/\uv R=(Ct,r)
J"[R]=n" Lorentz =<Event> ®------ >
Minkowski Transfor
A Metric 4-Velocity
: | U=y(c,u)
4-Gradient U-9=d/dt=yd/dt
0=(d/c,-V) Derivative
phase,free Hfm”tgn_
acopl
-a[q) - -a[Saction,free P Pr = -9[S]
Plane-Waves -d[S =P
Kz = -9[®] action T
M- > o>
4-\WaveVector 4-Momentum
K=(w/c,k) P=(mc,p)=(E/c,p)
SR 4-Tensor SR 4-Vector V] = v = =
(2,0)-Tensor T 0(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar VIVT;a\c/;%‘prP ] . ?(“VoT)uz _ VT\:f - (T,oo)z

(0,0)-Tensor S
orentz Scala

= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V
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4-Vector SRQM Interpretation
of QM

SRQM Diagram:

A Tensor Study
of Physical 4-Vectors

RoadMap of SR

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4
SR SpaceTime Metric

SR Lorentz Transforms

SR Action — 4-Momentum
SR Phase — 4-WaveVector

SR Proper Time
SR & QM Waves A

BV[R”']=/\”!V
d"[R"]=n" Lorentz

Minkowski

4-Gradient

U-9=d/dt=yd/dt
8=(3/c,-V)

Derivative

action,free
PIane—Waves
Kr = -9[®]

actlon] B

MY >

4-WaveVector

K=(w/c,k)

SR Wave <Events> have
4-WaveVector=Substantiation
oscillations proportional to
mass:energy & 3-momentum

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4- CoVector

SR 4-Tensor

(2,0)-Tensor T+ SR 4-Scalar

(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T,

Hamilton-
Jacobi
P, - o]

SciRealm.org
John B. Wilson

(Free Particle)

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime
(

4-Position
R=(ct,r) 9.
=<Event> yd/dt[..] PRSI -
ProperTime <Events> have 4-Velocity=Motion

4-Velocity in SR SpaceTime as both
U=y(c,u) e R

@ @Emstem

Wave VeI00|ty E = mc? = ymoc?

Derivative

group phase

o>

4-Momentum
P=(mc,p)=(E/c,p)

SR Particle <Events> have
4-Momentum=Substantiation
mass:energy & 3-momentum

Trace[T"] = N T =TH =T
VAV = VPNV = [(V)° - vev] = (V)2
= Lorentz Scalar



4-Vector SRQM Interpretation

SRQM Diagram:
RoadMap of SR (Free Particle)
S e e with Magnitudes SR

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

[ ) R-R = (ct)*rr
4-Position = (cT)?

R=(ct,r)

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4
SR SpaceTime Metric ‘
SR Lorentz Transforms 3V[Ru‘]= /\u’v

SR Action — 4-Momentum HTRV]=nHY _ e

SR Phase — 4-WaveVector Ie/li[rlﬁ(]ovyski Lorentz =<Event> [ yd/dt[..] PSUN— -

SR Proper Time A ProperTime 4-Veloci <Events> have 4-Velocity=Motion
SR & QM Waves Derivative -Velocity Frgs SpaceTime as both

U=y(c,u) e R
"P-R=S

action,free

4-Gradient U-9=d/dt=yd/dt
9=(9/c,-V) Derivative

- = (3/c)-V-V

Hamilton- @
Jacobi Einstein

_ 2 phase,free
: (aT/C) -a[q) ha ‘ -a[Saction,free P Pr=-9[S] Wave Velocity E = mc? = ym,¢?
Plane-Waves - = * =c?
d’Alembertian Ky = -0[®] a[SactiOn] PT Vgroup phase
Free Particle M- > ®--»>
TS L e 4-\WaveVector 4-Momentum
K=(w/c,k) P=(mc,p)=(E/c,p)

@ P:-P = (E/C)z-pp

SR Wave <Events> have K-K = (w/c)*-k-k

4-WaveVector=Substantiation SR Particle <Events> have

oscillations proportional to = (Wo/C)>? 4-Momentum=Substantiation = (m.c)* = (E./c)*
mass:energy & 3-momentum mass:energy & 3-momentum

SR 4-Tensor SR 4-Vector T V] — Wo— TH —
o v o =V =(° SR 4-Scalar race[T"] = n, T" =T, =T
(2,0)-Tensor T (1 ,0) Tensor V¥ =V (V ,V) \VAVE=S: Vpr]pv v — [(V0)2 _ V'V] = (VOO)Z

(0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR —- QM

SRQM Diagram:

A Tensor Study
of Physical 4-Vectors

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4 :
SR SpaceTime Metric

SR Lorentz Transforms

SR Action — 4-Momentum
SR Phase — 4-WaveVector

SR Proper Time
SR & QM Waves A

o R-R = (ct)%rr

4-Position = (cT)?
R=(ct,r)

=<Event>

A[RY]=AY,

J"[R"]=n"" Lorentz
Minkowski ,
ProperTime

Derivative

U-0=d/dt=yd/dt
Derivative

-0 = (3/c)>-V-V

Hamilton- @
Jacobi

RoadMap of SR (EM Potential)

@Einstein

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

ay
U-u= YZ(CZ-U'U) FAY-0"AF=FW
= (c)? 4-Tensor

<Events> have 4-V§alocity=Motion

4-Velocity R SpaceTime as both
U=y(c,u) FER R

D e

EM !
4-EMVectorPotential
A=(op/c,a)

a / 2 phase,free

= C - _

( ! ) a[CD a - a[Saction,free P P:=-0[S] Wave Velocity E=mc?= ymoC2 EM 5
Plane-Waves O[S =P v *v o =c?

d’Alembertian Kr = -9[®] action T geIp - Ese Charge

Particle W - o --»>

Wave Equation

in EM Potential 4-Momentum

4-WaveVector

K=(w/c,k)

SR Wave <Events> have K-K = (w/c)*k-k @ P-P = (E/c)*-p-p

4-Wav§Vector=SupstantiatidﬁT-(qwO/Eo)A)-(KT-(qwo/Eo)A) SR Particle <Events> have = (PT-qA)-(PT-qA)
oscillations proportional to = (wo/c)? 4-Momentum=Substantiation = (mc)? = (E./c)’
mass:energy & 3-momentum mass:energy & 3-momentum

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector

SR 4-Tensor

(2,0)-Tensor T+ SR 4-Scalar

(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T,

P=(mc,p)=(E/c,p)

4-PotentialMomentum
Q=(V/c,q)=q(9/c,a)

4-TotalMomentum
P =(E /c,p )=((E+q@)/c,p+qa)

4-TotMom Conservation
P, = (P+Q) = (P+qA)

Minimal Coupling
P =(P.-qA) = (P,-Q)

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar



4-Vector SRQM Interpretation

SRQM Diagram:
Special Relativity — Quantum Mechanics
s . ROadMap of SR—QM (EM Potential) e

SR —- QM

4-Gradient=Alteration of SR <Events> *START HERE*: <Events> have 4-Posi£ion=Location in SR SpaceTime
SR SpaceTime Dimension=4 | ® R-R = (ct)*rr -
SR SpaceTime Metric ‘ c . 4-Position = (cT)?
SR Lorentz Transforms av[R”']=/\”!v R=(ct.1) (19) U-u-= VZ(C:-u-u) AV-9'AV=FH
SR Action — 4-Momentum T RV]=nH _ ’ = (c) 4-Tensor
SR Phase — 4-WaveVector : I?/I[F\:(] n Ki Lorentz =<Event> R yd/dt[..] FUSRNEE > 0
SR Proper Time I ProperTime B <Events> have 4-Velocity=Motion
A ' p 4-Velocit K
SR & QM Waves f ) Derivative l] e(OCI )y in SR SpaceTime as both
i - (AN particles & waves
SR — RQM Klein-Gordon  pMeIeTe[IYal: U-9=d/dt=yd/dt -R=S :
Relativistic Quantum 9=(8/c,-V) . ‘R=0 c :
Particle in EM Potential { Derivative R ‘R=S_, e
d’Alembertian Wave Equation i EM y
00 = (at/c)z-V-_V 4-EMVectorPotential
= (3T+((|q§h;;A)-(?ﬁ(m/]r/]}’)\z)A) phase free Hamilton- @ @ . A=(¢/c,a)
= -(Wo/C)” = =-(MoC. R ' Jacobi instein
= (9./ 2 ‘(_vl)' -a[cD e -a[Saction,free P Pr=-9[S] Wave Velocity E=mc’= 'Ym002= YE, q
= (8-/c) Complex 29[S =P V.oV =c Elr\:l
Limit: { |v|<<c Plane-Waves action= T T Eligf=
(ihdr) ~ [ g + (MeC?) + (A V1+qa)?/(2m,) ] Kr=-0l®] W e @ -->
: N . S .
\(,:/?ti‘%ote[)r:/ti; (\';‘zv;:qu)( rﬁgz?)") ] 4-WaveVector 4-Momentum 4-PotentialMomentum
=Schrédinger QM Equation (EM potential) K=(w/c,k) Einstein, de Broglie P=(mc,p)=(E/c,p) Q=(V/c,q)=q(9/c,a)
**[ SR — QM |** P = hK o
W — ! 1/h 4-TotMom Conservation Minimal Coupling
SR Wave <Events>have KK K/F: ,(Aw/ C&Z'k I;ﬁ A (1h) P-P = (E/c)*p-p P, = (P+Q) = (P+gA) P =(P.-qA) = (P.,-Q)
4-Wﬁlv?Vector=St:tpstartl‘latlon =( T'(q ) 2) ( T'(q 2) ) SR Particle <Events> have = (PT-qA)-(PT-qA) 4-TotalMomentum
osciliations proportional to = (moc/h)” = (wo/C) 4-Momentum=Substantiation = (mc)? = (E./c)? = =((E+ +
mass:energy & 3-momentum mass:energy & 3-momentum ( ) ( ) PT (ET/C’pT) ((E q(p)/c’p qa)

L W = Wo— TH —
(2,0)-Tensor T (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Existing SR Rules V_VT;a\c/;perET 1 . ?(lz;r)z . V-.rvij - (1\-/0 Y
(1,1)-Tensor T* or T, SR 4-CoVector (0,0)-Tensor S Quantum Principles N rentoa .

SR 4-Tensor SR 4-Vector

orentz Scala



4-Vector SRQM Interpretation

SRQM: The Empirical 4-Vector Facts

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

SR 4-Vector Empirical Fact Discoverer Physics

Newton+ [t & ] Time & Space Dimensions

4-Position R = <Event> Einstein [ R=(ct,r)] SpaceTime

Newton [ v=dr/dt ] Calculus of motion

4-Velocity U = dR/dr Einstein [ U=y(c,u)=dR/dt ] Gamma & Proper Time

Newton [ p=mv ] Classical Mechanics
Einstein [ P=(E/c,p)=m,U ] SR Mechanics

Planck [h] Thermal Distribution
4-WaveVector K= P/h Einstein [ E=hv=hw ] Photoelectric Effect (h=h/21)
de Broglie [ p=hk ] Matter Waves

4-Gradient d=-iK Schrédinger [ w=ig;, k=-iV ] (SR) Wave Mechanics

4-Momentum P =mJ,U

(1) The SR 4-Vectors and their components are related to each other via constants
(2) We have not taken any 4-vector relation as axiomatic, the constants come from experiment.

(3) c, T, m,, h come from physical experiments, (-i) comes from the general mathematics of waves




4-Vector SRQM Interpretation
of QM

The SRQM 4-Vector Relations Explained

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

SR 4-Vector Empirical What it means in SRQM... Lorentz
Fact Invariant

4-Position R = (ct,r) R= SpaceTime as Unified Concept c = LightSpeed
<Event>

4-Velocity U = y(c,u) U =dR/dt Velocity is ProperTime Derivative T =1, = ProperTime
4-Momentum P = (E/c,p) P =myU Mass:Energy-Momentum Equivalence m, = RestMass

4-WaveVector K = (w/c,k) K= P/h Wave-Particle Duality h = UniversalAction

4-Gradient 9@ = (d/c,-V) =-iK Unitary Evolution, Operator Formalism i = ComplexSpace

Three old-paradigm QM Axioms:

Particle-Wave Duality [(P)=h(K)], Unitary Evolution [0=(-i)K], Operator Formalism [(9)=-iK] are actually just empirically-found constant
relations between known SR 4-Vectors.

Note that these constants are in fact all Lorentz Scalar Invariants.

Minkowski Space and 4-Vectors also lead to idea of Lorentz Invariance. A Lorentz Invariant is a quantity that always has the same value,
independent of the motion of inertial observers.

Lorentz Invariants can typically be derived using the scalar product relation.

U-U=c? U-9=d/dt, P-U=m.? etc.

A very important Lorentz invariant is the Proper Time 1, which is defined as the time displacement between two points on a worldline that is
at rest wrt. an observer. It is used in the relations between 4-Position R, 4-Velocity U = dR/dt, and 4-Acceleration A = dU/dt.




4-Vector SRQM Interpretation
of QM

SRQM: The SR Path to RQM
Follow the Invariants...

of Physical 4-Vectors John B. Wilson

SR 4-Vector Lorentz Invariant What it means in SRQM...

4-Position R-R = (ct) - rr = (ct)? SR Invariant Interval

4-\elocity U-U = v*(c*- u-u) = ¢* Events move into future at magnitude c
4-Momentum P-P = (m,c) Einstein Mass:Energy Relation

4-WaveVector K-K = (m.c/h)* = (w./c) Matter-Wave Dispersion Relation
4-Gradient 99 = (-imoc/h)* = ~( The Klein-Gordon Equation — RQM!

U =dR/dt

Remember, everything after 4-Velocity was just a constant times the last 4-vector,
and the Invariant Magnitude of the 4-Velocity is itself a constant

P =m,U, K=P/h,d=-iK, soe.g. P-P = m,U:m,U = m,°U-U = (m,c)?

The last equation is the Klein-Gordon RQM Equation, which we have just derived without
invoking any QM axioms, only SR plus a few empirical facts




SR —- QM

SRQM: Some Basic 4-Vectors

4-Vector SRQM Interpretation
of QM

4-Momentum, 4-WaveVector,

s d=POsItion, 4-Velocity, 4-Gradient, Wave-Particle

of Physical 4-Vectors

P-P = (m,c)*= (Eo/C
4-Momentum

| P=(mC,p)=(E/C,p)
P=-a[Saction free]

/

IP'dR =-S Rest Mass:Energy

action,free

E=mc? .
/ @ 0 o0 'S
o » w [
4-Position i } WolEo = Einéteinll
R=(ct,r) Pe= F:cla(g ie

RestAngFrequency
Wave Velocity

*y -
group  phase

phase,plane

4-WaveVector
| K=(w/c,k)=(w/c,wﬁ/vphase)

K=-3[® ]

phase,plane

A\

See Hamilton-Jacobi Formulation of Mechanics

for info on the Lorentz Scalar Invariant SR Action.
{P = (E/c,p) = -0[S] = (-d/cat[S], V[S]) }

{temporal component} E = -9/0t[S] = -0 [S]

{spatial component} p = V[S]

**Note** This is the Action (Saeion) for a free particle.
Generally Action is for the 4-TotalMomentum P+ of a system.

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v)
SR 4-CoVector
0,1)-Tensor V, = (vo,-V

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T,

action,free:

Existing SR Rules
Quantum Principles

SciRealm.org
John B. Wilson

Treating motion like a particle
Moving particles have a 4-Velocity
4-Momentum is the negative 4-Gradient of the SR Action (S)

a SpaceTime
P__a[saction,free] y a. R=4
A ," Dimension

4-Gradient

2 oIR]=n*"—Diag[1,-1,-1,-1]

Minkowski Metric
Treating motion like a wave

wm“ ProperTime
¥ U-9=d/dT=yd/dt
Derivative
Moving waves have a 4-Velocity

4-WaveVector is the negative 4-Gradient of the SR Phase (®P)

a=(3t/c,-V)—>(3t/c,-3x,—ay,-6Z
d’Alembertian
-0 = (at/c)2 -V-V =(d.Ic

K=-0[® ]

phase,plane

See SR Wave Definition

for info on the Lorentz Scalar Invariant SR WavePhase.

{ K= (w/c,k) = -0[®] = (-dlcot[P], V[P]) }

{temporal component} w = -d/at[P] = -at[CD]

{spatial component} k = V[®]

**Note** This is the Phase (®P) for a single plane-wave.

Generally WavePhase is for the 4-TotalWaveVector Ky of a system.

Trace[T"] = N T =TH =T
V-V = Ve VY = [(VO)? - vev] = (Vo)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM: Wave-Particle
Diffraction/Interference Types

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

P-P = (m.c)*= (E./c

4-Momentum
P=(mc,p)=(E/c,p)

The 4-Vector Wave-Particle relation is inherent in all particle types: Einstein-de Broglie P = (E/c,p) = hK = h(w/c,k).

All waves can diffract: Water waves, gravitational waves, photonic waves of all frequencies, etc. P=3IS
In all cases: experiments using single particles build the diffraction/interference pattern over the course many iterations. =-0[ action free]

Photon/light Diffraction: Photonic particles diffracted by matter particles.
Photons of any frequency encounter a “solid” object or grating.

Einstein
Most often encountered are diffraction gratings and the famous double-slit experiment

de Broglie
P=hK

Matter Diffraction: Matter particles diffracted by matter particles.
Electrons, neutrons, atoms, small molecules, buckyballs (fullerenes), macromolecules, etc.

have been shown to diffract through crystals.

Crystals may be solid single pieces or in powder form. 4-WaveVector

K=(w/c,k)=(w/c,u)ﬁ/vp

]

)

hase
Kapitsa-Dirac Diffraction: Matter particles diffracted by photonic standing waves. K=-9[®
Electrons, atoms, super-sonic atom beams have been diffracted from resonant standing waves of light.

phase,plane

Photonic-Photonic Diffraction?: Delbruck scattering
Light-by-light scattering/two-photon physics/gamma-gamma physics.
Normally, photons do not interact, but at high enough relative energy, virtual particles can form which allow interaction.

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] = N T =TH =T
V-V = Ve VY = [(VO)? - vev] = (Vo)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR — QM 4-Vector SRQM Interpretation

Hold on, aren't you getting the “h” from
A Tensor Study a QM AXiom? SciRealm.org

of Physical 4-Vectors John B. Wilson

SR 4-Vector SR Empirical Fact What it means...
4-WaveVector K = (w/c,k) = (ou/c,our“\/vpha ) = (W./c*)U Wave-Particle Duality

se

h is actually an empirically measurable quantity, just like e or c. It can be measured classically from the photoelectric effect, the inverse photoelectric
effect, from LED's (injection electroluminescence), from the Duane-Hunt Law in Bremsstrahlung, Electron Diffraction in crystals, the Watt/Kibble-
Balance, etc.

For the LED experiment, one uses several different LED's, each with its own characteristic wavelength.

One then makes a chart of wavelength (A) vs threshold voltage (V) needed to make each individual LED emit.

One finds that: {A = h*c/(eV)}, where e=ElectronCharge and c=LightSpeed. h is found by measuring the slope.

Consider this as a blackbox where no assumption about QM is made. However, we know the SR relations {E = eV}, and {Af = c}.
The data force one to conclude that {E = hf = hw)}.

Applying our 4-Vector knowledge, we recognize this as the temporal components of a 4-Vector relation. (E/c,...) = h(w/c,...)

Due to manifest tensor invariance, this means that 4-Momentum P = (E/c,p) = hK = h(w/c,k) = h*4-WaveVector K.

The spatial component (due to De Broglie) follows naturally from the temporal component (due to Einstein) via to the nature of 4-Vector mathematics.

This is also derivable from pure SR 4-Vector (Tensor) arguments: P = m,U = (E./c*)U and K = (w,/c?)U

Since P and K are both Lorentz Scalar proportional to U, then by the rules of tensor mathematics, P must also be Lorentz Scalar proportional to K.
i.e. Tensors obey certain mathematical structures:

Transitivity{if a~b and b~c, then a~c} & Euclideaness: {if a~c and b~c, then a~b} **Not to be confused with the Euclidean Metric**

This invariant proportional constant is empirically measured to be (h) for each known particle type, massive (m,>0) or massless (m,=0):
P = moU = (Eo/c®)U = (Eo/c*)(wo/c®)K = (Eo/wo)K = (YEo/ywo)K = (E/w)K = (h)K




SR — QM 4-Vector SRQM Interpretation
of QM

Hold on, aren't you getting the “K” from
a QM Axiom?

of Physical 4-Vectors John B. Wilson

SR 4-Vector SR Empirical Fact What it means...
4-WaveVector K = (w/ck) = (w/c,wilv )= (Wo/c®)U  Wave-Particle Duality

K is a standard SR 4-Vector, used in generating the SR formulae:

Relativistic Doppler Effect:

Wobs = Wemit / ['Y(1 - B COS[e])], k = (U/C for photons
Relativistic Aberration Effect:

cos[8,,,] = (cos[B,,] + BI) / (1 + |BlcosB, )

The 4-WaveVector K can be derived in terms of periodic motion, where families of
surfaces move through space as time increases, or alternately, as families of
hypersurfaces in SpaceTime, formed by all events passed by the wave surface. The
4-WaveVector is everywhere in the direction of propagation of the wave surfaces.

K=-0® ]
phase
From this structure, one obtains relativistic/wave optics without ever mentioning QM.




4-Vector SRQM Interpretation

Hold on, aren’t you getting the “-i”’ from

ATensor Study a Q M AXi O m ?

of Physical 4-Vectors

SR 4-Vector SR Empirical Fact What it means...

4-Gradient d = (d/c,-V)=-iK  Unitary Evolution of States
Operator Formalism

[0 = -iK] gives the sub-equations [d; = -iw] and [V = ik], and is certainly the main equation that
relates QM and SR by allowing Operator Formalism. But, this is a basic equation regarding the
general mathematics of plane-waves; not just quantum-waves, but anything that can be
mathematically described by plane-waves and superpositions of plane-waves...

This includes purely SR waves, an example of which would be EM plane-waves (i.e. photons)...

Y(t,r) = ae’Ni(k-r-wt)]: Standard mathematical plane-wave equation

alw(t.r)] = alaei(k-r-wt)] ]

= iw)w(tr), or [8 = -iw]
VIy(t,r)] = V[aei(k-r-wt)] ]

(-
(ik)w(t,r), or [V = iK]

(-iw)[ae?Mi(k-r-wt)] ] =
= (ik)[aei(k-r-wt)] ] =

In the more economical SR notation:
JW(R)] = 9[ae(-IK-R)] = (-iIK)[ae(-iIK-R)] = (-iIK)@(R), or [d = -iK]

This one is more of a mathematical empirical fact, but regardless, it is not axiomatic.
It can describe purely SR waves, again without any mention of QM.

of QM

SciRealm.org
John B. Wilson




SR — QM 4-Vector SRQM Interpretation

Hold on, aren't you getting the “9” from
A Tensor Study a QM AXiom? SciRealm.org

of Physical 4-Vectors John B. Wilson

SR 4-Vector SR Empirical Fact What it means...
4-Gradient d = (d/c,-V)=-iIK 4D Gradient Operator

[0 = (d/c,-V )] is the SR 4-Vector Gradient Operator. It occurs in a purely relativistic context
without ever mentioning QM.

d-X = (d/c,-V )-(ct,x) = (a/c[ct] - (-V-x)) = (@t] + V-x) (1)+(3) = 4
The 4-Divergence of the 4-Position (o-X = a“r]wXV)gives the dimensionality of SpaceTime.

d[X] = (a/c,-V )(ct,x) = (d/c[ct],-V [x]) = Diag[1,-1] = n*
The 4-Gradient acting on the 4-Position (9[X] = ¢"[X"]) gives the Minkowski Metric Tensor

d-J = (adc,-V )(pc.j) = (a/clpc]- (-Vj)) = (@lp] + V+j) =0

The 4-Divergence of the 4-CurrentDensity is equal to O for a conserved current. It can be
rewritten as (d[p] = - V-j), which means that the time change of ChargeDensity is balanced
by the space change or divergence of CurrentDensity. It is a Continuity Equation, giving
local conservation of ChargeDensity. It is related to Noether's Theorem.




SR — QM 4-Vector SRQM Interpretation

Hold on, doesn’t using “0” in an
Equation of Motion presume a QM Axiom?

SR 4-Vector SR Empirical Fact What it means...
4-(Position)Gradient dr =0 = (d/c,-V) =-iK 4D Gradient Operator

Klein-Gordon Relativistic Quantum Wave Equation
9-9[W] = -(m.c/h) [W]= -(w./c) W]

Relativistic Euler-Lagrange Equations
dr[L] = (d/d1)dy[L]: {particle format}
Ol L] = (r) Fagon[L]: {density format}

[0 = (d/c,-V)] is the SR 4-Vector (Position)Gradient Operator.

It occurs in a purely relativistic context without ever mentioning QM.

There is a long history of using the gradient operator on classical physics functions, in this
case the Lagrangian. And, in fact, it is another area where the same mathematics is used in
both classical and quantum contexts.




SR —- QM

A Tensor Study
of Physical 4-Vectors

The QM Schrédinger Relation
=iho

This is derived from the
combination of:

The Einstein-de Broglie Relation
P =hK

4-Vector SRQM Interpretation
of QM

SRQM Diagram:
RoadMap of SR—>QM
QM Schrodinger Relation

SciRealm.org
John B. Wilson

PA-IAI=F

M V]—=p HV S a RT4 4_RP=O(§.IttI:,))n U 3[ ] Pszﬁ\e/;-[:\?;e EM Faraday
A mension ’ d/dtf.. 4-Tensor
Minkowski

4-Velocity
U- a_d/dT U=’Y(C,U)

Complex Plane-Waves 4-Gradient Proper Tlme =t
e D i~
= (E/ep) = ih? =ih(/c-V) ‘ @ 4-EMVectorPotential
{temporal} E = ihg, A=(¢p/c,a)
{spatial} p = -ih V Wave Velocity .
action,free: v * =G/ 2
a group  phase ESinG
These are the standard QM Complex act.on]‘ E'r\mﬂargec.
Schrédinger Relations. [ 2' Plane Waves W - >

a—-iK

It is this Lorentz Scalar Invariant A-WaveVector i 4-Momentum P_=(P+Q) 4-PotentialMomentum
relation (ih) which connects the K=(w/c,K) de Broglie P=(mc,p)=(E/c,p) EfiGatL) Q=(V/c,q)=q(¢/c,a)
4-Momentum to the 4-Gradient, ’ P=hK Minimal Coupling
making it into a QM operator. K=P/h P=(P -dA) o
1/

Note that these 4-Vectors are (g iR E) ( — )
already connected in multiple 4-TotalMomentum
ways in standard SR. Schrodi Relati — —

y A P.=(E Jc.p,)=((E+q9)/c,p+qa)

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)

SR 4- CoVector

Trace[T"] =
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar

SR 4-Scalar N T™ =T =T
(0,0)-Tensor S

orentz Scala

Existing SR Rules
Quantum Principles




SR - QM 4-Vector SRQM Interpretation
of QM

Review of SR 4-Vector Mathematics

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
4-Gradient @ = (d/c,-V) 9-9 = (8/c)? - V-V = -(w./c)?
4-Position X = (ct,x) X-X = ((ct)* - x-x) = (ct,)* = (ct)*: Invariant Interval Measure
4-Velocity U = y(c,u) U-U = y?(c* - u-u) = (c)?

4-Momentum P = (E/c,p) = (E./c*)U P-P = (E/c)? - p-p = (EJ/C)?
4-WaveVector K = (w/c,k) = (w./c>)U  K-K = (w/c)® - k'k = (w./c)?

0-X = (d/c,-V)-(ct,x) = (a/c[ct]-(- V -x)) = 1-(-3) = 4: Dimensionality of SpaceTime

U-9 = y(c,u)(d/c,-V) = y(ortu- V) = y(d/dt) = d/dt: Derivative wrt. ProperTime is Lorentz Scalar
d[X] = (d/c,-V )(ct,x) = (a/c[ct],-V[x]) = Diag[1,-1] = n*:  The Minkowski Metric

d[K] = (d/c,-V )(w/c,k) = (d/c[w/c],-V[K]) = [[0]]

K-X = (w/c,k)(ct,x) = (wt - k-x) = ©: Phase of SR Wave

J[K-X] = 9[K]-X+K-9[X] = K = -9[0]: Neg 4-Gradient of Phase gives 4-WaveVector
(9-9)[K-X] = ((8/c)* - V-V )(wt - k-x)=0

(0-9)[K-X] = 0-(9[K-X]) = 9-K = O: Wave Continuity Equation, No sources or sinks
let f = ae”b(K-X): Standard mathematical plane-waves if { b = -i }
then d[f] = (-iIK)ae?-i(K-X) = (-iIK)f: (9 = -iK): Unitary Evolution, Operator Formalism

and 9-9[f] = (-)*(K-K)f = -(w./c)f:

(0-9) = (d/c)* - V-V = -(w./c)*: The Klein-Gordon Equation — RQM

Note that no QM Axioms are assumed: This is all just pure SR 4-vector (tensor) manipulation



SR - QM 4-Vector SRQM Interpretation
of QM

Review of SR 4-Vector Mathematics

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

Klein-Gordon Equation: 8:9 = (d/c)* - V:V = -(m.c/h)* = -(W./C)* = -(1/Ac)?

Let X; = (ct+cAt,x), then d[X+] = (d/c,-V )(ct+cAt,x) = Diag[1,-13)] = 9[X] = N+
so d[X:] = 9[X] and 9[K] = [[0]]

let f = ae™-i(K-Xy), the time translated version
(0-0)If]

0-(a[f])

o-(d[eMi(K-X71)])

0-(e™-i(K-Xr)o[-i(K-Xr1)])

-id-(fo[K-X1])

-ig[flo[K-X+])+¥(2-9)[K-Xq])

(-i)f(O[K-X1])* + O

(i) (B[K]- X1 + K-3[X1])?

(-i)*f(0+K-9[X])*

(-i)*f(K)’

-(K-K)f

-(Wo/C)*f



SR - QM 4-Vector SRQM Interpretation

What does the Klein-Gordon Equation
give us?... A lot of RQM!

of Physical 4-Vectors John B. Wilson

Relativistic Quantum Wave Equation: 9-9 = (8/c)* - V-V = -(m,c/h)* = (im,c/h)? = -(w,/C)?

The Klein-Gordon Eqgn is itself the Relativistic Quantum Equation for spin=0 particles (Scalars)
Factoring the KG Eqgn leads to the RQM Dirac Equation for spin=1/2 particles (Spinors)
Applying the KG Eqn to a SR 4-Vector field leads to the RQM Proca Equation for spin=1 particles (4-Vectors)

Taking the low-velocity-limit of the KG leads to the standard QM non-relativistic Schrodinger Eqgn, for spin=0
Taking the low-velocity-limit of the Dirac leads to the standard QM non-relativistic Pauli Eqn, for spin=1/2

Setting RestMass {m, — 0} leads to the RQM Free Wave, Weyl, and Free Maxwell Eqns

In all of these cases, the equations can be modified to work with various potentials by using more
SR 4-Vectors, and more empirically found relations between them, e.g. the Minimal Coupling Relations:
4-TotalMomentum P _ = P + gA, where P is the particle 4-Momentum, (q) is a charge, and A is a 4-VectorPotential,

typically the 4-EMVectorPotential.

Also note that generating QM from RQM (via a low-energy limit) is much more natural than attempting to “relativize or
generalize” a given NRQM equation. Facts assumed from a non-relativistic equation may or may not be applicable to
a relativistic one, whereas the relativistic facts are still true in the low-velocity limiting-cases. This leads to the idea
that QM is an approximation only of a more general RQM, just as SR is an approximation only of GR.



4-Vector SRQM Interpretation
of QM

Relativistic Quantum Wave Eqgns.

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
Spin-(Statistics) Relativistic Light-like Relativistic Matter-like Non-Relativistic Limit (|v|<<c) Field
Bose-Einstein=n Mass =0 Mass >0 Mass >0 Representation

Fermi-Dirac=n/2

0-(Boson) Free Wave Klein-Gordon Schrodinger Scalar
N-G Bosons Higgs Bosons, maybe Axions Common NRQM Systems (0-Tensor)
Y = YIK.X"]
(@9)\W=0 (98- + (moc/h)? )W = [9,+imc/h][d"-im,c/M]W =0 (ihoH[M2V22m-V)W = 0 = Y]
with minimal coupling with minimal coupling
((ihd, -q@)* -(Moc?)? - c3(-ihV -qa)’)¥ = 0 (ihd: — q@ -[(p-ga)?i2m,)¥ =0

?Axions? are KG with EM invariant src term
(8- + (Mao)? )W = -ke-b = -kcSqrt[Det[F"]]

L = (-h*/m,)0"¥*9, W-m,c?P*W

1/2-(Fermion) Weyl Dirac Pauli Spinor
Idealized Matter Neutinos Matter Leptons/Quarks Common NRQM Systems w Spin ¥ = WK,X"
= Y[o]
(o-9)W=0 (iy-9 - mec/h)¥Y =0 (ihd — [(o-p)?)/2m,)¥ = 0
factored to (y-9 +imec/R)P =0 with minimal coupling
Right & Left Spinors (ihd: - g — [(o(p-qa))’l/2m,)¥ = 0
(0-0)Wr=0, (0-0)¥W.=0 with minimal coupling

- (iy-(9+igA) - mc/)¥ = 0
L= quTRO'“ap‘pR , L= i‘PTLo“ap‘PL o o
L = ihc®y*a,¥- m.c2PY

1-(Boson) Maxwell Proca 4-Vector
Photons/Gluons Force Bosons (1-Tensor)
A = A" = A[K XY
(0-90)A =0 free (0-9 + (moc/hy* )A=0 = A'[P]
where 0-A =0

(0-9)A = uoJ w current src
where 8-A =0 (' A-"AM)+(moc/h) A =0

(3-9A = uePV'Y QED



SR —- QM

4-Vector SRQM Interpretation
of QM

Factoring the KG Equation -, Dirac Egn

A Tensor Study
of Physical 4-Vectors

Klein-Gordon Equation: 8-@ = (d/c)? - V:V = -(m,c/h)?

Since the 4-vectors are related by constants, we can go back to the 4-Momentum description:

(@dc)*- V-V = -(moc/h)?
(E/c)* pp = (Moc)’
E% c?prp - (M,c?)? =0

Factoring: [E-cap-B(M,c)][E +cap+B(m,c)]=0

E & p are quantum operators,

a & B are matrices which must obey a = -Ba, aa = -aa, a’=p*=1
The left hand term can be set to 0 by itself, giving...
[E-cap-B(m.c?) ] =0, which is one form of the Dirac equation

Remember: P* = (p°p) = (E/c,p) and o* = (a°,a) where a° = I
[E-cap-B(mc’)]=[ca’’-cap-B(mc’)]=[ca’P,-B(mc’)]=0
[ a*Py - B(moC) ] = [ih "0, - B(moc) ] =0

a"d, = - B(im.c/h)

Transforming from Pauli Spinor (2 component) to Dirac Spinor (4 component) form:
Dirac Equation: (y"d,)[w] = -(im.c/h)y

Thus, the Dirac Eqn is guaranteed by construction to be one solution of the KG Eqn

SciRealm.org
John B. Wilson

The KG Equation is at the heart of all the various relativistic wave equations, which differ based on mass and spin values,

but all of them respect E*- c?p-p - (m.c?)? =0




SR — QM 4-Vector SRQM Interpretation

SRQM Study: Lots of Relativistic Quantum
Wave Equations: A lot of RQM!

of Physical 4-Vectors John B. Wilson

Relativistic Quantum Wave Equation: 9-9 = (8/c)* - V-V = -(m,c/h)* = (im.c/h)? = -(w,/C)?
9-9 = -(Myc/h)?

The Klein-Gordon Eqn is itself the Relativistic Quantum Equation for spin=0 particles {Higgs} (4-Scalars)
Factoring the KG Eqn leads to the RQM Dirac Equation for spin=1/2 particles (4-Spinors)
Applying the KG Egn to a SR 4-Vector field leads to the RQM Proca Equation for spin=1 particles (4-Vectors)

Setting RestMass {m, — 0} leads to the:
RQM Free Wave (4-Scalar massless)
RQM Weyl (4-Spinor massless)

Free Maxwell Eqns (4-Vector massless)

So, the same Relativistic Quantum Wave Equation is simply applied to different SR Tensorial Quantum Fields
See Mathematical _formulation_of the Standard Model at Wikipedia:

4-Scalar (massive) Higgs Field ¢ [0-0 = -(m.c/h)?]p Free Field Eqn—Klein-Gordon Egn 2-9[@] = -(M.c/h)’@
4-Vector (massive) Weak Field Z*,W* [8-9 = -(m.c/h)*]Z" Free Field Eqn—Proca Egn 9-9[Z"]= -(m.c/h)’Z"
4-Vector (massless m,=0) Photon Field A" [0-0 = O]A*" Free Field Eqn—EM Wave Eqgn d-d[A¥]= 0"

4-Spinor (massive) Fermion Field w [y-@ = -im.c/h]W¥Y Free Field Eqn—Dirac Eqn y-o[¥]= -(im.c/h)¥

*The Fermion field is a special case, the Dirac Gamma Matrices y*" and 4-Spinor field ¥ work together to preserve Lorentz Invariance.



SR - QM 4-Vector SRQM Interpretation

SRQM Study: Lots of Relativistic Quantum
Wave Equations: A lot of RQM!

of Physical 4-Vectors John B. Wilson

In relativistic quantum mechanics and quantum field theory, the Bargmann—Wigner equations describe free particles of arbitrary spin j, an
integer for bosons (j = 1, 2, 3 ...) or half-integer for fermions (j = V2, %, % ...). The solutions to the equations are wavefunctions,
mathematically in the form of multi-component spinor fields.

Bargmann-Wigner equations: (-y*P, + mc)m,r Wat. or.azj = 0

In relativistic quantum mechanics and quantum field theory, the Joos—Weinberg equation is a relativistic wave equations applicable to free
particles of arbitrary spin j, an integer for bosons (j = 1, 2, 3 ...) or half-integer for fermions (j = 7%, 7%, % ...). The solutions to the equations
are wavefunctions, mathematically in the form of multi-component spinor fields. The spin quantum number is usually denoted by s in
quantum mechanics, however in this context j is more typical in the literature.

Joos—Weinberg equation: [y*"**+*3 Py Py, ... Pyy + (mc)?] W =0
The primary difference appears to be the expansion in either the wavefunctions for (BW) or the Dirac Gamma’s for (JW)

For both of these: A state or quantum field in such a representation would satisfy no field equation except the Klein-Gordon equation.

Yet another form is the Duffin-Kemmer-Petiau Equation vs Dirac Equation
DKP Eqgn {spin 0 or 1}: (ihf%. - m,c)¥ = 0, with B as the DKP matrices
Dirac Egn (spin %2}: (ihy°d, - mec)W = 0, with y* as the Dirac Gamma matrices



4-Vector SRQM Interpretation
of QM

A few more SR 4-Vectors

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

SR 4-Vector Definition Unites
4-Position R = (ct,r); alt. X = (ct,x) Time, Space
4-Velocity U =vy(c,u) Gamma, Velocity

4-Momentum P = (E/c,p) = (mc,p) Energy:Mass, Momentum

4-WaveVector K= (w/c,k) = (w/c,wﬁ/vphase) Frequency, WaveNumber

4-Gradient d = (d/c,-V) Temporal Partial, Space Partial
4-VectorPotential A = (¢p/c,a) Scalar Potential, Vector Potential
4-TotalMomentum P, = (E/ctqg/c,p+qa) Energy-Momentum inc. EM fields
4-TotalWaveVector K., = (w/ct(a/M)e/ck+(g/h)a) Freq-WaveNum inc. EM fields

4-CurrentDensity J=(cp,j)=qJ Charge Density, Current Density

prob

4-ProbabiltyCurrentDensity J = (cp ) QM Probability (Density, Current Density)

= , j
can have complex values prob prob™“prob




4-Vector SRQM Interpretation
of QM

More SR 4-Vectors Explained

A Tensor Study
of Physical 4-Vectors

SR 4-Vector
4-Position
4-\elocity
4-Momentum
4-WaveVector
4-Gradient

4-VectorPotential
4-TotalMomentum
4-TotalWaveVector
4-CurrentDensity

4-Probability
CurrentDensity

Empirical Fact
R = (ct,r)

U =dR/dt

P = moU = (Eo/c?)U
K = P/h = (wo/c?)U
d = -iK

A = (p/c,a) = (¢./c*)U

Ptot =P+qA
K_ =K+ (/M)A
J=pU= qurob
oJd=0

prob = (Cpprob’jprob)

od =0

prob

SciRealm.org
John B. Wilson

What it means...
SpaceTime as Single United Concept

Velocity is Proper Time Derivative
Mass-Energy-Momentum Equivalence
Wave-Particle Duality

Unitary Evolution of States
Operator Formalism, Complex Waves

Potential Fields...
Energy-Momentum inc. Potential Fields
Freg-WaveNum inc. Potential Fields

ChargeDensity-CurrentDensity Equivalence
CurrentDensity is conserved

QM Probability from SR
Probability Worldlines are conserved
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Minimal Coupling = Potential Interaction ™
__Klein-Gordon Eqn — Schrodinger Eqn_

Pr=P+Q=P+gA

Minimal Coupling: Total = Dynamic + Charge_Coupled to 4-(EM)VectorPotential

K=io Complex Plane-Waves

P=hK Einstein-de Broglie QM Relations
P =iho Schrédinger Relations
P=(Elc,p) =Pr - qA = (E{/c-qo/c , p;-qa) =hK =iho

d = (d/c,-V) =or + (ig/h)A = (dn/ct(ig/h)g/c, -V + (ig/h)a) = -iIK = (-i/h)P

89 = (3/c)? - V2= «(moc/h)? :
P-P = (E/c)? - p*> = (m,C)*:

E? = (m.c?)® + c?p?:
E ~ [ (mo,c?) + p*/2m, ] :

(E+-q9)’ = (MoC?)* + c*(pr-qa)* :
(Er-q@) ~ [ (moc?) + (pr-ga)’/2m, | :

(ihdr-q@)? = (M.c?)* + c?(-ih V-qa)?:

(ihdr-q@) ~ [ (Mc?) + (-ih V-qa)?/2m, ] :

(ihd) ~ [ g +(MC®) + (ihV+ga)/2m, | :

(ihd) ~ [V + (ih V+ga)?/2m. ] :
(ihdr) ~ [V - (A V1)%2mo ] :

(iNd)|W> ~ [V - (A V 1)2/2m, ||W>

The Klein-Gordon RQM Wave Equation (relativistic QM)
Einstein Mass:Energy:Momentum Equivalence

Relativistic
Low velocity limit { |v] << ¢ } from (1+x)" ~ [1 + nx + O(x?)] for |x|<<1

Relativistic with Minimal Coupling
Low velocity with Minimal Coupling

The better statement is that the Schrodinger Eqgn is the
limiting low-velocity case of the more general KG Egn,
not that the KG Eqn is the relativistic generalization of
the Schrédinger Egn

Relativistic with Minimal Coupling
Low velocity with Minimal Coupling

Low velocity with Minimal Coupling

V = q@ +(moc?)
Typically the 3-vector_potential a ~ 0 in many situations

The Schrodinger NRQM Wave Equation (non-relativistic QM)



SR — QM 4-Vector SRQM Interpretation
of QM

Once one has a Relativistic Wave Eqn...

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

Klein-Gordon Equation: 8- = (d/c)* - V-V = (-im.c/h)? = -(m,c/h)?
Once we have derived a RWE, what does it imply?

The KG Eqgn. was derived from the physics of SR plus a few empirical facts. It is a
2" order, linear, wave PDE that pertains to physical objects of reality from SR.

Just being a linear wave PDE implies all the mathematical techniques that have
been discovered to solve such equations generally: Hilbert Space, Superpositions,
<Bra|,|Ket> notation, wavevectors, wavefunctions, etc. These things are from
mathematics in general, not only and specifically from an Axiom of QM.

Therefore, if one has a physical RWE, it implies the mathematics of waves, the
formalism of the mathematics, and thus the mathematical Principles and
Formalism of QM. Again, QM Axioms are not required — they emerge from the
physics and math...



SR - QM 4-Vector SRQM Interpretation

Once one has a Relativistic Wave Eqn...
Examine Photon Polarization

of Physical 4-Vectors John B. Wilson

From the Wikipedia page on [Photon Polarization]

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic
wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two.
Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the
two.

The description of photon polarization contains many of the physical concepts and much of the mathematical machinery
of more involved quantum descriptions and forms a fundamental basis for an understanding of more complicated
quantum phenomena. Much of the mathematical machinery of quantum mechanics, such as state vectors, probability
amplitudes, unitary operators, and Hermitian operators, emerge naturally from the classical Maxwell's equations in the
description. The quantum polarization state vector for the photon, for instance, is identical with the Jones vector, usually
used to describe the polarization of a classical wave. Unitary operators emerge from the classical requirement of the
conservation of energy of a classical wave propagating through lossless media that alter the polarization state of the
wave. Hermitian operators then follow for infinitesimal transformations of a classical polarization state.

Many of the implications of the mathematical machinery are easily verified experimentally. In fact, many of the
experiments can be performed with two pairs (or one broken pair) of polaroid sunglasses.

The connection with quantum mechanics is made through the identification of a minimum packet size, called a photon,
for energy in the electromagnetic field. The identification is based on the theories of Planck and the interpretation of
those theories by Einstein. The correspondence principle then allows the identification of momentum and angular
momentum (called spin), as well as energy, with the photon.
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Principle of Superposition: |
- From the mathematics of waves ... .

of Physical 4-Vectors John B. Wilson

Klein-Gordon Equation: 8-2 = (d/c)* - V-V = -(m.c/h)* = -(w./c)

The Extended Superposition Principle for Linear Equations

Suppose that the non-homogeneous equation, where L is linear, is solved by some particular u,
Suppose that the associated homogeneous problem is solved by a sequence of u..

L(up)=C; L(ug)=0, L(uy)=0, L(uz)=0 ...

Then u, plus any linear combination of the u, satisfies the original non-homogeneous equation:
L(u, + 2 a, u,) = C,

where a, is a sequence of (possibly complex) constants and the sum is arbitrary.

Note that there is no mention of partial differentiation. Indeed, it's true for any linear equation,
algebraic or integro-partial differential-whatever.

QM superposition is not axiomatic, it emerges from the mathematics of the Linear PDE
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Klein-Gordon obeys |
Principle of Superposition

of Physical 4-Vectors John B. Wilson

Klein-Gordon Equation: 9-9 = (8/c)? - V-V = -(m.c/h)? = -(W./C)?

K:K = (w/c)? - k-k = (w./c)*: The particular solution (w rest mass)
KoK, = (wn/c)? - ka'kn = 0 : The homogenous solution for a (virtual photon?) microstate n
Note that K,*K, = 0 is a null 4-vector (photonic)

Let W, = Ae”-i(K-X), then 8-9[W,] = (-)*(K-K)W, = -(w./c)*¥,
which is the Klein-Gordon Equation, the particular solution...

Let W, = Ane™-i(Kq'X), then 9:9[W,] = (-)*(Kn'Kq)Wh = (0)W,
which is the Klein-Gordon Equation homogeneous solution for a microstate n

We may take W =W, + 2, ¥,

Hence, the Principle of Superposition is not required as an QM Axiom, it follows from SR and our empirical facts which
lead to the Klein-Gordon Equation. The Klein-Gordon equation is a linear wave PDE, which has overall solutions
which can be the complex linear sums of individual solutions — i.e. it obeys the Principle of Superposition.

This is not an axiom — it is a general mathematical property of linear PDE's.

This property continues over as well to the limiting case { |v|<<c } of the Schrodinger Equation.
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A Tensor Study

of Physical 4-Vectors

4-Vector SRQM Interpretation

QM Hilbert Space:

of QM

From the mathematics of waves ...

Klein-Gordon Equation: 8- = (8/c)? - V-V = -(m.c/h)?

Hilbert Space (HS) representation:

if |[¥Y> € HS, then c|¥> € HS, where ¢ is complex number

if [¥Y+> and |W,> € HS, then |W>+|W,> ¢ HS

if |L|J> = C1|L|J1>+CQ|L|J2>, then <CD|LP> = C1<(D|LP1>+C2<(D|LP2> and <L|J| = C1*<l'|J1|+Cz*<LP2|
<P|P> = <Y |D>

<Y|¥W>>=0

if <Y|W¥> =0, then |¥Y>=0

etc.

Hilbert spaces arise naturally and frequently in mathematics, physics, and engineering, typically as infinite-
dimensional function spaces. They are indispensable tools in the theories of partial differential equations, Fourier
analysis, signal processing, heat transfer, ergodic theory, and Quantum Mechanics.

The QM Hilbert Space emerges from the fact that the KG Equation is a linear wave PDE — Hilbert spaces as
solutions to PDE's are a purely mathematical phenomenon — no QM Axiom is required.

Likewise, this introduces the <bra|,|ket> notation, wavevectors, wavefunctions, etc.

Note:

One can use Hilbert Space descriptions of Classical Mechanics using the Koopman-von Neumann formulation.

One can not use Hilbert Space descriptions of Quantum Mechanics by using the Phase Space formulation of QM.

John B. Wilson
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Canonical Commutation Relation: °
Viewed from standard QM

of Physical 4-Vectors John B. Wilson

Standard QM Canonical Commutation Relation: [x,p"] = ih&"

The Standard QM Canonical Commutation Relation is simply an axiom in standard QM.
It is just given, with no explanation. You just had to accept it.

| always found that unsatisfactory.

There are at least 4 parts to it:

Where does the commutation ([ , ]) come from?
Where does the imaginary constant (i) come from?
Where does the Planck constant (h) come from?

Where does the Kronecker Delta (§) come from?

See the next page for SR enlightenment...
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Canonical QM Commutation Relation
T S Derived from SR S

X=9 XV=4 Lorentz 9 X =g"X"1=n*"
O_‘ I a X a X“ g , f [ ’ ] [ ] r]
SpaceuTime a[X"]=0X" [oX'=N\", [.X]=8[X]=n""

Let (f) be an arbitrary SR function
X[f] = Xf, o[f] = o[f]

X, function or not, has no effect on (f) 4—AD)|(s=p(I§Xtegf)nt Dimension Transform —Diag[1,-1,-1,-1]=Diag[1,-8"]
0=9| ] is definitely an SR function:operator ’ Minkowski Metric
WJLOX Non-Zero Commutation Relation
— 4-Position EEEE— via natural SR 4-Gradient
X[o[f]] = Xolf] X=(ct,x)
A[Xf] = A[X]f + Xa[f]
[Xf] - Xa[f] = AXIf ® N e

a[X[f1] - X[a[f]] = o[X]f Derivative
Recognize this as a commutation relation

[, X ]f = 9[X]f

Proper Time [P Pla_ne-waves
U-0=d/dt=yd/dt ' K=id
Derivative
4-WaveVector i[2,X]=[i9,X]=[K,X]=in""
X]=9X
SR K=(wick) S
= (a/c,-V)l(ct,x)] .
= (9/¢,-0x,-0y,-0)[(Ct,X,Y,Z)] WavelVelog s
= Diag{1,-1,-1,-1} = Diag[1,-8"] U=y(c,u) Eo/wo Einsio) Eo/wo
= n* = Minkowski Metric o -=5Em > gl

Non-Zero Commutation Relation
via SR 4-WaveVector

[6",X']=n" Tensor form:true for all observers

[P¥,X"] = ihn" Independently true from empirical constants (i),(h) . 4-Momen|t5u/m [i(hd,X]=[hK,X]=[P,X]=ihn"
Kyl = itk [0 w07 = - — = =
[p*,x] = -ihd" [p"x7] = [E/c,ct] = [E,t] = ih (r_n(_:,p) (Ele.p) Non-Zero Commutation Relation
= -0[S fi ] ia SR 4-M t
i k1 — i gjk  Position:Momentum — Time:Energy — . : V'a - Omenum
[XJap ] = ihd QM Commutation Relation [taE] =-ih QM Commutation Relation {P = hK} and {K = id} are empirical SR relations

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] = N T =TH =T

Existing SR Rules O e
Quantum Principles - Vrl“;_oren[t(;’ %ca?;:’] (V%)

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V
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SRQM Study:
4-Position and 4-Gradient

A Tensor Study
of Physical 4-Vectors

Invariant Interval
2

4-Displacement
AR=(cAt,Ar)

SR:
Lorentz
) - Transform
Minkowski A[R¥] = OR¥/BRY = A\¥, . SRQM:

Metric
 AUDY — v . Tensor Zero
J[R] = &'R" = n" N\ =1, =Y : : Exterior Product
. Nw/\'aAs = Nag o*R = 0"R"-0'R"
—>D|ag[1 ,-1 ,-1 ,-1] EDet[/\])z =1 — r]pv _ r]vu = Q"
= Diag[1,-L] Det[A] = +1
= Diag[1,-0' A
{in Cartegi‘[:\n form}:I N = (/\ 1)"”
"Particle Physics” Convention N\ =4

{nu} = 1/{n"}
Tr[n"] =4 Rotations
N =9, Boosts
CPT

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar

(1,1)-Tensor T", or T, SR 4-CoVector (0,0)-Tensor S
, 0,1)-Tensor V, = (Vo,-V orentz Scala

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

nvariant d’Alembertian
Wave Equation
0-9=(0, [c)-V -V =(0. Ic)?

4-Gradient
9=(d/c,- V)
=(at/c,-ax,-ay,-az

SRQM:
Non-Zero
Commutation
[0,R] = [¢",R"]
=0"R"-R"0"
= r]“V

Trace[T"] = N T =TH =T
V-V = Ve VY = [(VO)? - vev] = (Vo)
= Lorentz Scalar
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4-Vector SRQM Interpretation
of QM

Heisenberg Uncertainty Principle:

A Tensor Study
of Physical 4-Vectors

Heisenberg Uncertainty { 0%.0% } >= (1/2)|<[A,B]>| }
arises from the non-commuting nature of certain operators.

The commutator is [A,B] = AB-BA, where A & B are functional “measurement” operators.
The Operator Formalism arose naturally from our SR — QM path: [ 9 = -iK ].

The Generalized Uncertainty Relation: oic,” = (AF) * (AG) >= (1/2)|( i[F,G] )|

The uncertainty relation is a very general mathematical property, which applies to both
classical or quantum systems. From Wikipedia: Photon Polarization: "This is a purely
mathematical result. No reference to a physical quantity or principle is required.”

The Cauchy—Schwarz inequality asserts that (for all vectors f and g of an inner product
space, with either real or complex numbers):

ofo =[(fIf)(glgN>=(flg)f

But first, let's back up a bit; Using standard complex number math, we have:
z=a+ib

z*=a-ib

Re(z) =a = (z + z*)/(2)

Im(z) = b = (z - z*)/(2i)

2z =z = a® + b® = [Re(2)F’ + [Im(2)]* = [(z + Z*)/(2)F + [(z - z*)/(2i)F

or

z* = [z + Z*)/2)F + [(z - *)/(2])?

Now, generically, based on the rules of a complex inner product space we can arbitrarily
assign:
z=(flg) z*=(glf)

Which allows us to write:

KFIg) =1(Flg)+ (gl fN@PF+I(flg)-(glf)I2)

*Note* This is not a QM axiom - This is just pure math. At this stage we already see the
hints of commutation and anti-commutation.
It is true generally, whether applying to a physical or purely mathematical situation.

Viewed from SRQM

SciRealm.org
John B. Wilson

We can also note that:
[fy=F|¥)and|[g)=G|¥)

Thus,
KEI g =[(WIF*GIW)+(WIGF|W)IQRPF+[(WIF*G|W)-(W|G*F|W))(2i

For Hermetian Operators...
*=+F, G*=+G

For Anti-Hermetian (Skew-Hermetian) Operators...
F*=-F, G*=-G

Assuming that F and G are either both Hermetian, or both anti-Hermetian...
KFIgP=[(WIR)FGI W) + (W |(£)GF| W )R + [(( W |(R)FG| W) - (W [(£)GF| W )/(2i)F

[KFIg) = [ WIFGI W) + (WIGF| W )/(2)F + [#)( ¥ [FG| W=> - (¥ |GF| ¥ ))/(2i))*

We can write this in commutator and anti-commutator notation...
I(F1 )P =)W HEGH W ))IR)F + [(2)( W IIF.Gll W )/(2i)

Due to the squares, the (z)'s go away, and we can also multiply the commutator by an (i?)
I(F1 g =1 W HE.GY W ))2F + [(( W [IF.G]| ¥ ))2F
(19 =[(({F.G}))2F + [((ilF,G] )2

The Cauchy—Schwarz inequality again...
ofog” =[(fIf)(glg) >= [(flg)I*=[({F.G}))2F + [((ilF.C] ))/2]°

Taking the root:
ofog® >= (1/2)|(i[F,G] )|

Which is what we had for the generalized Uncertainty Relation.



SR —- QM

A Tensor Study

of Physical 4-Vectors

4-Vector SRQM Interpretation

Heisenberg Uncertainty Principle:

of QM

Simultaneous vs Sequential

Heisenberg Uncertainty { 0%x0% >= (1/2)|<[A,B]>| } arises from the non-commuting nature of certain operators.
[0",X"] = 9[X] = n* = Minkowski Metric
[P¥,X"] = [ihe",X"] = ih[e",X"] = iAN™

Consider the following:

Operator A acts on System |W> at SR Event A: A|Y> —|¥'>
Operator B acts on System |W'> at SR Event B: B|¥'> —|Y">
or BA|W> = B|WY'> = |Y">

If measurement Events A & B are space-like separated, then there are observers who can see {A before B, A
simultaneous with B, A after B}, which of course does not match the quantum description of how Operators act on
Kets

If Events A & B are time-like separated, then all observers will always see A before B. This does match how the
operators act on Kets, and also matches how |W> would be evolving along its worldline, starting out as |¥>,
getting hit with operator A at Event A to become |¥'>, then getting hit with operator B at Event B to become [¥">.

The Uncertainty Relation here does NOT refer to simultaneous (space-like separated) measurements, it refers to
sequential (time-like separated) measurements. This removes the need for ideas about the particles not having
simultaneous properties. There are simply no “simultaneous measurements” of non-zero commuting properties
on an individual system, a single worldline — they are sequential, and the first measurement places the system in
such a state that the outcome of the second measurement will be altered wrt. if the order of the operations had
been reversed.

John B. Wilson
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Pauli Exclusion Principle:
Requires SR
e fOr the detailed explanation RS

The Pauli Exclusion Principle is a result of the empirical fact that nature uses identical particles, and this
combined with the Spin-Statistics theorem from SR, leads to an exclusion principle for fermions (anti-
symmetric, Fermi-Dirac statistics) and an aggregation principle for bosons (symmetric, Bose-Einstein
statistics). The Spin-Statistics Theorem is related as well to the CPT Theorem.

For large numbers and/or mixed states these both tend to the Maxwell-Boltzmann statistics. In the
{kT>>(g-p)} limit, Bose-Einstein reduces to Rayleigh-deans. The commutation relations here are based
on space-like separation particle exchanges, unlike the time-like separation for measurement operator
exchanges in the Uncertainty Principle.

Spin Particle Type Quantum Statistics Classical { kT>>(gi-p) }

spin:(0,1,...,N) Indistinguishable, Bose-Einstein: Rayleigh-Jeans: frome*~ (1 +x +...)
Commutation relation ni=g/[e&Wk 1] ni=gi/[(e-u)/KT]
(ab=ba) aggregation principle

| Limit as e&WkT >>1 |

Multi-particle Mixed Distinguishable, or high Maxwell-Boltzmann: Maxwell-Boltzmann:
temp, or low density ni=g/[e&W +0] N =g/ [ &K
1 Limit as ek >>1 1
spin:(1/2,3/2,...,N/2) Indistinguishable, Fermi-Dirac:

Anti-commutation relation n=g/[e&Wk +1]
(ab=-ba) exclusion principle




SR - QM 4-Vector SRQM Interpretation

4-Vectors & Minkowski Space Review
Complex 4-Vectors

of Physical 4-Vectors John B. Wilson

Complex 4-vectors are simply 4-Vectors where the components may be complex-valued

A =A"=(a’a) = (a%a',a%a’) — (a',a*,a’,a’)
B = B" = (b%b) = (b°,b,b%,b%) — (b',b* b, b?)

Examples of 4-Vectors with complex components are the 4-Polarization and the 4-
ProbabilityCurrentDensity

Minkowski Metric g"' — n"' = n, — Diag[1,-1,-1,-1] = Diag[1,-13)],
which is the {curvature~0 limit = low-mass limit} of the GR metric g"".

Applying the Metric to raise or lower an index also applies a complex-conjugation *

Scalar Product = Lorentz Invariant — Same value for all inertial observers
AB=n A'B'=A'B'=AB*= (@”*b® — a*-b) using the Einstein summation convention

This reverts to the usual rules for real components
However, it does imply that A-B = B-A
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SRQM: CPT Theorem
Phase Connection, Lorentz Invariance

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
The Phase is a Lorentz Scalar Invariant — all observers must agree on its value. J‘R=4 a[R]anV_)Diag[*] ~-1,-1 ,_1] 4-Gradient
K-X = (w/c,k)-(ct,x) = (wt — k-x) = -®: Phase of SR Wave B Minkowski Metric a=(3 /c.- V)
t )
We take the point of view of an observer operating on a particle at 4-Position X,
which has an initial 4-WaveVector K. The 4-Position X of the particle, _Di
the operation's event, will not change: we are applying the various 4 D|splacement """

operations only to the particle's 4-Momentum K. AR=(CAt,AI') 4-Acceleration

A=y(cy',y'u+ya)

Note that for matter particles K = (w./c)T,
where T is the Unit-Temporal 4-Vector T = y(1,B),

which defines the particle's worldline at each point. ProperTime .
The gamma factor ( y ) will be unaffected in the following operations, DeFr)ivative ProperTime
since it uses the square of B: y=1/Sqrt(1-B-B). ) o Derivative
For photonic particles, K = (w/c)N,
where N is the “Unit”-Null 4-Vector N = (1,n) and n is a unit-spatial 3-vector. : - o )
All operations listed below work similarly on the Null 4-Vector. 4-Uni emporal Limit as § — 1 4 Nunl']t Null
=(1,n
3

Do a Time Reversal Operation: T

The particle's temporal direction is reversed & complex-conjugated: It is only the combination of all three ops: {C,P,T}, or

Tr=-T"=v(-18)" pairs of singles: {CC},{PP}{TT}

Do a Parity Operation (Space Reflection): P t;ﬁéslza\llﬁvgﬁag?t Temporal 4 e

Only the spatial directions are reversed: i

Te =v(1.-B)

Do a Charge Conjugation Operation: C

Charge Conjugation actually changes all internal quantum #'s: Matter-like Light-like/Photonic

charge, lepton #, etc. T=7(1,8) N =(1,n)

Feynman showed this is the equivalent of T-T = y(1,8)"y(1,8) =v*(1? - B-B) = 1: It's a temporal 4-vector  N:N = (1,n)*:(1,n) = (1 - n-n) = (1-1) = 0: It's a null 4-vector

a world-line reversal & complex-conjugation:

Te = y(-1.-B)* ToTe = v(-1,-B)v(-1,-B)" = vy*((-1)° - (-B):(-B)) = v*(1*- B:B) =1 NcNc = (-1,-n):(-1,-n)* = ((-1)* - (-n)-(-n)) = (1 - n-n) = (1-1) = 0
Te-Te = v(1,-B)v(1,-B) = v*(1? - (-B)-(-B)) = v*(1° - B-B) = 1 Ne-Ne = (1,-n)*(1,-,n) = (12 - (-n)-(-n)) = (1> - n-n) = (1-1) = 0

Pairwise combinations: TrTr = y(-1,8)v(-1,B)" = *((-1)* - (B)-(B)) = v*(1* - B-B) = 1 NrNr = (-1,n)-(-1,n)* = ((-1)* - (n):(n)) = (1 - n-n) = (1-1) = 0

Tre = Ter = Tc = y(-1,-B)* They all remain temporal 4-vectors They all remain null 4-vectors

Trc = Ter =Te = y(1,-B)

Tec = Ter = Tr = y(-1,B)*, a CP event is mathematically the same as a T event Teer =T =y(1,8) Ncer = N = (1,n)

Terr=T=y(1,8) Tec=T=v(1,8) Tee =T =v(1,8) T+=T=y(1,8) TeprTepr= T-T = 1 Ncpr*Ncer= N-N = 0

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar Trace[T"] =n, T =T =T

(0,0)-Tensor S V-V = Ve VY = [(VO)? - vev] = (Vo)

= M \
(1,1)-Tensor T", or T, SR 4- CoVector = Lorentz ol
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SRQM: CPT Theorem
...  (Charge)vs (Parity) vs (Time)

of Physical 4-Vectors John B. Wilson

4-Vector ‘

Lorer]tz _ After (CPT)
Identity Parity-Inversion
Transform 4-\lector Transform
ANv—n'y =1, Bl B=B=(b’,b) NP, R EEARESTEAR by

No mixing Charge

Original

4-\ector
B=B'=(b’b)

) 170
_ (CPT)
DeffF"] -(cTP)
= - =(PCT
=(PTC)
=(TCP)

Identical 4-Vector Parity-Inverted 4-Vector Time-Reversed 4-Vector
A=A"=n" A"=(a”,a’) A=A"=P" A'=(a”,a’) A=A"=T" A'=(a”,a’)
=(a’,a)=A =(a’-a) =(-a’,a)*

Charge-Conjugated 4-Vector BE=re=e))
A=A"=C" A'=(a”,a’)
=(_aO,_a)*

Lorentz
Charge-Conjugation

Lorentz Lorentz
Identity Parity-Inversion
Transform Transform
A\ —n¥, N —P¥,

Transform
e v_’Cp v

Classical SR Time-Reversal neglects spin and charge.
SRQM includes these effects. After (PP) or (TT) or (CC)

Then one gets (CC),(PP),(TT), & (CPT) transforms Original 4-Vector Identity and Space-Parity are Unitary
all leading back to the Identity (1). A=A'=(a’,a) Time-Reversal and Charge-Conjugation are Anti-Unitary.

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v)

SR 4-Scalar Trace[T"] = "Iuv;r';v = THis g ,
(0,0)-Tensor S V-V = Vi, VY = [(VO)2 - vev] = (V)

1,1)-T T or T, SR 4-CoVect
(1,1)-Tensor T% or T, oVector | orentz Scalar = Lorentz Scalar

(0,2)-Tensor Ty, (0,1)-Tensor V, = (Vo,-V)




SRQM Transforms: Venn Diagram ="
Poincaré = Lorentz + Translations

A Tensor Study 1 0 6 SciRealm.org
of Physical 4-Vectors

John B. Wilson

Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation
The Lie group of all affine isometries of SR:Minkowski Spacetime (preserve quadratic form)

General Linear,Affine Transform with Det[ ]=#1
Lorentz Transform Translation Transform -AngularMomentum M* = X* A P¥ = X*P¥ - X'P*
4-Tensor {mixed type-(1,1)} 4-Vector enerator of Lorentz Transformations (6)
- N I-rv_’RI-llv + /\pvv_’Bp'v
Discrete Continuous Discrete Continuous
Time-reversal 4-LinearMomentum P* _ _
= Generator of Translation Transformations (4)
D SpatialFlipCombos = { AX*—(cAL,0) + AX'—(0,Ax)
_) -
time parity Det[N‘:v] = +1 for Proper Lorentz Transforms
anti-unitary {xlylz} — -{xlylz} Rotat Temporal Det[A*,] = -1 for Improper Lorentz Transforms
' ' unitary otation . _
Parity-Inversion P Lc_)rentz Matrlce§ can be generated by a matrix M
_ At with Tr[M]=0 which gives:
Identity Isy x| x:z | y:z {A=e"M=e"(+6-J-TK)}
r—-r . Spatial {(N'=(Ee*"M)'=e M}
spac:parity ) eanelon WYY SR YRY SR:Lorentz Transform
unitary no mixing e d[R"] = dR"/OR" = N\,
unitary = Ax| Ay | Az M=+ - TK A% = (NP AAS, = Y, = 8%,
B[T] = e(-TK '
harge-Conjugation R[[;Q]] = e/\((fa-,j)) No\'g = Nog
tx |ty |tz A=erM=eA (+0-J - TK 1mbm
R R* CPT Symmetry
> R,9—>-q {Charge} Rotations Ji = -em\M™/2, Boosts Ki = Mjp
charge parity {Partiy} Isotropy Homogeneity
anti-unitary {Time}  |{same all directions} {same all points} R— -R*) ] o & oly g— -q




SR — QM 4-Vector SRQM Interpretation

Hermitian Generators |
-« NO€ther's Theorem - Continuity ...

The Hermitian Generators that lead to translations and rotations via unitary operators in QM...

These all ultimately come from the Poincaré Invariance — Lorentz Invariance that is at the heart of SR and Minkowski
Space.

Infintesimal Unitary Transformation
U(G) =1+ieG

Finite Unitary Transformation
U.(G) = e?(iaG)

letG =P/h=K
let a=Ax

Uax(P/M)W(X) = er(iAx-P/h)¥(X) = eM(-Ax-d)¥(X) = W(X - Ax)

Time component: lAJéct(P/h)LP(ct) = eMIAtE/h)W(ct) = eM(-At 0)W(ct) = W(ct - cAt) = cWP(t - At)
Space component: Ua(p/h)W(x) = eMiAx-p/h)W(x) = eMAx- V)W (x) = W(x + Ax)

By Noether's Theorem, this leads to 8-K = 0
We had already calculated

(0-9)[K-X] = ((6/c)*- V-V )(wt - k-x) =0
(0-9)[K-X] = 0-(9[K-X]) =o-K =0

Poincaré Invariance also gives the Casimir invariants of mass and spin, and ultimately leads to the spin-statistics theorem
of RQM.
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QM Correspondence Principle:
... Analogous to the GR and SR limits

Basically, the old school QM Correspondence Principle says that QM should give the same results as classical physics in
the realm of large quantum systems, i.e. where macroscopic behavior overwhelms quantum effects. Perhaps a better way
to state it is when the change of system by a single quantum has a negligible effect on the overall state.

There is a way to derive this limit, by using Hamilton-Jacobi Theory:
(ihdg)|W>~ [V - (h V1)?/2m, ]|¥> : The Schrodinger NRQM Equation for a point particle (non-relativistic QM)

Examine solutions of form W = W.e/(id)= W,e”(iS/h), where S is the QM Action
W] = (i/h)WA[S] and o[W¥] = (i/h)Wo[S] and VW] = (i/h)¥ VIS] - (W/h*)(V[S])?

(iR)(i/M)WA[S] = VW - (h%/2m,)((i/h)¥ V2[S] - (W/h%)(V[S])?)
()(H)WA[S] = VW - ((ih/2m,)¥ VS] - (W/2m.)(V[S])?)
A[S] = -V + (ih/2m,) VZ[S] - (1/2m.)(V[S])?

a[S] + [V+(1/2m,)(V[S])? ] = (ih/2m,) V?[S] : Quantum Single Particle Hamilton-Jacobi
a([S] + [V+(1/2m,)(V[S])?] = 0 : Classical Single Particle Hamilton-Jacobi

Thus, the classical limiting case is:
V@] << (V[D])*

hVZ[S] << (V[S])*

hV:-p << (p-p)

(PA)V-p << (p-p)
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QM Correspondence Principle:
... Analogous to the GR and SR limits __

of Physical 4-Vectors John B. Wilson

a[S] + [V+(1/2m,)(V [S])?

(ih/2m,) V2[S] : Quantum Single Particle Hamilton-Jacobi
A[S] + [V+(1/2m,)(V[S]’]1=0:

Classical Single Particle Hamilton-Jacobi

[S—y—

Thus, the quantum—-classical limiting-case is: {all equivalent representations}
AVSiond << (VIS ionl)” VAD .l == (VISR

h V ) V [Saction] << (V [Saction] )2 V i V [cpphase:| a (V [q)phase] )2

hV-p << (pp) V-k << (k'k)

(PX)V-p  <<(pp)

with

P= (E/C’p) = -a[Saction] = -(atlc’-v)[saction] = (_atlc’ V)[Saction]
K= (wick)=-9[®  ]=-3/c-V)P 1= (-3/c,V)® ]

It is analogous to GR — SR in limit of low curvature (low mass), or SR — CM in limit of low velocity { |v|<<c }.
It still applies, but is now understood as the same type of limiting-case as these others.

*Note* The commonly seen form of (c—<,h—0) as limits are incorrect!

¢ and h are universal constants — they never change.

If c—<, then photons (light-waves) would have infinite energy { E = pc }. This is not true classically.

If h—0, then photons (light-waves) would have zero energy { E = hw }. This is not true classically.
Always better to write the SR Classical limit as { |v|<<c }, the QM Classical limit as { VZ[CDp 1<<(V[®. 17}

hase phase

Again, it is more natural to find a limiting-case of a more general system than to try to unite two separate theories which may or may not
ultimately be compatible. From logic, there is always the possibility to have a paradox result from combination of arbitrary axioms, whereas
deductions from a single true axiom will always give true results.
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SRQM: 4-Vector Quantum Probability
- CONservation of ProbabilityDensity ...

of Physical 4-Vectors John B. Wilson

Conservation of Probability : Probability Current : Charge Current
Consider the following purely mathematical argument
(based on Green's Vector Identity):

o-(fag]l-0alf]g)="fao-alg] - 0-dlf] g
with (f) and (g) as SR Lorentz Scalar functions

Proof:

o-(falg]-alflg)
“(folgl)-o-(alfl9)

0
(f 8-a[g] + aIf]-a[g]) - (e[f]-a[g] + &-a[f] 9)
fa-a[g] - o-alfl g

We can also multiply this by a Lorentz Invariant Scalar Constant s
s (fo-0[g] - -alf] g) =s a-(falg] - o[f] g ) = a-s(fa[g] - d[f] g )

Ok, so we have the math that we need...

Now, on to the physics... Start with the Klein-Gordon Eqn.
9-9 = (-imec/h)? = -(moc/h)?
9-9 + (m,c/h)* =0

Let it act on SR Lorentz Invariant function g
0-9[g] + (msc/M)’[g] = O [g]

Then pre-multiply by f

[fle-a[g] + [f] (m.c/h)?[g] = [f] O [g]

[fle-a[g] + (moc/M)[fllg] = 0

Now, subtract the two equations

{[f] 8-a[g] + (moc/n)?[fl[g] = O} - { &-alfllg] + (m.c/n)’[f][g] = O}
[f] 8-a[g] + (mec/nY’[f][g] - &-8[f][g ]- (Mec/n)?[f][g] = O

[f] 0-2[g] - 0-2[fl[g] = O

And as we noted from the mathematical Green'’s Vector identity at the start...
[f] 2-0[q] - @-alf][g] = &-(fa[g] - 2[f|g) =0

Therefore,
so-(fag]l-aflg)=0
o-s(falg]-alflg)=0

Thus, there is a conserved current 4-Vector, Jorob = S( f 0[g] - 9[f] g ), for which 9-Jpron = 0,
and which also solves the Klein-Gordon equation.

Do similarly with SR Lorentz Invariant function f
0-9[f] + (mec/N)’[f] = O [f]

Then post-multiply by g

0-9[fl[g] + (moc/M)?[fllg] = O [fllg]

0-alfllg] + (m.c/h)?[flig] = 0

Let's choose as before (@ = -iK) with a plane wave function f = ae’-i(K-X) = y,
and choose g = f* = ae?i(K-X) = y* as its complex conjugate.

At this point, | am going to choose s = (ih/2m,), which is Lorentz Scalar Invariant, in order to make
the probability have dimensionless units and be normalized to unity in the rest case.



SR —- QM

4-Vector SRQM Interpretation

4-Vector Quantum Probability
4-ProbabilityFlux, Klein-Gordon RQM Eqn

A Tensor Study
of Physical 4-Vectors

4 -ProbabilityCurrentDensity, a.k.a. 4-ProbabilityFlux
oo = (CP ) = ((N2Mo)(walw]-alw*Iw) = (P, 0)U = (P
with 4-Divergence of Probability { 3-meb

The reason for s = (ih/2m,) becomes more clear by examining our diagram:
Start at the 4-Gradient and follow the arrows toward the 4-ProbabilityFlux

Jr(ou) = (v, o)(o.u) =

prob prob

You immediately see where the (ih/m,) factor comes from. M- >
The pprob_o is then a function of the y’s divided by 2. 4-WaveVector
K=(w/c,k R Re(wyo)?

o-(folg]l-o[fl g)="fa-9[q] - 2-9[f] g: Green’s Vector Identity K-K=(m.c/h)’

9-9 + (m,c/h)? = 0: KG RQM Eqgn

. Wave VeI00|ty Einstein
4-Velocity Voo de Broglie
U=y(C,u) P =hK
Rest Numbeg $ E=mc’® "' - >
Density .

4-Momentum
P= (mc )-(E/c pP)

Porore = XV )
—_ 2,
- L\
[Ty S

Probability Rule

© =v

.- -

- - -
4-NumberFlux

N=(nc,n)=n(c,u)
4-ProbCurrentDensity

4-ProbabilityFlux

J=Pl 1)
wl-olw*ly)

4-ChargeFlux
4-CurrentDensity

J=(pc,j)=p(c,u)

- J=(00) 2

(g

prob:(
=(ih/2m,)(w*

Complex
T

0-N=0 : 3'Jprob=

Conservation of

N-N=(noc)?
Jprob'Jprob:(ppmbgC 2

0-J=0

Conservation of

(P

prob

)(c,u)

= 0 } by construction via Green’s Vector Identity and the Klein-Gordon RQM Eqn.

KR
-[- ase)
(i)

Complex
Plane-waves
K=io

Examine the temporal component, the Relativistic Probability Density

Py = (H/2MoC®)(w* Alw]-0{w*] W)
Assume wave solution in following general form:
{w=Af[K] e(-iwt) }

{y*=A"f[K]" e(+iwt) }

then

{ 2lw] = (-iw)Af [k] e(-iwt) = (-iw)y }

{ W] = (+iw)A™ f [K]* e(+iwt) = (+iw)y™ }
then

o = ((N2mac?)(w* aly] - aly*] w)

» = (V2MC)((L)yy - (+iw)y*y)

= (ih/2mC?)((-2iw)y*w)

= (nw/moc?)(w*w)

= (Frywo/moc®)(Ww*y)

Pores = (NW W) = (V)P 440)

Finally, multiply by charge (q) to get standard SR EM

4-CurrentDensity = 4-ChargeFlux = J = (cp,j) = qJ

prob

of QM

SciRealm.org

John B. Wilson

0-0=

(8,/c)-V-V

d’Alembertian

0-9

= -(moc/h)?

Klein-Gordon
4-Gradient

a=(3/c,

=q(cp

-V) .

)

prob’j prob

Particle # : Probabilt Charge

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4- CoVector

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Existing SR Rules
Quantum Principles

Trace[T"] =

NwT™ =T =T
V-V = Vi VY = [(V) - vev] = (V)P
= Lorentz Scalar
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4-Vector Quant

4-Vector SRQM Interpretation
of QM

um Probability

4-ProbabilityFlux, Klein-Gordon RQM Eqn

A Tensor Study
of Physical 4-Vectors

4 -ProbabilityCurrentDensity, a.k.a. 4-ProbabilityFlux
oo = (P il o) = (NV2Mo)(WHolyl-olw*Tw) = (p_ o)V
with 4-Divergence of Probability { d-J
If we include minimal coupling:
oo = (CP ol o) = (N2Mo)(W*o[y]-olw*]w) +
Start at A on the chart
Follow past (q) factor to getto Q =
Minimal Coupling allows passage back to P with no factors

Follow back past (1/m,) to get to U "
Follow past Born Rule (y*y) @ b Ve'OCC'TY
gl’oup phase

Now have the additional factor:
+ (a/mo)(Wy)A Lou=) S $
E=mc?

Rest Number,

Density 0 _Y*W’)
prob® — A
=[xy O

= (P,)v(C,u) = (vP

prob prob

prob

(@/mo)(w w)A

Born

- " robability Rule o = i S
4_-Numb?rFqu .t - "H'I 'I' > P+Q - 4-MomentumField
N=(nc,n)=n(c,u) 4-ChargeFlux 4-EMXecto/rPotential EM Charge (+) P=(E/c,p,)
=(p/c,a

4-ProbCurrentDensity
4-ProbabilityFlux

prob:( ):pprob( ’
=(ih/2m,)(w*aly]-a[w Tw)+

Complex
| N:-N=(n.c)?
'N=0 a'Jprob= Jprob'JPmb:(pprobOC 2

Conservation of

4-CurrentDensity

) J=(pc,j)=p(c,u

(a/mo)(prw)A
a-J=0
Conservation of
Charge
L

with Minimal Coupling

o)(c,u) =
prob
= 0 } by construction via Green’s Vector Identity and the Klein-Gordon RQM Eqn.

4-\WaveVector
K=(w/c,k

€

.- >

4-Momentum
P=(mc,p)=(E/c,p)

LP-P=(m.c)*=(E./c

I A-A=((/C)’

SciRealm.org
John B. Wilson

0-0=(9, [cy’-V -V
d’Alembertian
9-9= -(moc/h)

(P, (C1)

prob .
Klein-Gordon

4-Gradient
9=(d/c,-V)

An alternate way would be to take A to U via the direct route:
+ (CTPr) (W W)A

W - >
Plane-waves
K=io

<D

Eén;treoiglie which would lead to a term like
P =hK o = (NWW) + (V)(@SO0)WW) = (V)1 + 0o/l W)

W|th potential due to particle (¢,) typically much less than the
potential due to the whole field (¢r)

(Po) << (¢r0)

o

Particle # : Probabilt

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4- CoVector

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] = N T =TH =T
V-V = Ve VY = [(VO)? - vev] = (Vo)
= Lorentz Scalar

Existing SR Rules
Quantum Principles




SR — QM 4-Vector SRQM Interpretation

4-Vector Quantum Probability |
ATensor Study NEWtonian Limit SciRealm.org

of Physical 4-Vectors John B. Wilson

4-ProbabilityCurrentDensity Jprob = (cpprob,j ) = (ih/2m,)(w*o[w]-o[w*]w) + (a/mo)(w*w)A

prob

Examine the temporal component:
Py = (N/2MC?)(W* B[WI-8{Y*] W) + (/M)W w)(@/c?)
P — (MW W) + (N(AP/MoC) (W) = (V)1 + qPo/Eo](W W)

prob

Typically, the particle EM potential energy (q@.) is much less than the particle rest energy (E.), else it could generate new particles.
So, take (q@. << E,), which gives the EM factor (q@./Eo) ~ 0

Now, taking the low-velocity limit (y — 1), Py = v[1 + ~0)(w*y), Py (p*y) = (pprobo) for |v|<<c
The Standard Born Probability Interpretation, (y*y) = (ppmb), only applies in the low-potential-energy & low-velocity limit

This is why the {non-positive-definite} probabilities and {|probabilities| > 1} in the RQM Klein-Gordon equation gave physicists fits,
and is the reason why one must regard the probabilities as charge conservation instead.

The original definition from SR is Continuity of Worldlines, a-meb = 0, for which all is good and well in the RQM version.
The definition says there are no external sources or sinks of probability = conservation of probability.

The Born idea that (pprob) — Sum[(p*y)] = 1 is just the Low-Velocity QM limit.
Only the non-EM rest version (ppmbo) = Sum[(y*y)] = 1 is true.
It is not a fundamental axiom, it is an emergent property which is valid only in the NRQM limit

We now multiply by charge (q) to instead get a
4-"Charge”CurrentDensity J = (cp, j)=qd = q(cppmb, jprob), which is the standard SR EM 4-CurrentDensity

probr



SR — QM 4-Vector SRQM Interpretation

SRQM 4-Vector Study:
The QM Compton Effect
A Compton Scattering it

Electron e initial  Photon y initial Compton Scattering Derivation : Compton Effect FR=n™ | 4-Gradient
4-Momentum e 4-WaveVector y P-P = (m.c)’ generally — 0 for photons (m,=0) Minkowski Metric 6=(8t/C,-V)
Peiz(meic’pei)z(Eei/c’pei) Kpiz(wpilc'kpi) PPh0t1.Pphot2 n h2K1.K2 = (h2w1w2/02)(1- If'i1.ﬁ2) = (h2w1w2/C2)(1'COS[g]) I .
P oPoass = NK-P = (hw/C)(1,A)-(E/c,p) = (hwic)(E/c - fi-p) = (AwE/c?) = (hoam) \ 4-Position | U-aL-1
P ot T Prnass = Ponot T P mass:4-MomentumConservation in Photon-Mass Interaction i — R=(ct,r) d/dt[..

4-Momentum y p —p' - '
P_=(m c,p )=(E /c,p )=(h)K | Pphot o Pmass P phot ZP mas's.reazrrange Wavs VeIo_crtg/ 4-Velocity

L = (Pphot +tP___-P phot) =(P'___..)isquare to get scalars Vo Vanase— C U=
4-TotalMomentum e+y P P _+2P P -2P -P' +P P __-2P -P' 4P P )=(P' =y(C,u)

P =(E./ =(H/ phot  phot phot mass phot phot mass mass mass phot phot phot mass
w=(E/C.pr)=(H/c.p;) (0+2P h t'P - 2P h t-Pl hot g (mOC)2 -2P ‘P’ hot +0)= (moc)2
=P _+P_ P .p il l’,“ass P’ S P” g P WEES (O K-K=(wo/c)? m_ - Energy:Mass
v’ phot  mass mass phot B phot phot =(moc/(h))2 E= mC2
©  Electron:Photon (hwm,) - (hw'm,) = (hww'/c?)(1 - cos[a]) 4-WaveVector
Interaction * (W-w')/(Ww') = (h/mocz)(1 - cos[a]) K—(w/c k)—(1/C:|I ﬁ/)()
" (1/w' - 1/w) = (A/m.c?)(1 — cos[a]) ~ an ’ P-P=(muo)’

4-TotalMomentum e™+y {w,=0} < {K-U=0} < {K is null} =(EJ/c)? o -->»

Pﬁ=(ET/_cF,’p1);(H/c,PT) : Ak = (X - &) = (h/m.c)(1 — cos[g]) = Ao“ — cos[a])
oot The Compton Effect:Compton Scattering Endi Eou)O A-Momentum
de Broglie (h) P=(mc,p)=(E/c,p)

4-Momentum y with
=] = = P =hK =0} - {P-U=0} < i
P,=(m,C.P,)=(E,/c.p)=(MK, A=A /21 = (h/m.c) = Reduced Compton Wavelength {m.=0} < {PU0] SEEIE

A = (h/m.c) = Compton Wavelength (not a rest-wavelength, but the wavelength of a photon
@@ﬁ » c ( ) P M gth ( = 9 4 e 9 P Conservation 0f®

with the energy equivalent to a massive particle of rest-mass m,) 4-TotalMomentum
5 _4'M°me”_t”én e 42’\/2‘(’3\/?00:(03\( Calculates the wavelength shift of a photon scattering from an electron (ignoring spin) 4-TotalMomentum
—(m.c.p )=(E jcp,) pf \ "t 7 o Proves that light does not have a “wave-only” description, photon 4-Momentum required P.=(E./c,p.)=(H/c,p.)
Electron e final Photon y final E/w = yEolywo = Eo/wo = h K oton = (W/C)(1,0) = null {wA = vA = c} for photons L Ty

SR 4-Tensor

SR 4-Vector vy = W= TH =
(2,0)-Tensor T+ Trace[T"] =n, T =T =T

(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Existing SR Rules V-V = VP VY = [(VO) 02
y (0,0)-Tensor S o V=V VY= [(V) - vev] = (Vo)
DL i e Quantum Principles = Lorentz ol

(1,1)-Tensor T*, or T,




SR —- QM

SRQM 4-Vector Study:

4-Vector SRQM Interpretation
of QM

The QM Aharonov-Bohm Effect

A Tensor Study
of Physical 4-Vectors

Aharonov-Bohm Effect

The EM 4-VectorPotential gives the Aharonov-Bohm Effect.
® (aMm)A-X = -Kpot-X

pot

or taking the differential...
dCDpot = - (g/h)A-dX

over a path...
AD =] do
pot path pot

AqDpot = -(q/h)IpathA.dX
A® = -(a/m)]_ [(e/c)(cdt) - a-dx]
A(Dpot = -(q/h)fpath((pdt - a-dx)

Note that both the Electric and Magnetic effects
come out by using the 4-Vector notation.

Electric AB effect: A® =- (q/h)fpath(cpdt)
Magnetic AB effect: Adbp;t ey =+ (@D (a-dx)

ath

Proves that the 4-VectorPotential A is more fundamental than
e and b fields, which are just components of the Faraday EM Tensor

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector
0,1)-Tensor V, = (vo,-V

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T,

QM Potential A®_ =-(g/n)l  A-dX

N e A-dX=(¢pdt-a-dx
Quantum EM Potential

SciRealm.org
John B. Wilson

| HMXT=n" 4-Gradient
Minkowski Metric 9=(d/c,-V)

AB Potential

paceTime
o-X=4
Dimensio

4-Displacement

- ProperTime !
AX=(cAt,Ax) S Uodl..]
dX=(cdt dx Derivative dide ]
X=(ct,x Wave Velocity |
Vgroup*vphase= Cz 4'Ve|OCity
U=y(c,u)
Rest Ang Rest Scala
Frequency Potential
4-WaveVector Rest |||.|.|.|. »
K=(w/c,k)=(w/c,wav ) Energy:Mass 4-VectorPotential |
E= mc@ A:((p/C’a)
K X=(wt-k:X) @ EM
=Kdyn'x'i'Kpot'X ‘_ . > Charge

=K-X+(q/h)A-X

=(wt-k-x)+(g/h)(pt-a-x) (1/h)
:Kdyn'X+Kpot'X

4-PotentialMomentum

4-Momentum
P=(mc,p)=(E/c,p)

Q=(U/c,q)=qA

S ‘(Ddynamic"' 'q)potential Einstein : Minimal
= 'q)f_phase de Broglle a Coupling
I P =hK P+Q
tYVaveVEcio‘zTCI/:%ef 4-MomentumlIncField
~(w/ck)=K+{a/n) (1/h) P=(E/c,p,)=P+Q=P+qA

Trace[T"] = N T =TH =T

V-V =V, VY = [(V)? - vev] = (V0P
= Lorentz Scalar

Existing SR Rules
Quantum Principles
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SRQM 4-Vector Study:
The QM Josephson Junction Effect = SuperCurrent
s EN 4-VectorPotential A = -(h/q)a[ACDpot]

of Physical 4-Vectors John B. Wilson
| ——— AB Potential
osephson Effec A-dX= -
Aharonov-Bohm dx_((Pdt'a dx XN 4-Gradient
The EM 4-VectorPotential gives the Aharonov-Bohm Effect. QuantUmiBHN e el B Minkowski Metric 2| 2=(8/c,-V)
Phase deot = -(g/M)A-X = -Kpot-X 4-Displacement . -
AX=(cAt,Ax) ProperTime gy
L Derivative
Rearrange the equation a bit: dX= cc_it_,dx d/dt[..]
-(Alg)AP = A-AX 4)-(Post|t|on |
e =(ct,x Wave Velocity
A-DX = -(R/Q)A® Voou Vo= © 4-Velocit
d/dtA-AX] = d/dt[-(N/q)A® ] = d/di{A]-AX + A-d/dt[AX] = d/di[A]-AX + A-U grour s U=y(c ug’
Assume that ( d/dt[A]-AX ~0)  Which explains Josephson Effect criteria : Rest Ang getSt S{P?'a
[A-U] = d/de[-(W/q)AD_ ] AX ~ 0: small gap Frequency Ot
[U-A] =(U-9)[-(R/q)AD ] d/dt[A] ~ O: “critical current” & no voltage 4-WaveVector Rest [IH{4- »
po . - . — — A
[A] =(n/a)(@)[AD, ] didrA]-AX ~ orthogonal: 72 ~Sleae] G, Energy:Mass 4-VectorPotential |
g . E=mc A=(p/c,a)
A =-(h/q)o[Ad_] A = (h/q)K; K = (w/c k) = (g/h)A = (g/h)(¢/c,a)
(¢/c,a) = -(h/q)(d/c,-V)IAP ] © ev
=KaynX+Kpot' X o> Charge
ot e v El et ( t= t)():((q//?l))?i( ) 4-Momentum 4-PotentialMomentum
EM ScalarPotential ¢ = -(h/q)(0)[AD ]; w = (g/h S(wi-kex)+(g/h)(pt-a-x 1/h - -
el 15 0= (i ~Keyn X+Kpor X el P (c.p)=(E/c.p) Q=(U/c,q)=qA
' . _ = -Qgynamict ~Ppotential Einstein Minimal
If the charge (q) is a Cooper-electron-pair: { g = -2e } = O pnase de Broglie a Golip/lng
I P =hK P+Q

Voltage V(t) = o(t) = (h/2e)(a/at)[ACDpot]; AngFreq w = -2eV/h A-WaveVectorincField 4-MomentumincField
This is the superconducting phase evolution equation of the Josephson Effect K=(w/ck,)=K+(q/h)A o

(1)

SR 4-Tensor SR 4-Vector W] = W TH =
(2,0)-Tensor T*  0(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Existing SR Rules Tiacf [r1 N n““oTz T _ To 2
(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S Quant Princiol V-V = Vi, V= [(V)7 - vev] = (Vo)
’ y orentz Scala uantum Frinciples = Lorentz Scalar

P=(E/c,p,=P+Q=P+qA

(h/2e) is defined to be the Magnetic Flux Quantum @,




4-Vector SRQM Interpretation

o SRQM Symmetries: oram
Hamilton-Jacobi vs Relativistic Action
Josephson vs Aharonov-Bohm

A Tensor Stud - - SciRealm.or
of Physical 4-Vectors Differential (4-Vector) vs Integral (4-Scalar) Jofn B. Wison
Differential Formats : 4-Vectors Notice the Symmetry: Integral Formats : 4-Scalars

- - ) SR Action Equation
SR Hamilton-Jacobi Equation AScion = ~JoaPr ~dX

PT = 'a[ASaction] ASaction = '.[path(P+qA)'dX

P+ CIA = 'a[ASaction] hAchhase = 'Ipath(P+qA)'dX

P + qA = 'a[hAqJPhase] - _ .
P + qA = 'a[hAq)phase,dyn+ (h)Aq)phase,pot] hAchhase,dyn ¥ hAchhase,pot - Ipath(P+qA) dx

4-TotMom Conservation°
P, = (P+Q) = (P+qA)

4-TotMom Conservation
P, = (P+Q) = (P+qA)

Dynamic Part Dynamic Part

Minimal Couplin: .
P =(P,-gA) :szT_gQ) 4-Momentum Actlon(free part) Minimal Coupling
Potential Part P = -0[AS.ct.aync] ASactayn = NADhase dynamic " (PT-Q)P tential Part
-a[hAq)phase,dynamic] = 'jpath(P)'dX O

4-PotentialMomentum Action potential part)
Q = qA = _a[ASaCt,POt] ASact,pot = hAq)phase,potentiaI =
-a[hAchhase,potential] 'jpath(qA)'dX = 'Ipath(Q)'dX

Technically, the standard Josephson Junction uses just
the temporal part { A = (¢/c,a) } & Cooper-pair-electrons

{q=-2e}
_ . giving V(t) = ¢ = (h/2e)0/ot[ADy].
Joseph_son Junction Relation There should be a spatial part as well. Aharonov-Bohm Relation
A_— '(h/q)a[Aq)potential] A(Dpotenﬁa| = -(q/h)_[pathA'dX
= ~(1/q)0[ASactpol] Uinverse = -(1/7)}panQ-dX
=ASact,pot/h
SR 4-Tensor SR 4-Vector
SR 4-Scalar

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v)
(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V

(0,0)-Tensor S

Existing SR Rules
Quantum Principles

orentz Scala
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SRQM 4-Vector Study:
Einstein-de Broglie
S o The (h) Con nection b

M[X1=n" 4-Gradient
B Minkowski Metric 9=(d/c,-V)
4-Displacement

P = hK: Basic Einstein-de Broglie AX=(cAt,Ax) ProperTime U-a[
_ _ ’ Derivative ”
P+tQ=P +Q dX=(cdt,dx d/dt[..]

dyn po X=(ct,x Wave Velocity |

The h Connection

+Q = + S =
P+Q h(Kdyn Kl_’°t) Vo Vore il 4-Velocity
Sum over n particles: Pr =  (P+Q),Kr = Zn(Kdyn+Kpot) U=y(c,u) Hamilton-
Pr =hK; Rest Ang Rest Scala PJa=c?¢’§)[IS]
P+ X = hK¢X Frequency Potential v
(P+-X)= h(K+-X) 4-Wave\Vector Rest [IH44- >
'Saction = -hq)phase K=(w/c,k)=(w/c,wh/ Vonase EnergyéMass 4- VectorPotentlaI
— E =mc ((P/C a)
action hq)phase o
29[S 1=-ho[® ] : o > CharEg'\g (1/n)
action phase =K-X+(q/(h))A-X @
P: = hKr =(wt-kx)+(q/(R))(ot-a-x) X TGN 4-PotentialMomentum
{SR Hamilton-Jacobi} = h{QM Complex Plane-Waves} =KaynX+Kpor X gL P=(mc.p)=(E/c,p) Q=(U/c,q)=qA
= '¢dynamic+ 'q)potential Einstein M|n|mal
= '¢f7phase de Broglle a Coupling
. : ) | P =hK B e
The SR Hamilton-Jacobi Equation, 4 WaveVectorIncField 4-MomentumIncField
and the QM idea of Complex Plane-Waves, =(w/c,k,)=K+(g/(h))A ‘@ P=(E/c,p,)=P+Q=P+gA Complex
are related by a simple constant (h) relation. () P'ﬁ"ﬁ'Vg[a(;fS
i
SR 4-Tensor SR 4-Vector . W] = Wo— TH =
(2,0)-Tensor T 0(1,0)-Tensor V¥ =V = (V°,v) (g§)4_|'_sca|a"s Existing SR Rules V-VT;a\c/;“erET 1, il ?(‘31)2 . V-rvij _ (-I\—/o .
X b v ,0)-Tensor * ; g o
(1,1)’TensorT vorT, | SR 4- CoVector i e Quantum Principles = Lorentz ScarE
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4-Vector SRQM Interpretation
of QM

SRQM 4-Vector Study:

A Tensor Study
of Physical 4-Vectors

Dimensionless Physical Objects

There are a number of dimensionless physical objects in SR
that can be constructed from Physical 4-Vectors.
Most are 4-Scalars, but there are few 4-Vector and 4-Tensors.

9-X=4: SpaceTime Dimension
d"[X]=n": The SR Minkowski Metric

T-T= 1: Lorentz Scalar “Magnitude” of the 4-UnitTemporal
T-S= 0: Lorentz Scalar of 4-UnitTemporal with 4-UnitSpatial
S:S= -1: Lorentz Scalar “Magnitude” of the 4-UnitSpatial
K-X=(wt-k-x) = -CDphase ayn- Phase of an SR Wave

used in SRQM wave functions y=a*e"-(K-X)

(P-©) = (Eo/ksT,): 4-Momentum with 4-InvThermalMomentum
used in statistical mechanics particle distributions
F(state) ~ e*-(P-O) = e™-(Eo/ksTo)

a = (1/41e,)(e?/hc) = (uo/41T)(ce?/h): Fine Structure Constant
constructed from Lorentz 4-Scalars, which are themselves
constructed from 4-Vectors via the Lorentz Scalar Product.
ex. h=(P-X)/(K-X); g=(Q-X)/(A-X) —e for electron; c=(T-U)
Mo={(2-9)[A]-X}/(J-X) when (2-A)=0

{y*}: Dirac Gamma Matrix (“4-Vector”)
{c"}: Pauli Spin Matrix (“4-Vector”)
Components are matrices of numbers, not just numbers

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T,

Dimensionless Physical Objects

SciRealm.org
John B. Wilson

X T=n" 4-Gradient @:0) —
- . - pa o B (9-0)A-0(8-A)=pod E
Minkowski Metric | 9=(d/c,-V') Maxwell EM Wave Eqn

U-oI[..] EM
4-UnitTemporal d/dt[..] Constants
T=y(1,B) |
=u/ @
@) " 4-\elocity

U=y(c,u)
4-UnitSpatial
S=yp(11-B,1)

4-Displacement
AX=(cAt,Ax)
dX=(cdt,dx
4-Position

ProperTime
Derivative

Rest Charge - -

4-ChargeFlux
4-C

Density

Rest Scalar B

Potential@ o
A 4-ThermalVector

"H'H . il 4-InverseTempMomentum

4-WaveVector Rest Ang ' ©=(6.8)=(c/ksT,ulksT)

K=(uo/c,k)=(w/c,uon/vp Frequency

4-VectorPotential

hase

Rest A=(p/c,a) %Y Rest Inverse
Energy:Mass EM % . TemperatureEnergy

E = mc? Charge
‘(1/h)’ Q-

4-PotentialMomentum

B=1/ksT in this case, not v/c
Unfortunate notational clash

4-Momentum

Einstein P=(mc,p)=(E/c,p) Q=(U/c,q)=qA

de Broglie Minimal

P =hK 3 Coupling
P+Q

4-MomentumlIncField

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar

Existing SR Rules
Quantum Principles




SR — QM 4-Vector SRQM Interpretation

SRQM: QM Axioms Unnecessary
s QN Principles emerge fromSR . .

of Physical 4-Vectors John B. Wilson

QM is derivable from SR plus a few empirical facts — the “QM Axioms” aren't necessary
These properties are either empirically measured or are emergent from SR properties...

3 “QM Axioms” are really just empirical constant relations between purely SR 4-Vectors:
Particle-Wave Duality [(P) = h(K)]
Unitary Evolution [0 = (-)K]
Operator Formalism [(9) = -iK]

2 “QM Axioms” are just the result of the Klein-Gordon Equation being a linear wave PDE:
Hilbert Space Representation (<bra|,|ket>, wavefunctions, etc.) & The Principle of Superposition

3 “QM Axioms” are a property of the Minkowski Metric and the empirical fact of Operator Formalism
The Canonical Commutation Relation
The Heisenberg Uncertainty Principle (time-like-separated measurement exchange)
The Pauli Exclusion Principle (space-like-separated particle exchange)

1 “QM Axiom” only holds in the NRQM case
The Born QM Probability Interpretation — Not applicable to RQM, use Conservation of Worldlines instead

1 “QM Axiom” is really just another level of limiting cases, just like SR — CM in limit of low velocity
The QM Correspondence Principle (QM — CM in limit of { V2[¢] << (V[$])?} )

SRQM: A treatise of SR—QM by John B. Wilson
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A Tensor Study

of Physical 4-Vectors

4-Vector SRQM Interpretation

SRQM Interpretation:

of QM

Relational QM & EPR

The SRQM interpretation fits fairly well with Carlo Rovelli's Relational QM interpretation:

Relational QM treats the state of a quantum system as being observer-dependent, that is, the QM State is the relation
between the observer and the system. This is inspired by the key idea behind Special Relativity, that the details of an
observation depend on the reference frame of the observer.

All systems are quantum systems: no artificial Copenhagen dichotomy between classical/macroscopic/conscious objects
and quantum objects.

The QM States reflect the observers' information about a quantum system.
Wave function “collapse” is informational — not physical. A particle always knows it's complete properties. An observer has
at best only partial information about the particle’s properties.

No Spooky Action at a Distance. When a measurement is done locally on an entangled system, it is only the partial
information about the distant entangled state that “changes/becomes-available-instantaneously”. There is no superluminal
signal. Measuring/physically-changing the local particle does not physically change the distant particle.

ex. Place two identical-except-for-color marbles into a box, close lid, and shake. Without looking, pick one marble at
random and place it into another box. Send that box very far away. After receiving signal of the far box arrival at a distant
point, open the near box and look at the marble. You now instantaneously know the far marble’s color as well. The
information did not come by signal. You already had the possibilities (partial knowledge). Looking at the near marble color
simply reduced the partial knowledge of both marble’s color to complete knowledge of both marbles’ color. No signal was
required, superluminal or otherwise.

ex. The quantum version of the same experiment uses the spin of entangled particles. When measured on the same axis,
one will always be spin-up, the other will be spin-down. It is conceptually analogous. Entanglement is only about
correlations of system that interacted in the past and are determined by conservation laws.

John B. Wilson
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of Physical 4-Vectors

4-Vector SRQM Interpretation

SRQM Interpretation:
Interpretation of EPR-Bell Experiment

of QM

SciRealm.org

Einstein and Bohr can both be “right” about EPR:
Per Einstein: The QM State measured is not a “complete” description, just one observer's point-of-view.
Per Bohr: The QM State measured is a “complete” description, it's all that a single observer can get.

The point is that many observers can all see the “same” system, but see different facets of it. But a single
measurement is the maximal information that a single observer can get without re-interacting with the system,
which of course changes the system in general. Remember, the Heisenberg Uncertainty comes from non-zero
commutation properties which *require separate measurement arrangements*. The properties of a particle are
always there. Properties define particles. We as observers simply have only partial information about them.

Relativistic QM, being derived from SR, should be local — The low-velocity limit to QM may give unexpected
anomalous results if taken out of context, or out of the applicable validity range, such as with velocity addition
V12 = Vi+V,, Where the correct formula should be the relativistic velocity composition viz = (V4+V2)/[1+vV2/c?]

These ideas lead to the conclusion that the wavefunction is just one observer’s state of information about a
physical system, not the state of the physical system itself. The “collapse” of the wavefunction is simply the
change in an observer’s information about a system brought about by a measurement or, in the case of EPR, an
inference about the physical state.

EPR doesn’t break Heisenberg because measurements are made on different particles. The happy fact is that
those particles interacted and became correlated in the causal past. The EPR-Bell experiments prove that it is
possible to maintain those correlations over long distances. It does not prove superluminal signaling

John B. Wilson

SRQM: A treatise of SR—QM by John B. Wilson



mailto:SciRealm@aol.com

SR — QM 4-Vector SRQM Interpretation

SRQM Interpretation:
e Range-of-Validity Facts & Fallacies .....

of Physical 4-Vectors John B. Wllson

We should not be surprised by the “quantum” probabilities being correct instead of “classical” in the EPR and Bell Inequalities experiments.
Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

Examples

*The limit of h—0 { }:
his a Lorentz Scalar Invariant and Fundamental Physical Constant. It never becomes 0. {Fact}

*The classical commutator being zero [p*,x] = 0 { }:
[P¥,X"] = ihn® ; [p* ] = -ihdY ; [p°x°] = [Elc,ct] = [E 1] = ih; Again, it never becomes 0 {Fact}

*Using Maxwell-Boltzmann (distinguishable) statistics for counting probabilities of (indistinguishable) quantum states { }:
Must use Fermi-Dirac statistics for Fermions:Spin=(n+1/2); Bose-Einstein statistics for Bosons:Spin=(n) {Fact}

*Using sums of classical probabilities on quantum states { }:
Must use sums of quantum probability-amplitudes {Fact}

*Ignoring phase cross-terms and interference effects in calculations { %
Quantum systems and entanglement require phase cross-terms {Fact}

*Assuming that one can simultaneously “measure” non-commuting properties at a single spacetime event { I

Particle properties always exist. However, non-commuting ones require separate measurement arrangements to get information about the properties.
The required measurement arrangements on a single particle/worldline are at best sequential events, where the temporal order plays a role; {Fact}
However, EPR allows one to “infer (not measure)” the other property of a particle by the separate measurement of an entangled partner. {Fact}

This does not break Heisenberg Uncertainty, which is about the order of operations (measurement events) on a single worldline. {Fact}

In the entangled case, both/all of the entangled partners share common past-causal entanglement events, typically due to a conservation law. {Fact}
Information is not transmitted at FTL. The particles simply carried their normal respective “correlated” properties (no hidden variables) with them. {Fact}

*Assuming that QM is a generalization of CM, or that classical probabilities apply to QM { }:
CM is a limiting-case of QM for when changes in a system by a few quanta have a negligible effect on the whole/overall system. {Fact}



SR — QM 4-Vector SRQM Interpretation

SRQM Interpretation: |
Quantum Information

of Physical 4-Vectors John B. Wilson

We should not be surprised by the “quantum” probabilities being correct instead of “classical” in the EPR and Bell Inequalities experiments.
Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

{from Wikipedia}

No-Communication Theorem/No-Signaling:

A no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making
a measurement of a subsystem of the total state, to communicate information to another observer. The theorem shows that quantum correlations do not lead to what
could be referred to as "spooky communication at a distance". SRQM: There is no FTL signaling.

No-Teleportation Theorem:

The no-teleportation theorem stems from the Heisenberg uncertainty principle and the EPR paradox: although a qubit |¢> can be imagined to be a specific direction on
the Bloch sphere, that direction cannot be measured precisely, for the general case |p>. The no-teleportation theorem is implied by the no-cloning theorem.

SRQM: Ket states are informational, not physical.

No-Cloning Theorem:
In physics, the no-cloning theorem states that it is impossible to create an identical copy of an arbitrary unknown quantum state. This no-go theorem of quantum

mechanics proves the impossibility of a simple perfect non-disturbing measurement scheme. The no-cloning theorem is normally stated and proven for pure states;
the no-broadcast theorem generalizes this result to mixed states. SRQM: Measurements are arrangements of particles that interact with a subject particle.

No-Broadcast Theorem:

Since quantum states cannot be copied in general, they cannot be broadcast. Here, the word "broadcast" is used in the sense of conveying the state to two or more
recipients. For multiple recipients to each receive the state, there must be, in some sense, a way of duplicating the state. The no-broadcast theorem generalizes the
no-cloning theorem for mixed states. The no-cloning theorem says that it is impossible to create two copies of an unknown state given a single copy of the state.
SRQM: Conservation of worldlines.

No-Deleting Theorem:

In physics, the no-deleting theorem of quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it
is impossible to delete one of the copies. It is a time-reversed dual to the no-cloning theorem, which states that arbitrary states cannot be copied.

SRQM: Conservation of worldlines.

No-Hiding Theorem:

the no-hiding theorem is the ultimate proof of the conservation of quantum information. The importance of the no-hiding theorem is that it proves the conservation of
wave function in quantum theory.

SRQM: Conservation of worldlines. RQM wavefunctions are Lorentz Scalars (spin=0), Spinors (spin=1/2), 4-Vectors (spin=1), all of which are Lorentz Invariant.
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SRQM Interpretation: |
Quantum Information

of Physical 4-Vectors John B. Wilson

We should not be surprised by the “quantum” probabilities being correct instead of “classical” probabilities in the EPR/Bell-Inequalities experiments.

Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

{from Wikipedia}

Quantum information (qubits) differs strongly from classical information, epitomized by the bit, in many striking and unfamiliar ways. Among these are the following:

A unit of quantum information is the qubit. Unlike classical digital states (which are discrete), a qubit is continuous-valued, describable by a direction on the Bloch
sphere. Despite being continuously valued in this way, a qubit is the smallest possible unit of quantum information, as despite the qubit state being continuously-
valued, it is impossible to measure the value precisely.

A qubit cannot be (wholly) converted into classical bits; that is, it cannot be "read". This is the no-teleportation theorem.

Despite the awkwardly-named no-teleportation theorem, qubits can be moved from one physical particle to another, by means of quantum teleportation. That is, qubits
can be transported, independently of the underlying physical particle. SRQM: Ket states are informational, not physical.

An arbitrary qubit can neither be copied, nor destroyed. This is the content of the no cloning theorem and the no-deleting theorem. SRQM: Conservation of worldlines.

Although a single qubit can be transported from place to place (e.g. via quantum teleportation), it cannot be delivered to multiple recipients; this is the no-broadcast
theorem, and is essentially implied by the no-cloning theorem. SRQM: Conservation of worldlines.

Qubits can be changed, by applying linear transformations or quantum gates to them, to alter their state. While classical gates correspond to the familiar operations of
Boolean logic, quantum gates are physical unitary operators that in the case of qubits correspond to rotations of the Bloch sphere.

Due to the volatility of quantum systems and the impossibility of copying states, the storing of quantum information is much more difficult than storing classical
information. Nevertheless, with the use of quantum error correction quantum information can still be reliably stored in principle. The existence of quantum error
correcting codes has also led to the possibility of fault tolerant quantum computation.

Classical bits can be encoded into and subsequently retrieved from configurations of qubits, through the use of quantum gates. By itself, a single qubit can convey no
more than one bit of accessible classical information about its preparation. This is Holevo's theorem. However, in superdense coding a sender, by acting on one of two
entangled qubits, can convey two bits of accessible information about their joint state to a receiver.

Quantum information can be moved about, in a quantum channel, analogous to the concept of a classical communications channel. Quantum messages have a finite
size, measured in qubits; quantum channels have a finite channel capacity, measured in qubits per second.
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Minkowski still applies in local GR
QM is a local phenomenon

of Physical 4-Vectors John B. Wilson

The QM Schrodinger Equation is not fundamental. It is just the low-energy limiting-case of the RQM
Klein-Gordon Equation. All of the standard QM Axioms are shown to be empirically measured constants
or emergent properties of SR. It is a bad approach to start with NRQM as an axiomatic starting point and
try to generalize it to RQM, in the same way that one cannot start with CM and derive SR. Since QM
*can* be derived from SR, this partially explains the difficulty of uniting QM with GR:

QM is not a “separate formalism” outside of SR that can be used to “quantize” just anything...

Strictly speaking, the use of the Minkowski space to describe physical systems over finite distances
applies only in the SR limit of systems without significant gravitation. In the case of significant gravitation,
SpaceTime becomes curved and one must abandon SR in favor of the full theory of GR.

Nevertheless, even in such cases, based on the GR Equivalence Principle, Minkowski space is still a
good description in a local region surrounding any point (barring gravitational singularities). More
abstractly, we say that in the presence of gravity, SpaceTime is described by a curved 4-dimensional
manifold for which the tangent space to any point is a 4-dimensional Minkowski Space. Thus, the
structure of Minkowski Space is still essential in the description of GR.

So, even in GR, at the local level things are considered to be Minkowskian:
i.,e. SR — QM “lives inside the surface” of this local SpaceTime, GR curves the surface.

SRQM: A treatise of SR—QM by John B. Wilson
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SRQM Interpretation: Main Result
QM is derivable from SR!

of Physical 4-Vectors John B. Wilson

Hopefully, this interpretation will shed light on why Quantum Gravity has been so elusive. Basically, QM rules of “quantization” don’t
apply to GR. They are a manifestation-of/derivation-from SR. Relativity *is* the “Theory of Measurement” that QM has been looking for.

This would explain why no one has been able to produce a successful theory of Quantum Gravity,
and why there have been no violations of Lorentz Invariance nor of the Equivalence Principle.

If quantum effects “live” in Minkowski SpaceTime with SR,

then GR curvature effects are at a level above the RQM description, and two levels above standard QM.
SR+QM are “in” SpaceTime, GR is the “shape” of SpaceTime...

Thus, this treatise explains the following:
Why GR works so well in it's realm of applicability {large scale systems}.

Why QM works so well in it's realm of applicability {micro scale systems and certain macroscopic systems}.
i.e. The tangent space to any point in GR curvature is locally Minkowskian, and thus QM is typically found in small local volumes...

Why RQM explains more stuff than QM without SR {because QM is just the low-velocity limiting-case of RQM}.

Why all attempts to "quantize gravity" have failed {essentially, everyone has been trying to put the cart (QM) before the horse (GR)}.
Why all attempts to modify GR keep conflicting with experimental data {because GR is apparently fundamental}.

Why QM works perfectly well with SR as RQM but not with GR {because QM is derivable from SR, hence a manifestation of SR rules}.

How Minkowski Space, 4-Vectors, and Lorentz Invariants play vital roles in RQM, and give the SRQM Interpretation of Quantum
Mechanics.

SRQM: A treatise of SR—QM by John B. Wilson
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SRQM:

4-Vector SRQM Interpretation
of QM

e OR—QM Interpretation Simplified . %=

of Physical 4-Vectors

SRQM: The [SR—QM] Interpretation of Quantum Mechanics

SR Axioms: Invariant Interval + (c) as Physical Constant lead to SR,
although technically SR is itself the low-curvature limiting-case of GR

http://scirealm. org/SRQM pdf

{c,T,m.,h,i}: All Empirically Measured SR Lorentz Invariants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants
4-Position R = (ct,r) = (R'R) = (ct)’
4-Velocity U =v(c,u) = (U-9)R=dR/dt (U-U) = (c)?
4-Momentum P=(Elc,n) =moU (P-P) = (moC)?
4-WaveVector K= (w/ck) =Ph (K-K) = (moc/h)?
4-Gradient d=(d/c,-V) =-iK (0

|v|<<C

9) = -(moc/h)? = KG Eqn — RQM—QM

SR + Emipirically Measured Physical Constants lead to RQM via the Klein-Gordon Eqgn,

and thence to QM via the low-velocity limit { [v|] << c }, giving the Schrodinger Eqn.

The relation also leads to the Dirac, Maxwell, Pauli, Proca, Weyl, & Scalar \Wave QM Eqgns.

SRQM: A treatise of SR—QM by John B. Wilson
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SRQM Diagram:
Special Relativity — Quantum Mechanics
RoadMap of SR—QM

A Tensor Study
of Physical 4-Vectors

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4

SR SpaceTime Metric A
SR Lorentz Transforms RV]= ™
SR Action — 4-Momentum n

SR Phase — 4-\WaveVector
4-Gradient 0"
)2 6=(8t/c,—V)=-iK

B[RYI=AY,
Minkowski B --orentz

SR Proper Time Metric

SR & QM Waves
0-9=(0, /c)*-V-V
= -(Moc/h)? = -(wo/c
= (81/0)2

U-0=d/dt=yd/dt
Derivative

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

*START HERE* 4-Position=Location of SR <Events>/in SpaceTime

4-Position R"
R=(ct,r)=<Event>

4-Velocity=Motion
of SRI<Events>
in SpaceTime as

U-ar..]
yd/dt[..]

R:-R=(ct)*r-r both particles & waves
2
(CT) ProperTime
Derivative 4-Ve|OCity ¥
U=y(c,u)=dR/dt
Matter Wave

U-U=y*(c*u-u)

Velocit
SR d’Alembertian & a[q) -K.qu)phase free -P.staction free eoflyh =¢? . (C)2
_ , ’ ’ group  phase
Klein-Gordon Relativistic phiasefres SR Phase SR Action @ Einstein
Quantum Wave Relation ) o Comvpillex E = mc? = ymyc®= yE,
Schrédinger QWE is ;fi'_afg]es -3[S |=P Rest Angular
{lv|]<<c} limit of KG K=id actionfree Frequency

**[ SR N QM ]**
Pr = -3[S]

MA----->

4-WaveVector=Substantiation 4-WaveVector K

of SR Wave <Events> .
oscillations proportional to K=(w/c,k)=(w/c,wn/Vphase)

mass:energy & 3-momentum =(1/cF,n/x)=(w,/c?)U=P/h
K-K=(w/c)-k-k
= (Mot/h)? = (Wfo)? =

(1/cTF, )2

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(0,0)-Tensor S

orentz Scala

SR 4- CoVector

(1,1)-Tensor T*, or T,

Hamilton-Jacobi

Rest Energy:Mass

4-Momentum=Substantiation
of SR Particle <Events>
mass:energy & 3-momentum

4-Momentum P*
P=(mc,p)=(E/c,p)=m,U

Einstein, de Broglie

P P-P=(E/c)?
“F=(E/C)-pp
(1/n) _ 2 _ 2
Planck:Dirac Constant - (mOC = (EO/C)
Existing SR Rules Trace[T"] = n, T =T =T
Quantur.n Principles VAV = Vi V= (V)7 - vev] = (Vo)?
= Lorentz Scalar
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SRQM Diagram:
Special Relativity — Quantum Mechanics . .

= John B. Wilson
wees.. RoadMap of SR—QM (EM Potential) ...
of Physical 4-Vectors oa ap O o en Ia http://scirealm.org/SRQM.pdf

4-Gradient=Alteration of SR <Events> *START HERE*: <Events> have 4-Position=Location in SR SpaceTime

SR SpaceTime Dimension=4 | o R-R = (ct)*rr day

SR SpaceTime Metric ‘ : - 4-Position = (cT)?

SR Lorentz Transforms av[R”']=/\”!v R=(ct.r) (19) U-U = y’(c*u-u) " A-0"AF=FH
: ’ =NE 4-Tensor

SR Action — 4-Momentum HTRV]=nHY _
SR Phase — 4-WaveVector ST=q Lorentz =<Event>

SR Proper Time A : Minkowski ProperTime 4-Velocit <Events> have 4-V§alocity=Motion
SR & QM Waves f ) Derivative l] e(OCI )y in SR SpaceTime as both
i - (AN particles & waves
SRl ¢Crociont NI u-=d/d=a/dt R-S %
ivistic Quantu _ ) = R= . :
Particle in EM Potential  KAIAAR Derivative R RSe @ iR
d’Alembertian Wave Equation i EM y
99 = (9/c)*-V-V 4-EMVectorPotential
- (3T+((Iq§h;ZA)-(?T+(|(/]F/1F)\2)A) T Hj:lmilton— @ @ o A=(op/c,a)
= -(w./c)” = -(myC pa— ’ acobi instein
_ (a /C)2 ‘(_vl)’ -a[cD e -a[Saction,free P Pr=-9[S] Wave Velocity E=mc’= 'Ym002= YE, EM q
= v CompIeX 'a[S . ]=P Vgroup* phasezc2 Charge
Limit: { |v|<<c Plane-Waves actont T g
(Ind) = [ 90 + (mec?) + (In Vr+qa)(ems) ] Kr=-291 WA~ o>
\(,:/?ti‘%;tér\]/ti; (\';‘zv;:qu)( rﬁgz?)") ] 4-WaveVector 4-Momentum 4-PotentialMomentum
=Schrédinger QM Equation (EM potential) K=(w/c,k) Einstein, de Broglie P=(mc,p)=(E/c,p) Q=(V/c,q)=q(9/c,a)
*[ SR — QM |** PRk (+)
_ 1/h 4-TotMom Conservation Minimal Coupli
SR Wave <Events> have ~ KK=(w/cy-kk (n) P-P = (E/c)-p-p P, = (P+Q) = (P+qA) P = (Prrah) = (P-Q)
4-Wﬁ\veVector=Substalntiation = (KT'(q/h)Az)'(KT‘(q/hz)A) SR Particle <Events> have = (P.-gA):(P_-gA) 4-TotalMomentum
oscillations proportional to = (moc/h)? = (wo/C 4-Momentum=Substantiation = 2 = 2 - —
mass:energy & 3-momentum ( F 7 We0) mass:energy & 3-momentum (mec)” FES) P.=(E/c,p,)=((E+q9)/c,p+qa)

SR 4-Tensor SR 4-Vector o W] = Wo— TH =
(2,0)-Tensor T 0(1,0)-Tensor V¥ = V = (v°,v) (g';)4T-S°a'afS EX'St'” SR Rules v-vTia\c/;?rET 1= ?(“\;oT)z VTVf = (T\,o Y
- b v . ,0)-Tensor — =V, VW = - = (V%
(1 ,1) Tensor T", or T, SR 4-CoVector Quantum Prlnc|p|es = Lorentzic R

orentz Scala
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SRQM Diagram: SRQM 4-Vectors and
. Lorentz Scalars | Physical Constants _ s

SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

f 9.R=4 : Minkowski & Lorentz s |
Heart of SR SpaceTime 4-Acceleration 4-Polarization SIEEARI=IRI=n™] A[R'I=A"y " 4-Gradient
4-Displacement A=y(cy',y'utya) E=(e°€)=(e"B.€) tudl Metric ansformg’

AR=(cAt,Ar)
dR=(cdt.d

9=(d/c,-V

an outcome of k- ( )

Poincaré Invariance, M =4= pv . =0.,70 ,~
s?.s)=(s'B,s) [T e o

Conservation of Complex Hamilton-
— — dl[.. ; . Polarization:Spin - 4-TotalWaveVector Plane-Waves Jacobi
. ot . is Rest Spatial Sum of Plane-Waves K, =-9[®]K=io P, =-J[S]
nvariant Interva - ..

o ) 4-WaveVector 4-TotalWaveVector
R=(ct)*rr = (ct . o
_ . @ K=(w/c,k)=(w/c,wn/vphase) @ K.=(w,/c,k,)

4-UnitTemporal
T=y(1,f

Wave Velocity (4,=0} < {K-U=0} < {K is null} =-0[Dphase] 3
o ..
group  phase
Time:Space @ gffizc:]te 4-Velocit Rest AngFrequency Encan m
Orthogonal -_e ocity EinsteinNg( 1 ) ol 4-Force de Broglie (h)
@ U=y(c,u) de Broglie — yd/dt[..]

= ’ P_=hK
Rest Number a Y(E /C’f) ! h

| =dR/dt @ Pk @ ) : 4-TotalMomentum
; Density @ E=mc’ . ; il e < P.=(E,/c,p;)=(H/c,p;)
4-UnitSpatial Rest Energy:Mass ProperTime 0 - 313
S=yp.(A-B, M), Porore = X*\p Rest Charge P=(mc,p)=(E/c,p) Derivative =-0[ Saciin]

D ; Conservation of
|2y PR enSltY@ EM @ m. =0 o R e 4-TotalMomentum @
‘ . Probability Rule Rest Scalar ||H_|_ } . Sum of Momenta
Rest Prob' DSl > - - el inimal @y 4-MomentumIncField
NIl = b 4-EMVectorPotential EM Ch Coupling P=(E/c,p,)=P+Q=P+gA
N=(nc,n)=n(c,u EM Charge 4-ChargeFqu A=(¢/c,a) arge P+Q
4-ProbCurrDensity @ 4-CurrentDensity e Q
4-ProbabilityFlux J=(pc.j)=p(c,u) {9s=0} > {A-U=0} & {A is null} 4-EMPotentialMomentum SESIale]YEsiErTEN
J = ) Q=(U/c,q)=qA
pro ’

SR 4-Tensor SR 4-Vector

. . Wy = W= TH =
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (v",v)jfP SR 4-Scalar Existing SR Rules V-VTIa\(;S[TV]V . r[l(U\;OT)z v-Tv]” h (Tv° .
(1,1)-Tensor T* or T,¥ SR 4-CoVector (%2;{;“8?;6‘3 Quantum Principles Moy o

= Lorentz Scalar
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Special Relativity -~ Quantum Mechanics
The SRQM Interpretation: Links

ATensqr Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

See also:

nttp://scirealm.org/SRQM.html (it discussion)
nttp://scirealm.org/SRQM-RoadMap.html (main sram website)
nttp://scirealm.org/4Vectors.html (-vector study)
nttp://scirealm.org/SRQM-Tensors.html rensor & 4-vector Calculator)
nttp://scirealm.org/SciCalculator.html (complex-capable RPN Calculator)

or Google “SRQM”

http://scirealm.org/SRQM.pdf (s document)

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

The 4-Vector SRQM Interpretation
i, QM is derivable from SR!

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The SRQM or [SR—QM] Interpretation of Quantum Mechanics
A Tensor Study of Physical 4-Vectors

quantum
relativity

LLANAY T

4

Cal AUV

SRQM = SciRealm QM? A happy coincidence

SRQM: A treatise of SR—QM by John B. Wilson

Ambigrams
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