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Abstract

In single-particle quantum mechanics there is no impediment to a particle’s wave function having a sig-
nificant amplitude for arbitrarily short wavelengths, i.e., for arbitrarily large momenta, so the iconic
single-particle uncertainty relation permits a particle’s position to be arbitrarily accurately ascertained.
Once a single-particle theory is second quantized, however, the physics of imparting a particle’s wave
function with ever larger momenta eventually encounters stiff competition from the formation of multi-
particle states wherein none of the individual particles is characterized by high momentum. In fact, the
single-particle uncertainty principle itself is modified by the presence of the expectation value of the parti-
cle number operator on its right side. Since the threshold for the high-momentum-diverting formation of
additional particles is set by the particle’s rest mass, it stands to reason that particles have an irreducible
position uncertainty of the order of their Compton wavelength, for which we develop a specific model.

Introduction

The uncertainty relation of single-particle quantum mechanics permits the particle’s position to be arbi-
trarily accurately ascertained by imparting a significant amplitude for sufficiently large momenta to the
particle’s wave function, i.e., by imparting a significant amplitude for sufficiently short wavelengths to that
wave function. The multiparticle second quantization of relativistic free single-particle quantum mechanics,
however, alerts us to the physical fact that attempting to impart a significant amplitude for particle mo-
menta appreciably in excess of the particle’s rest mass m times ¢ to a particle’s wave function imparts a
significant amplitude for the existence of multiparticle states whose individual-particle wave functions are
characteristized by momenta much smaller than mec. This diversion to increased particle number of wave-
lengths appreciably shorter than i/ (mc) in individual-particle wave functions of course results in a minimum
position uncertainty of individual particles of the order of I/(mc), which is their Compton wavelength.

The multiparticle second quantization of single-particle quantum mechanics formally signals an exten-
sion of the underlying single-particle theory’s iconic uncertainty relation because the result of commuting
matching components of the second-quantized particle position and momentum operators comes out to be
th times the particle number operator N instead of ih alone. The particle number expectation value (V)
consequently occurs on the right side of the multiparticle uncertainty relation, which is,

(A7) (|Ap[*)E = (VB/2)R(N). (1a)

To estimate <N ) for a relativistic free particle of rest mass m and initial momentum uncertainty |Ap|initials
we note that its initial energy could produce states of up to N|ap);...;.. Particles of rest mass m, where,

N\Ap\initial = (ElAplinitial)/(mcz) = (m264 + (C|Ap|initial)2)%/(mcz) = (1 + (|Ap‘initial/(m0))2)%. (1b)

~20 1
So if we set the <’Af)’2>2 of Eq. (1a) to |Ap|initial, we would suppose that that should be accompanied by
setting the (N) of Eq. (1a) to N|Ap|inia - Carrying this out produces,

(A7) = (VB/2)h(Niaplyina) / (AP lstiar) = (VB/2)A((1APhasiar) ~* + (me)~2) . (1c)

The Eq. (1c) result reduces to the familiar single-particle uncertainty relation if the particle’s initial momen-
tum uncertainty |Ap|initial was much smaller than its rest mass m times c. But no matter what the particle’s
initial momentum uncertainty |Aplinitial Was, the particle’s Eq. (1¢) position uncertainty <‘A§|2>% won’t be
less than (v/3/2)(h/(mc)); this is the particle’s minimum position uncertainty.

We now review the second quantization of single-particle quantum mechanics, with emphasis on those
aspects which enter into the derivation of the Eq. (1a) multiparticle uncertainty relation.
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Single-particle second quantization and the multiparticle uncertainty relation

It is technically tenable to regard the single-particle complex-valued linear Schrodinger equation, namely,
ihdy/dt = H(T, p)v, (2a)
in either configuration representation, i.e.,
ihdy(r)/dt = [(x|H(T,p)[r)p(r') d°r,
where (r[f|r') = rd®) (r — 1) and (r|p|r’) = —ihV,6®) (r — '),
or momentum representation, i.e.,

ihdi(p)/dt = [(p|H (T, p)|p")(p") d°P’, )
where (p[F[p’) = itVp0® (p — p') and (p[plp’) = ps® (p — p'), 0
as two classical Hamiltonian field equations for, respectively, either the real-valued canonical pair of fields,
X(r) = k(r) + k"9 (r), ¢(r) = —i(ko(r) — k™™ (r)), (2d)
where k is an unspecified nonzero complex-valued constant, or the real-valued canonical pair of fields,

x(p) = kv(p) + E*¢Y*(p), ¢(p) = —i(kv(p) — k**(p)). (2e)

The Eq. (2¢) momentum-representation case implies, via its Eq. (2¢) Schrédinger equation, that,

dx(p)/dt = kdip(p)/dt + k*dy* (p) /dt =

(—i/h) [k [(p|H (T, P)IP)v(p’) d*p’ — k* [4*(p')(p|H (T, D)Ip) °P'],

(2f)
dé(p)/dt = —i(k dy(p)/dt — k*dy™(p)/dt) =
—(1/n)[k [(p|H (T, B)|p" ) (') &P’ + k* [4*(p')(p'|H (T, B)|P) &°P'].
where in the second term on the right side of both of the Eq. (2f) equations we inserted the fact that,
((plH(r,p)[p"))* = (p'|H(T,P)|P) (2¢)

which follows from the Hermitian nature of the single-particle Hamiltonian operator H(T,p). To make
Eq. (2f) into two linear equations for x(p) and ¢(p), we invert Eq. (2e) to obtain,

Y(p) = (x(p) +ig(p))/(2k)  ¥*(p) = (x(P) —id(p))/(2k"), (2h)

which we substitute into Eq. (2f). The result is independent of k, and can be written,
dx(p)/dt = [ [ (=i/V2R)(p|H(E, B)[P') (x(P) + id(p")/V2R) d®p +
J((x(®) = i¢(0))/V2h) (p'|H (F,P)|p) (i/V2h) d°p'],
do(p)/dt = —[ [ (1/V2h) (p|H(F D)) (x(P') + id(p')/V2h) &P’ +
J((x(0') = ip(p")/V2h) (p'|H (T, B)Ip) (1/V2h) d°p'].

With the square roots in Eq. (2i) as written, it can be recognized that functional derivatives with respect to
o(p) and x(p) of a single bilinear functional occur on the right sides of the two equations in Eq. (2i), i.e.,
ax(p)/dt = 3(f ((x(p) — i6(p))/V2R) (b H(E, B) 1P} (x(9') + ie(p'))/V2h) *D'd*p) /30(p), o
2]
dg(p)/dt = —5(f((x(p) —i¢(p))/V2h) (p|H (T, B)|Pp) (x(P') +id(p))/V2R) d3p’d3p) /8x(p)-
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Eq. (2j) presents the Eq. (2¢) momentum-representation Schréodinger equation for the complex-valued field
¥(p) as two classical Hamiltonian field equations for the real-valued canonical pair of fields [x(p), #(p)],
where that field pair is given in terms of ¢(p) and k by Eq. (2e), and the classical Hamiltonian functional
of that canonical field pair [x(p), #(p)] is the real-valued bilinear k-independent functional,

Halx(p), ¢(p); (p|H(F,p)|p’)] &<

[ ((x(p) —io(p))/v2h)(p|H (T, p)Ip') (x(P) + i¢(p'))/V2h) d*p'd®p.

Since from Eq. (2h), ((x(p) +i¢(p))/V2h) = k\/2/h 1 (p), the presentation of the Eq. (2k) classical Hamil-
tonian field functional as a functional of ¥ (p) is,

Ha[y(p): (plH (T, P)Ip")] = [k[*(2/h) [+ (p)(pH (¥, B)|p")v(p) d’p'd’p = [k|*(2/h) (v, H (T, P)¥).

Thus Ha[v(p); (p|H (T, p)|p’)] equals |k|?(2/h) times the expectation value of the single-particle Hamiltonian
operator H(T,p). Since an expectation value isn’t tied to any particular single-particle representation, such as
the single-particle momentum representation we’ve been using, the Eq. (2j) classical Hamiltonian field theory
18 fully equivalent to the underlying single-particle quantum mechanics, so its quantization is of considerable
interest. Quantization of a classical Hamiltonian theory proceeds from the Poisson-bracket relations of its
canonical variables, so we need the Poisson-bracket relations of the canonical field pair [x(p), ¢(p)]. First,
however, we note from the above result for He[¢(p); (p|H (T, p)|p’)] that the most convenient choice for k
is 4/h/2. This choice for k turns Egs. (2h) and (2e) respectively into,

¥(p) = ((x(p) +id(p))/V2h), ¥*(p) = ((x(p) —id(p))/V2h),
x(P) = VA2(w(p) + ¢*(p)), 6(p) = —i/A/2(¢(pP) — ¥*(p)),

while it of course turns the above classical Hamiltonian field functional Hq[¢(p); (p|H (T, p)|p’)] into simply,
Hal¢(p); (PlH(T,D)IP")] = [ ¢*(p)(p|H (T, B)[p)¢(p) &’p'd’p = (¢, H(T,P)¥) = (H(F,D)),-  (2m)

In classical Hamiltonian field theory, the antisymmetric Poisson bracket of two functionals F1[x(p), ¢(p)]
and F2[x(p), ¢(p)] of the canonical field pair [x(p), #(p)] is,

(2k)

(21)

{F1, Fo} = [[(0F1/0x (")) (6F2/36(p")) — (6F2/5x(p")) (6F1/6(p"))]d*p". (3a)
Each member of the canonical field pair [x(p), ¢(p)] is itself such a functional because,
x(p) = [ & (p—p")x(p") D", é(p) = [P (p—p")p(p") d’p”, (3b)

which implies that,

5x(p)/ox(P")=0®(p—p"), 66(p)/5d(P")=5®(p—p"), x(p)/sd(P")=0, d¢(p)/5x(p")=0. (3c)

From Egs. (3a) and (3c), the Poisson-bracket relations of the canonical field pair [x(p), ¢(p)] are,

{x(®),x(P)} = {¢(p).6(p)} =0, {x(p).4(P)} =0 (p—p). {6(p),x(P)} =D (p-p). (3d)
Egs. (3d) and (21) then yield the Poisson-bracket relations of ¢(p) and *(p) as follows,

{v(p), v(P)} = {((x(p) +id(p))/V2h), ((x(p') +i¢(p))/v2h)} =

(3e)
(1/(20)) {x(p), x(P")} = {0(), 6(P")} + i({x(P), 2(P)} + {o(P), x(P")})] =0,
and,
{v*(p), v*(P)} = {((x(p) — id(p))/V2R), (x(P") — ib(p"))/V2h)} = o)
(1/(20) [{x(p), x(P")} — {o(p), 2(P")} — i({x(P), 2(P)} + {¢(P), x(P)})] = 0.
However,
{v(p), v*(P")} = {((x(p) +ip(p))/V2h), (x(p') — id(p'))/V2R)} = -
g

(1/(2m) [{x(@), x(P)} + {6(P), 6(P")} — i({x (), o(P)} — {o(P), x(P)})] = (—i/h) 6 (p — P).



Quantization of [x(p), &(p)] converts these real-valued classical fields into p-parameterized Hermitian

operators (X(p), ¢(p)

) whose commutator values equal (ih) times their corresponding classical Poisson-bracket
values. So from Eq. (3d)

we obtain the following quantized-field canonical commutation relations,

o~ o~ o~

[X(p),X(P)] = [6(p), 0(p")] =0, [X(P),o(P)] =ihd®(p—p), [é(p),X(P)] = —ihd®(p - p'). (4a)

From Egs. (4a) and (21), or directly from Egs. (3e)—(3g), we obtain the equivalent @(p) commutation relations,

~ o~

[&(p), (p)] = [0T(p), ¢ 1()] =0, [¢(p),d!()]=5>(p-p). (4b)

The Eq. (4b) commutation relations impose Bose-Einstein statistics on the second quantization of single-
particle quantum mechanics. To instead impose Fermi-Dirac statistics on that second quantization, Eq. (4b)
is replaced by the following anticommutation relations,

()Y () +0 ()0 (p) = ¥ ()Y T () +4 T ()P T(p) =0, d(p)d () +4d 1 (p)d(p) = 6@ (p—p). (4o)

There is a key commutation lemma which is independent of whether Eq. (4b) commutation-quantization or
Eq. (4c) anticommutation-quantization is selected. Assuming Eq. (4b), we have that,

o~ o~

[ 1)), vt (")] =4 1)) (") — v (") (p)d(p) =
D) (@)Y (") — &1 (")e®) + (0T () (") — & (") ()b (p) = (4d)
i) [D@), 1)) + [ 1), ¢ T (") ®) =4 1 (p)d® (P —p").
Now assuming Eq. (4¢) instead of Eq. (4b), we have that,

[ (P)e (), ¢ T (p")] =& () ()T (”) — ¢ T (") H(up)d(p') =
1) ()T (P") + & TE)YE)) — (LT ) T(e") + &) (p)v() =& (p)s® (' - p),
which is exactly the same result as Eq. (4d). Taking the Hermitian conjugate of this lemma yields,
[0 P)®), 01" = [0, &1(P)b(p)] = d(p)s® (- p),
which by reversing the order of the commutator implies,
(41 () (p), % ()] = —d(p)d® (p’ — "),

which upon interchanging the p’ and p labels becomes,

[& 1 (p)e(p'), ¥(p")] = —(p)6® (p — p”). (4f)

Eqgs. (4d)—(4f) are key commutation lemmas that are independent of the selection of Eq. (4b) commutation-
quantization or Eq. (4c¢) anticommutation-quantization. Since Eqgs. (4d)—(4f) underpin all of the calculations
which we shall henceforth undertake here, we needn’t here be concerned with whether Eq. (4b) commutation-
quantization or Eq. (4c) anticommutation-quantization is selected. Eqgs. (4d)—(4f) imply a further very
important commutation lemma. We apply the commutator identity,

(4e)

[A,bc] = Abc — bcA = (Ab — bA)c + b(Ac — cA) = [A,ble + b[A, ¢], (4g)

to the case that, R R ~ R
A=9Tp)(p), b=vT(p") and c =1 (p"),

to obtain,
[ 1)), ¢ T (") 0(P™)] = [T (P)p@), 41 (")]e®E") +& (") [T (P)d®), b ()] =
1))@ (p' —p”) — & (") (PP (p — "),

where the last step follows from the commutation lemmas of Eqgs. (4d)—(4f).

(4h)
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Conventional quantization of the Eq. (2m) classical Hamiltonian field functional Hy [1/)( ); (p|H(T,p)|p’)]
replaces the commuting ¢*(p) and ¢¥(p’) in Eq. (2m) by quantized " (p) placed left of w( "). Consequently,
conventional second quantization H(T,p) of the single-particle Hamiltonian operator H(T,Pp) is explicitly,

= [¢T(p)(p|HE,B) P )b(p') d*p'd®p. (41)

Eq. (4i) is the prototype for conventional second quantization ﬁ(? D) of any function F(T,D) of the single-
particle quantized vector canonical pair (T,P); that conventional second quantization of F(T,D) is explicitly,

F(F,p) = [ ¥ (p)(p|F(F,B)Ip)d(p') d*p'd°p. (4)

Given the Eq. (4i) second-quantized Hamiltonian H (T,p), the quantized field @(p) still ought to satisfy an
equation of motion which reflects the single-particle Schrédinger equation that pertains to H(T,p) and (p).
Of course the single-particle Schrodinger equation that pertains to H(T,p) and ¢ (p) is Eq. (2¢), i.e

ihdy(p)/dt = [(p|H(T,p)lp" )¢ (p’) d*p'. (4k)

The time derivative of the quantized field zZ(p), however, is given by the Heisenberg equation of motion which
pertains to the second-quantized Hamiltonian H(T,P) of Eq. (4i) and (p), namely by,

(p)/dt = (—i/W)[{(p), H(E,B)] = (+i/h)[H(E, D), ¥(p)] (41)

From Eq. (41) and the Eq. (4i) integral form of ﬁ(?, D), together with the Eq. (4f) lemma, we obtain,
di(p)/dt = (+i/h) [0 (p")6(p), V(p))(p"|H (E,B)|p) d*p'dp” =

(—i/h) [ ¥ (p")6®) (p” — p)(p"|H(F,B)|p) d*p'd®p" = (—i/h) [ (p|H(F, B)[p")b(p') d°P',

which implies,

(4m)

ihdip(p)/dt = [(p|H(T,D)[p' )y (p') d°pP". (4n)
Eq. (4n) indeed reflects the single-particle Schridinger equation given by Eq. (4k) (and also by Eq. (2c)).
Regarding the Eq. (4j) second quantization of functions F(r,p) of the single-particle quantized vector
canonical pair (T,p), the most basic such functions are nonzero constants. We obviously don’t need to
separately consider cases where the nonzero constant isn’t unity, and since (p|1|p’) = ¢®) (p — p’),

1= [¢1(p)d(p) dp. (5a)

The commutators of the operator 1 with products of n quantized @T(pk) fields, k = 1,2,..., are of special
interest. When n = 1, the commutator is obtained from the lemma of Egs. (4d) and (4e),

[T 47 (pw)] = [0 T (P)4(P). & (pr)]d®p = [ 9 1(p)5® (p — pr) d°p = & (pi)- (5b)
An “p implies (n + 1)” step is set up by applying the Eq. (4g) commutator identity and Eq. (5b), i.e

[T, (@) 0T )Y T(Pas)] = [T, (@ T(P1) - T (Pn)d T (Prs1)] =
[T, (0T P1) - 0T ()]0 T (Par1) + (@101 0T () [T, ¢ (Prs1)] = (5¢)
[T, (0T (p1) - T ()] T (Prg1) + (D T(D1) - 0T (00) 0 T (Prsr),

where Eq. (5b) was applied to obtain the last equality. We now assume the commutator result,

[T ) w)] = n(d @) &), (5d)
which Eq. (5b) shows is true for n = 1. Substituting Eq. (5d) into the last line of Eq. (5c¢) yields,

[T» ("ZWPI)"'@T(pn){p\'r(er»l))] =
(wT(pl T/JT (Pn )¢T Pnt1) (@T(m)"'iT(pn))QZT(pnﬂ) = (5e)
))

(n+ 1)@ (P1) - 0T (Pn) ¥ T (Pus1) = (0 + 1) (T (1) - ¥ T (pn) T (Pas1)),
which shows that if Eq. (5d) is true for n, then it is true for (n + 1), completing its proof by induction.



The zero-particle state |0) is such that QZ(p)|O> = 0 for every p, so from the Eq. (5a) rendition of 1, 1]0) =0
as well. That property of 1, combined with its induction-proved Eq. (5d) commutator result, yields,

(@ (p1) - T (Pa)|0) = (& (1) - & T (n))[0). (5f)

Since a &T(pk) field creates a momentum-py, particle, the state (@T(pl) e @T(pn)) |0) has n particles, and
Eq. (5f) shows that 1 yields that particle number. Therefore 1 is referred to as the particle number operator,
and it is customarily denoted as N.

We next apply the Eq. (4h) commutation lemma to show that given two functions Fy (T, p) and F»(T,p) of
the single-particle quantized vector canonical pair (T,p), the commutator of their second quantizations, i.e.,

[F\(F,D), F2(F, )], equals the second quantization of their single-particle commutator [Fy(F,p), Fa(F,D)],
[F1(F,D), F2(F,p)] =
[J 91 (@) (p|Fi(F, B)Ip) (") d®p'd®p, [ ¢ (p")(p"|Fa(F, B)Ip" )0 (p") d*p" d*p"] =
J @pd®p'dp"d*p" (p|Fi(F,B)|p')(p" | F2(E, B)[p") [ T () (D), & T (p") 0 (p")] =
JdPpd’p'd*p"d’p" (p|F1 (T, P)[p') (P F2(T, B)[P") X
(@) (P8 (B = p") = & (") d(p)6P (p — ™)) =
(f d*pd®p"" ¥t (p)(p ”’)fd3 "(p|F1(¥,P)Ip") (P’ | (T, P)|p") —
Jd&p" dpyt(p")d(p') [ d*p(p”|Fa(F, B)[p) (| Fi (F, B)Ip')) =
J & d®p" 91 (p)U(p") (P Fi (E, D) F(F, B)p”) — [ *p” d®p'd 1 (p") 4 (P') (B | F2(F, B) F1(F, B)|P') =
J 1)l (F1(F D) F2(E,B) — Fa(F, D) Fi(F,B)) [p')v(p) d*p'd*p =

ST (p)(pl[F1(T, B), Fo(F,D)][p)¢(p') d°p'dp,
so the Eq. (4h) lemma indeed establishes that the commutator of the second quantizations of F(T,P)
and F5(T,p), i.e., [Fi(T,p), F>(T,P)], equals the second quantization of these two functions’ single-particle
commutator [Fl (r,p), Fa(r, ﬁ)} In particular, for the commutators of the components of T and P, since,
[(®), (P)?] = ihdyy, (6b)

o~

(a vector echo of the Eq. (4a) field commutators [Y(p), ¢(p’)] = ih6® (p — p’)) the Eq. (6a) result implies,

(@), (p)'] = iné,,T = iné,;N. (6¢)
Well-known standard inequality theorems applied to the Eq. (6¢) commutation result further imply,
AR HAR))) = (1/2)m8, (). (60)
Squaring both sides of Eq. (6d) produces,
(((AR)))(((AD))") = (1/4)n*a,5 (N)2. (6e)
Summing both sides of Eq. (6e) over the three values of the index i yields,
(|AF)(((aD))*) = (1/9R* (N2, (6)
and then summing both sides of Eq. (6f) over the three values of the index j yields,
(|AF)(|AB[*) > (3/4)8% (W) (62)
Taking the square root of both sides of Eq. (6g) produces,
(AT 2 (|AB[") = (V3/2)R(N). (6h)

which is the the multiparticle uncertainty relation stated in Eq. (1a).
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