Solving the n; X n, X n3 Points Problem for n3 <6
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Abstract: In this paper, we show enhanced upper bounds of the nontrivial n; X n, X n;
points problem for every n; <n, <nz; <6. We present new patterns that drastically improve
the previously known algorithms for finding minimum-link covering paths, completely
solving the fundamental case n; = n, = n; = 3.
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1 Introduction

The n,; X n, X ns; points problem [11] is a three-dimensional extension of the classic nine-dot
problem appeared in Samuel Loyd’s Cyclopedia of Puzzles [1-8], and it is related to the well
known NP-hard traveling salesman problem, minimizing the number of turns in the tour
instead of the total distance traveled [1-13].

Given n; - n, - ny points in R3, our goal is to visit all of them (at least once) with a
polygonal path that has the minimum number of line segments connected at their end-points
(links or generically /ines), the so called Minimum-link Covering Path [2-3-4-7]. In particular,
we are interested in the best solutions to the nontrivial n; X n, X n; dots problem, where (by
definition) 1 < n; < n, < nzandn; < 6.

Let h;(ny,ny,n3) < h(ng,ny,n3) < hy(ng,ny,,n3) be the length of the covering path
with the minimum number of links for the n; X n, X n; points problem, we define the best
known upper bound as hy,(ng,n, n;) = h(ng,n,ng), and we denote as
h;(ny,ny,n3) < h(ny,n,,n3) the proved lower bound. For the simplest cases, the same
problem has already been solved [2].

Let ny =1 and n, < n3, we have that h(ny,n, n;) =h(n,) =2-n, —1, while
h(n, =1, n,=n3=23)=2-n,—2[5].

Hence, for n; = 2, it can be easily proved that

4'7’1.2—1 iff n2<n3

4-n,—3 iff n,=ny (M

h(z, le, Tl3) = 2 ) h(l, le,n3) + 1 = {
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11 lines

NO INTERSECTION

10
2 6
9
3 7
3 110
1 END 8
U
START

Figure 1. A trivial pattern that completely solves the 2 X 3 X 5 points puzzle
(avoiding self-intersections).
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Figure 2. Another example of a trivial case: the 2 X 5 X 5 points puzzle.



Therefore, the aim of the present paper is to solve the ten aforementioned nontrivial cases
where the current upper bound does not match the proved lower bound.

2 Improving the solution of the n; X n, X n3 points problem for
ns <6

In this complex brain challenge we need to stretch our pattern recognition [6-9] in order to
find a plastic strategy that improves the known upper bounds [2-12] for the most interesting
cases (and the 3 X 3 X 3 puzzle, which is the three-dimensional extension of the immortal
nine-dot problem, is by far the most valuable one), avoiding those standardized methods
which are based on fixed patterns that lead to suboptimal covering paths, as the approaches
presented in [7-10].

Theorem 1

If 3 < ny < n, < ngs, then a lower bound of the general n; X n, X n; problem is given by

2'7’13 +n,—

Proof Let ny X n, X...X n, be a set of [[“_; n; points in R¥ such that n; < n, <...< n, it
is not possible to intersect more than (n, — 1) + Ny — 1)+ (. — 1) =2-ny +ng_; — 3
points using three straight lines connected at their endpoints; however, there is one exception
(which, for simplicity, we may assume as in the case of the first line drawn). In this
circumstance, it is possible to fit n; points with the first line, n,_; — 1 points using the second
line, n;, — 1 points with the next one, and so forth. In general, the third and the last line of the
aforementioned group will join (at most) n, — 1 points each.

In order to complete the covering path, reaching every edge of our hyper-parallelepiped,
we need at least one more link for any of the remaining n;, and this implies that k — 2 lines
cannot join a total of more than ny_, —1+n_3—1+...+n, —1=Y52n, —k+2
unvisited points.

Thus, the considered lower bound h;(n,,n,,...,n;) satisfies the relation
= Btk —2- 1< Q2 me+ ey —3) - (M gt 2) (3)

Hence,
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. H{'(=1 ni—Zle nij+k-3
2Np+ng—1—3

h;(ny,n,,...,n) = |3 ]+k—2- 4)

Substituting k = 3 into equation (4), we get the statement of Theorem 1. L]



The current best results are listed in Table 1, and a direct proof follows for each nontrivial
upper bound shown below.

n n n Best Lower Best Upper Discovered Gap
1 2
? Bound () | Bound (k) by (hu—h)
2 2 3 7 7 trivial 0
2 3 3 9 9 trivial 0
Marco Ripa
3 3 3 13 13 (proved on Jun. 19, 0
2020 [v6])
2 2 4 7 7 trivial 0
2 3 4 11 11 trivial 0
2 4 4 13 13 trivial 0
Marco Ripa
3 3 4 14 15 (proved on 1
Jun. 27,2019 [v1])
Marco Ripa
4 4 1 1
3 6 2 (ibid.) 3
Marco Ripa
4 4 4 21 2
3 (NNTDM [12]) 2
2 2 5 7 7 trivial 0
2 3 5 11 11 trivial 0
2 4 5 15 15 trivial 0




n n n Best Lower Best Upper Discovered Gap
! ? ? Bound () | Bound (/) by (hu—h)

2 5 5 17 17 trivial 0
Marco Ripa

3 3 5 14 16 (proved on 2

Jun. 27, 2019 [v1])
Marco Ripa
4 1 2

3 > ! 0 (ibid.) 3

Marco Ripa
1 24

3 > > ? (ibid.) >
Marco Ripa

4 4 22 2 4

> 6 (ibid.)

Marco Ripa

4 2 1

> > > 3 (ibid.) 6

Marco Ripa

5 5 5 31 36 (proved on 5

Jul. 9, 2019 [v4])

Table 1: Current solutions to the n; X n, X nj points problem, where n; < n, <nz; <5.

Figures 3 to 12 show the patterns used to solve the n,; X n, X n; puzzle (case by case). In
particular, combining equation (2) with the original results shown in figures 3-4, we obtain a
formal proof for the major 3 X 3 X 3 points problem, plus very tight bounds for the 3 X 3 x 4
case.




3X3X3 PERFECT SOLUTION

13 lines
END
1 3 27 4
2 5 8 2 8 5
5 3 7 4
1 81.2
START 347
912 11 6

Figure 3. The 3 X 3 X 3 puzzle has finally been solved: h,(3,3,3) = h;(3,3,3) = 13.
This solution can trivially be proved to be optimal.

Corollary 1
h;(3,3,3) = h,(3,3,3) = h(3,3,3) = 13. (5)

Proof The covering path of the 3 X 3 X 3 case shown in Figure 3 consists of 13 straight lines
connected at their end-points, and equation (2) gives h;(3,3,3) = [12] + 1 = 13. L]



3X3X4 best upper bound:
15 lines

NO INTERSECTION

START

Figure 4. Best known (non-crossing) Hamiltonian path for the 3 X 3 X 4 puzzle.
15=h, =h; + 1.



3x4x4 best upper bound: 18—E2|)[% 9
19 lines

2
14 15
NO INTERSECTION 7 6
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6
13
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16 17
= 1
START
Figure 5. Best known (non-crossing) Hamiltonian path for the 3 X 4 X 4 puzzle.
19 = hu = h’l + 3.
4x4x4 best upper bound: 17
23 lines 8 1125
1218 20
8\6 4
10,1 START 10 \ {21 161
o 2010 18
11———10 146 816
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Figure 6. An original Hamiltonian path for the 4 X 4 X 4 puzzle. 23 = h, = h; + 2 [12].



3X3X5 best upper bound:

16 lines 4
NO INTERSECTION ~11
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Figure 7. Best known (non-crossing) Hamiltonian path for the 3 X 3 X 5 puzzle.
16 = hy, = h; + 2.

3X4X5 best upper bound:
20 lines 6

NO INTERSECTION

15— | 614 {18
START1 4 .
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Figure 8. Best known (non-crossing) Hamiltonian path for the 3 X 4 X 5 puzzle, consisting of
20 = hy, = h; + 3 lines.



3x5x5 best upper bound:
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Figure 9. Best known Hamiltonian path for the 3 X 5 X 5 puzzle. 24 = h,, = h; + 5.

4x4x5 best upper bound:
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Figure 10. Best known Hamiltonian path for the 4 X 4 X 5 puzzle. 26 = h,, = h; + 4.



4x5x5 best upper bound:
31 lines END

Figure 11. Best known Hamiltonian path for the 4 X 5 X 5 puzzle. 31 = h, = h; + 6.

5x5x5 best upper bound: o “
36 lines 32— 31
16—————"—5
END 2324
p————=_036
17 15 31 5
351 19 23 25 21
14 17 2918 2712
253 34 83
18 21
26 29

Figure 12. Best known upper bound of the 5 X 5 X 5 puzzle. 36 = h, = h; + 5.

Finally, it is interesting to note that the improved h, (n;, n,, n3) can lower down the upper
bound of the generalized k-dimensional puzzle too. As an example, we can apply the
aforementioned 3D patterns to the generalized n; X n, X...X n, points problem using the
simple method described in [11].

Letk > 4, givenn, < n,_; <...<n, <n; <n, < ng, we can conclude that

hy(ny,ny,ng, ..., n) = (hy(ng,ny,nz) + 1) - H;'c=4 n; — 1. (6)



3 Conclusion

In the present paper, we have drastically reduced the gap h, (nq,n,,n3) — h;(ny, n,, n3) for
every previously unsolved puzzle such that n; < 6.

Moreover, by equation (6), h(3,3,3) = 13 naturally provides a covering path with link-
length h,(3,3,3,3) = 41 forthe 3 - 3 - 3 - 3 points in R*.

We do not know if any of the patterns shown in figures 4 to 12 represent optimal solutions,
since (by definition) h;(n,, n,, n3) < h(ny, n,, n3). Therefore, some open questions about the
NP-complete [2] n; X n, X n; points problem remain to be answered, and the research in
order to cancel the gap h, (ny,n,,n3) — h;(ny, Ny, ng), at least for every ny < 5, is not over

yet.
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